Properties

Label 162.8.a.c
Level $162$
Weight $8$
Character orbit 162.a
Self dual yes
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1929}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 482 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{1929}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + 64 q^{4} + ( - \beta + 57) q^{5} + ( - 4 \beta + 140) q^{7} - 512 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{2} + 64 q^{4} + ( - \beta + 57) q^{5} + ( - 4 \beta + 140) q^{7} - 512 q^{8} + (8 \beta - 456) q^{10} + ( - 16 \beta + 2592) q^{11} + ( - 41 \beta - 3331) q^{13} + (32 \beta - 1120) q^{14} + 4096 q^{16} + ( - 62 \beta + 18255) q^{17} + ( - 56 \beta + 3236) q^{19} + ( - 64 \beta + 3648) q^{20} + (128 \beta - 20736) q^{22} + (40 \beta - 6480) q^{23} + ( - 114 \beta - 5432) q^{25} + (328 \beta + 26648) q^{26} + ( - 256 \beta + 8960) q^{28} + (311 \beta + 8037) q^{29} + ( - 108 \beta - 80068) q^{31} - 32768 q^{32} + (496 \beta - 146040) q^{34} + ( - 368 \beta + 285756) q^{35} + (1421 \beta - 143479) q^{37} + (448 \beta - 25888) q^{38} + (512 \beta - 29184) q^{40} + ( - 1792 \beta - 269142) q^{41} + (336 \beta - 885448) q^{43} + ( - 1024 \beta + 165888) q^{44} + ( - 320 \beta + 51840) q^{46} + ( - 2268 \beta + 139980) q^{47} + ( - 1120 \beta + 307161) q^{49} + (912 \beta + 43456) q^{50} + ( - 2624 \beta - 213184) q^{52} + (2576 \beta + 1186926) q^{53} + ( - 3504 \beta + 1258848) q^{55} + (2048 \beta - 71680) q^{56} + ( - 2488 \beta - 64296) q^{58} + (8536 \beta + 345168) q^{59} + (891 \beta - 1844443) q^{61} + (864 \beta + 640544) q^{62} + 262144 q^{64} + (994 \beta + 2657337) q^{65} + (9480 \beta - 491548) q^{67} + ( - 3968 \beta + 1168320) q^{68} + (2944 \beta - 2286048) q^{70} + ( - 6044 \beta + 1388460) q^{71} + ( - 1212 \beta + 4945547) q^{73} + ( - 11368 \beta + 1147832) q^{74} + ( - 3584 \beta + 207104) q^{76} + ( - 12608 \beta + 4807296) q^{77} + ( - 4328 \beta - 2539168) q^{79} + ( - 4096 \beta + 233472) q^{80} + (14336 \beta + 2153136) q^{82} + (18960 \beta + 4473156) q^{83} + ( - 21789 \beta + 5346063) q^{85} + ( - 2688 \beta + 7083584) q^{86} + (8192 \beta - 1327104) q^{88} + (18652 \beta + 341283) q^{89} + (7584 \beta + 10922476) q^{91} + (2560 \beta - 414720) q^{92} + (18144 \beta - 1119840) q^{94} + ( - 6428 \beta + 4073316) q^{95} + (4000 \beta - 9232126) q^{97} + (8960 \beta - 2457288) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 128 q^{4} + 114 q^{5} + 280 q^{7} - 1024 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 16 q^{2} + 128 q^{4} + 114 q^{5} + 280 q^{7} - 1024 q^{8} - 912 q^{10} + 5184 q^{11} - 6662 q^{13} - 2240 q^{14} + 8192 q^{16} + 36510 q^{17} + 6472 q^{19} + 7296 q^{20} - 41472 q^{22} - 12960 q^{23} - 10864 q^{25} + 53296 q^{26} + 17920 q^{28} + 16074 q^{29} - 160136 q^{31} - 65536 q^{32} - 292080 q^{34} + 571512 q^{35} - 286958 q^{37} - 51776 q^{38} - 58368 q^{40} - 538284 q^{41} - 1770896 q^{43} + 331776 q^{44} + 103680 q^{46} + 279960 q^{47} + 614322 q^{49} + 86912 q^{50} - 426368 q^{52} + 2373852 q^{53} + 2517696 q^{55} - 143360 q^{56} - 128592 q^{58} + 690336 q^{59} - 3688886 q^{61} + 1281088 q^{62} + 524288 q^{64} + 5314674 q^{65} - 983096 q^{67} + 2336640 q^{68} - 4572096 q^{70} + 2776920 q^{71} + 9891094 q^{73} + 2295664 q^{74} + 414208 q^{76} + 9614592 q^{77} - 5078336 q^{79} + 466944 q^{80} + 4306272 q^{82} + 8946312 q^{83} + 10692126 q^{85} + 14167168 q^{86} - 2654208 q^{88} + 682566 q^{89} + 21844952 q^{91} - 829440 q^{92} - 2239680 q^{94} + 8146632 q^{95} - 18464252 q^{97} - 4914576 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.4602
−21.4602
−8.00000 0 64.0000 −206.522 0 −914.089 −512.000 0 1652.18
1.2 −8.00000 0 64.0000 320.522 0 1194.09 −512.000 0 −2564.18
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.8.a.c 2
3.b odd 2 1 162.8.a.d yes 2
9.c even 3 2 162.8.c.o 4
9.d odd 6 2 162.8.c.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.8.a.c 2 1.a even 1 1 trivial
162.8.a.d yes 2 3.b odd 2 1
162.8.c.n 4 9.d odd 6 2
162.8.c.o 4 9.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 114T_{5} - 66195 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 114T - 66195 \) Copy content Toggle raw display
$7$ \( T^{2} - 280 T - 1091504 \) Copy content Toggle raw display
$11$ \( T^{2} - 5184 T - 11059200 \) Copy content Toggle raw display
$13$ \( T^{2} + 6662 T - 105639803 \) Copy content Toggle raw display
$17$ \( T^{2} - 36510 T + 66302289 \) Copy content Toggle raw display
$19$ \( T^{2} - 6472 T - 207304688 \) Copy content Toggle raw display
$23$ \( T^{2} + 12960 T - 69120000 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 6652099755 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 5600889808 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 119637948563 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 150565601052 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 776178210880 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 337613313456 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 947978500932 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 4940777779200 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 3346839708085 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 5999340621296 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 608963703984 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 24356425782073 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 5146578012928 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 4954715630064 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 24042892404087 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 84121046479876 \) Copy content Toggle raw display
show more
show less