Properties

Label 162.8.a.e
Level $162$
Weight $8$
Character orbit 162.a
Self dual yes
Analytic conductor $50.606$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.69765.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 72x - 179 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + 64 q^{4} + ( - 3 \beta_{2} + 2 \beta_1 + 18) q^{5} + ( - 2 \beta_{2} + 7 \beta_1 - 70) q^{7} - 512 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{2} + 64 q^{4} + ( - 3 \beta_{2} + 2 \beta_1 + 18) q^{5} + ( - 2 \beta_{2} + 7 \beta_1 - 70) q^{7} - 512 q^{8} + (24 \beta_{2} - 16 \beta_1 - 144) q^{10} + (41 \beta_{2} - 21 \beta_1 + 2193) q^{11} + ( - 83 \beta_{2} - 66 \beta_1 - 3364) q^{13} + (16 \beta_{2} - 56 \beta_1 + 560) q^{14} + 4096 q^{16} + (293 \beta_{2} - 112 \beta_1 + 4965) q^{17} + (375 \beta_{2} - 44 \beta_1 - 22915) q^{19} + ( - 192 \beta_{2} + 128 \beta_1 + 1152) q^{20} + ( - 328 \beta_{2} + 168 \beta_1 - 17544) q^{22} + (118 \beta_{2} - 357 \beta_1 - 13218) q^{23} + (343 \beta_{2} + 416 \beta_1 + 2641) q^{25} + (664 \beta_{2} + 528 \beta_1 + 26912) q^{26} + ( - 128 \beta_{2} + 448 \beta_1 - 4480) q^{28} + ( - 1761 \beta_{2} - 178 \beta_1 + 79944) q^{29} + ( - 1384 \beta_{2} - 623 \beta_1 - 48568) q^{31} - 32768 q^{32} + ( - 2344 \beta_{2} + 896 \beta_1 - 39720) q^{34} + (10 \beta_{2} + 1377 \beta_1 + 181296) q^{35} + (3098 \beta_{2} - 2316 \beta_1 - 120064) q^{37} + ( - 3000 \beta_{2} + 352 \beta_1 + 183320) q^{38} + (1536 \beta_{2} - 1024 \beta_1 - 9216) q^{40} + ( - 1114 \beta_{2} + 888 \beta_1 + 362331) q^{41} + (6477 \beta_{2} - 1767 \beta_1 + 99989) q^{43} + (2624 \beta_{2} - 1344 \beta_1 + 140352) q^{44} + ( - 944 \beta_{2} + 2856 \beta_1 + 105744) q^{46} + (9670 \beta_{2} + 3317 \beta_1 + 43878) q^{47} + ( - 4153 \beta_{2} + 2520 \beta_1 - 160725) q^{49} + ( - 2744 \beta_{2} - 3328 \beta_1 - 21128) q^{50} + ( - 5312 \beta_{2} - 4224 \beta_1 - 215296) q^{52} + ( - 14898 \beta_{2} - 7276 \beta_1 - 318192) q^{53} + ( - 12524 \beta_{2} + 605 \beta_1 - 915804) q^{55} + (1024 \beta_{2} - 3584 \beta_1 + 35840) q^{56} + (14088 \beta_{2} + 1424 \beta_1 - 639552) q^{58} + (5279 \beta_{2} + 12257 \beta_1 + 834951) q^{59} + ( - 6605 \beta_{2} + 10106 \beta_1 - 2436346) q^{61} + (11072 \beta_{2} + 4984 \beta_1 + 388544) q^{62} + 262144 q^{64} + (31025 \beta_{2} - 23272 \beta_1 - 595566) q^{65} + (14619 \beta_{2} + 6975 \beta_1 - 1144345) q^{67} + (18752 \beta_{2} - 7168 \beta_1 + 317760) q^{68} + ( - 80 \beta_{2} - 11016 \beta_1 - 1450368) q^{70} + ( - 21856 \beta_{2} - 5932 \beta_1 - 378228) q^{71} + ( - 27367 \beta_{2} + 7696 \beta_1 - 2650291) q^{73} + ( - 24784 \beta_{2} + 18528 \beta_1 + 960512) q^{74} + (24000 \beta_{2} - 2816 \beta_1 - 1466560) q^{76} + ( - 9847 \beta_{2} + 686 \beta_1 - 2049144) q^{77} + (39816 \beta_{2} - 28025 \beta_1 - 2358976) q^{79} + ( - 12288 \beta_{2} + 8192 \beta_1 + 73728) q^{80} + (8912 \beta_{2} - 7104 \beta_1 - 2898648) q^{82} + ( - 54122 \beta_{2} + 42959 \beta_1 - 3638148) q^{83} + ( - 60502 \beta_{2} - 8600 \beta_1 - 5871132) q^{85} + ( - 51816 \beta_{2} + 14136 \beta_1 - 799912) q^{86} + ( - 20992 \beta_{2} + 10752 \beta_1 - 1122816) q^{88} + (54080 \beta_{2} + 25988 \beta_1 - 3966726) q^{89} + (100578 \beta_{2} - 35529 \beta_1 - 6195092) q^{91} + (7552 \beta_{2} - 22848 \beta_1 - 845952) q^{92} + ( - 77360 \beta_{2} - 26536 \beta_1 - 351024) q^{94} + (2228 \beta_{2} - 47392 \beta_1 - 5780808) q^{95} + ( - 97286 \beta_{2} + 95652 \beta_1 - 173119) q^{97} + (33224 \beta_{2} - 20160 \beta_1 + 1285800) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 24 q^{2} + 192 q^{4} + 54 q^{5} - 210 q^{7} - 1536 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 24 q^{2} + 192 q^{4} + 54 q^{5} - 210 q^{7} - 1536 q^{8} - 432 q^{10} + 6579 q^{11} - 10092 q^{13} + 1680 q^{14} + 12288 q^{16} + 14895 q^{17} - 68745 q^{19} + 3456 q^{20} - 52632 q^{22} - 39654 q^{23} + 7923 q^{25} + 80736 q^{26} - 13440 q^{28} + 239832 q^{29} - 145704 q^{31} - 98304 q^{32} - 119160 q^{34} + 543888 q^{35} - 360192 q^{37} + 549960 q^{38} - 27648 q^{40} + 1086993 q^{41} + 299967 q^{43} + 421056 q^{44} + 317232 q^{46} + 131634 q^{47} - 482175 q^{49} - 63384 q^{50} - 645888 q^{52} - 954576 q^{53} - 2747412 q^{55} + 107520 q^{56} - 1918656 q^{58} + 2504853 q^{59} - 7309038 q^{61} + 1165632 q^{62} + 786432 q^{64} - 1786698 q^{65} - 3433035 q^{67} + 953280 q^{68} - 4351104 q^{70} - 1134684 q^{71} - 7950873 q^{73} + 2881536 q^{74} - 4399680 q^{76} - 6147432 q^{77} - 7076928 q^{79} + 221184 q^{80} - 8695944 q^{82} - 10914444 q^{83} - 17613396 q^{85} - 2399736 q^{86} - 3368448 q^{88} - 11900178 q^{89} - 18585276 q^{91} - 2537856 q^{92} - 1053072 q^{94} - 17342424 q^{95} - 519357 q^{97} + 3857400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 72x - 179 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu^{2} + 3\nu - 144 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3\nu^{2} - 15\nu - 144 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 5\beta _1 + 864 ) / 18 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.74152
−2.78666
9.52819
−8.00000 0 64.0000 −318.162 0 −452.096 −512.000 0 2545.30
1.2 −8.00000 0 64.0000 −3.41638 0 −815.637 −512.000 0 27.3311
1.3 −8.00000 0 64.0000 375.578 0 1057.73 −512.000 0 −3004.63
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.8.a.e 3
3.b odd 2 1 162.8.a.f 3
9.c even 3 2 54.8.c.a 6
9.d odd 6 2 18.8.c.a 6
36.f odd 6 2 432.8.i.a 6
36.h even 6 2 144.8.i.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.8.c.a 6 9.d odd 6 2
54.8.c.a 6 9.c even 3 2
144.8.i.a 6 36.h even 6 2
162.8.a.e 3 1.a even 1 1 trivial
162.8.a.f 3 3.b odd 2 1
432.8.i.a 6 36.f odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 54T_{5}^{2} - 119691T_{5} - 408240 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 54 T^{2} + \cdots - 408240 \) Copy content Toggle raw display
$7$ \( T^{3} + 210 T^{2} + \cdots - 390034934 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 18747598095 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 1359282566258 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 2214690411708 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 22074972070832 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 12974435986590 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 14\!\cdots\!06 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 28\!\cdots\!40 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 81\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 40\!\cdots\!31 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 37\!\cdots\!37 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 41\!\cdots\!98 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 33\!\cdots\!40 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 30\!\cdots\!09 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 80\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 23\!\cdots\!19 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 47\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 84\!\cdots\!08 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 29\!\cdots\!72 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 18\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 93\!\cdots\!81 \) Copy content Toggle raw display
show more
show less