Properties

Label 162.8.a.b
Level $162$
Weight $8$
Character orbit 162.a
Self dual yes
Analytic conductor $50.606$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{2} + 64 q^{4} - 165 q^{5} - 508 q^{7} + 512 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{2} + 64 q^{4} - 165 q^{5} - 508 q^{7} + 512 q^{8} - 1320 q^{10} + 3024 q^{11} + 5039 q^{13} - 4064 q^{14} + 4096 q^{16} - 3189 q^{17} + 1508 q^{19} - 10560 q^{20} + 24192 q^{22} - 75600 q^{23} - 50900 q^{25} + 40312 q^{26} - 32512 q^{28} - 82665 q^{29} - 174892 q^{31} + 32768 q^{32} - 25512 q^{34} + 83820 q^{35} - 323569 q^{37} + 12064 q^{38} - 84480 q^{40} - 308118 q^{41} + 336680 q^{43} + 193536 q^{44} - 604800 q^{46} - 383196 q^{47} - 565479 q^{49} - 407200 q^{50} + 322496 q^{52} + 760206 q^{53} - 498960 q^{55} - 260096 q^{56} - 661320 q^{58} - 2225664 q^{59} + 2244815 q^{61} - 1399136 q^{62} + 262144 q^{64} - 831435 q^{65} + 1473188 q^{67} - 204096 q^{68} + 670560 q^{70} - 5006892 q^{71} - 5898301 q^{73} - 2588552 q^{74} + 96512 q^{76} - 1536192 q^{77} + 7028768 q^{79} - 675840 q^{80} - 2464944 q^{82} - 2651196 q^{83} + 526185 q^{85} + 2693440 q^{86} + 1548288 q^{88} - 6770901 q^{89} - 2559812 q^{91} - 4838400 q^{92} - 3065568 q^{94} - 248820 q^{95} + 16176386 q^{97} - 4523832 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8.00000 0 64.0000 −165.000 0 −508.000 512.000 0 −1320.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.8.a.b yes 1
3.b odd 2 1 162.8.a.a 1
9.c even 3 2 162.8.c.e 2
9.d odd 6 2 162.8.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.8.a.a 1 3.b odd 2 1
162.8.a.b yes 1 1.a even 1 1 trivial
162.8.c.e 2 9.c even 3 2
162.8.c.h 2 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 165 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 165 \) Copy content Toggle raw display
$7$ \( T + 508 \) Copy content Toggle raw display
$11$ \( T - 3024 \) Copy content Toggle raw display
$13$ \( T - 5039 \) Copy content Toggle raw display
$17$ \( T + 3189 \) Copy content Toggle raw display
$19$ \( T - 1508 \) Copy content Toggle raw display
$23$ \( T + 75600 \) Copy content Toggle raw display
$29$ \( T + 82665 \) Copy content Toggle raw display
$31$ \( T + 174892 \) Copy content Toggle raw display
$37$ \( T + 323569 \) Copy content Toggle raw display
$41$ \( T + 308118 \) Copy content Toggle raw display
$43$ \( T - 336680 \) Copy content Toggle raw display
$47$ \( T + 383196 \) Copy content Toggle raw display
$53$ \( T - 760206 \) Copy content Toggle raw display
$59$ \( T + 2225664 \) Copy content Toggle raw display
$61$ \( T - 2244815 \) Copy content Toggle raw display
$67$ \( T - 1473188 \) Copy content Toggle raw display
$71$ \( T + 5006892 \) Copy content Toggle raw display
$73$ \( T + 5898301 \) Copy content Toggle raw display
$79$ \( T - 7028768 \) Copy content Toggle raw display
$83$ \( T + 2651196 \) Copy content Toggle raw display
$89$ \( T + 6770901 \) Copy content Toggle raw display
$97$ \( T - 16176386 \) Copy content Toggle raw display
show more
show less