Properties

Label 162.7.d.f.53.4
Level $162$
Weight $7$
Character 162.53
Analytic conductor $37.269$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,7,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.2687615464\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.4
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 162.53
Dual form 162.7.d.f.107.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.89898 - 2.82843i) q^{2} +(16.0000 - 27.7128i) q^{4} +(180.591 + 104.264i) q^{5} +(-2.09808 - 3.63397i) q^{7} -181.019i q^{8} +O(q^{10})\) \(q+(4.89898 - 2.82843i) q^{2} +(16.0000 - 27.7128i) q^{4} +(180.591 + 104.264i) q^{5} +(-2.09808 - 3.63397i) q^{7} -181.019i q^{8} +1179.62 q^{10} +(1958.91 - 1130.98i) q^{11} +(-1420.00 + 2459.52i) q^{13} +(-20.5569 - 11.8685i) q^{14} +(-512.000 - 886.810i) q^{16} -1965.86i q^{17} -281.295 q^{19} +(5778.91 - 3336.46i) q^{20} +(6397.77 - 11081.3i) q^{22} +(14501.0 + 8372.14i) q^{23} +(13929.6 + 24126.7i) q^{25} +16065.5i q^{26} -134.277 q^{28} +(-32141.8 + 18557.1i) q^{29} +(12354.2 - 21398.0i) q^{31} +(-5016.55 - 2896.31i) q^{32} +(-5560.29 - 9630.70i) q^{34} -875.017i q^{35} -17016.7 q^{37} +(-1378.06 + 795.623i) q^{38} +(18873.8 - 32690.5i) q^{40} +(100663. + 58117.9i) q^{41} +(15331.4 + 26554.8i) q^{43} -72382.5i q^{44} +94720.0 q^{46} +(67261.3 - 38833.3i) q^{47} +(58815.7 - 101872. i) q^{49} +(136481. + 78797.5i) q^{50} +(45440.1 + 78704.6i) q^{52} -138657. i q^{53} +471682. q^{55} +(-657.820 + 379.792i) q^{56} +(-104975. + 181821. i) q^{58} +(-132465. - 76478.8i) q^{59} +(8069.05 + 13976.0i) q^{61} -139771. i q^{62} -32768.0 q^{64} +(-512880. + 296111. i) q^{65} +(237334. - 411074. i) q^{67} +(-54479.4 - 31453.7i) q^{68} +(-2474.92 - 4286.69i) q^{70} +150338. i q^{71} +331690. q^{73} +(-83364.7 + 48130.6i) q^{74} +(-4500.73 + 7795.49i) q^{76} +(-8219.88 - 4745.75i) q^{77} +(448056. + 776056. i) q^{79} -213533. i q^{80} +657529. q^{82} +(-818472. + 472545. i) q^{83} +(204969. - 355016. i) q^{85} +(150217. + 86727.7i) q^{86} +(-204729. - 354600. i) q^{88} -790302. i q^{89} +11917.1 q^{91} +(464031. - 267909. i) q^{92} +(219674. - 380487. i) q^{94} +(-50799.4 - 29329.0i) q^{95} +(-696338. - 1.20609e6i) q^{97} -665424. i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 128 q^{4} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 128 q^{4} + 4 q^{7} + 5280 q^{10} - 3836 q^{13} - 4096 q^{16} + 20488 q^{19} + 27072 q^{22} + 25700 q^{25} + 256 q^{28} + 40096 q^{31} - 60528 q^{34} - 40400 q^{37} + 84480 q^{40} - 184940 q^{43} + 325440 q^{46} + 470484 q^{49} + 122752 q^{52} + 1899720 q^{55} - 24624 q^{58} - 609056 q^{61} - 262144 q^{64} + 2008972 q^{67} - 8160 q^{70} + 1051648 q^{73} + 327808 q^{76} + 848716 q^{79} + 1411584 q^{82} + 987840 q^{85} - 866304 q^{88} + 70520 q^{91} + 1965408 q^{94} - 3621728 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.89898 2.82843i 0.612372 0.353553i
\(3\) 0 0
\(4\) 16.0000 27.7128i 0.250000 0.433013i
\(5\) 180.591 + 104.264i 1.44473 + 0.834114i 0.998160 0.0606359i \(-0.0193128\pi\)
0.446568 + 0.894750i \(0.352646\pi\)
\(6\) 0 0
\(7\) −2.09808 3.63397i −0.00611684 0.0105947i 0.862951 0.505288i \(-0.168614\pi\)
−0.869068 + 0.494693i \(0.835280\pi\)
\(8\) 181.019i 0.353553i
\(9\) 0 0
\(10\) 1179.62 1.17962
\(11\) 1958.91 1130.98i 1.47176 0.849719i 0.472261 0.881459i \(-0.343438\pi\)
0.999496 + 0.0317396i \(0.0101047\pi\)
\(12\) 0 0
\(13\) −1420.00 + 2459.52i −0.646338 + 1.11949i 0.337653 + 0.941271i \(0.390367\pi\)
−0.983991 + 0.178219i \(0.942966\pi\)
\(14\) −20.5569 11.8685i −0.00749157 0.00432526i
\(15\) 0 0
\(16\) −512.000 886.810i −0.125000 0.216506i
\(17\) 1965.86i 0.400134i −0.979782 0.200067i \(-0.935884\pi\)
0.979782 0.200067i \(-0.0641160\pi\)
\(18\) 0 0
\(19\) −281.295 −0.0410111 −0.0205056 0.999790i \(-0.506528\pi\)
−0.0205056 + 0.999790i \(0.506528\pi\)
\(20\) 5778.91 3336.46i 0.722364 0.417057i
\(21\) 0 0
\(22\) 6397.77 11081.3i 0.600842 1.04069i
\(23\) 14501.0 + 8372.14i 1.19183 + 0.688102i 0.958721 0.284348i \(-0.0917773\pi\)
0.233107 + 0.972451i \(0.425111\pi\)
\(24\) 0 0
\(25\) 13929.6 + 24126.7i 0.891492 + 1.54411i
\(26\) 16065.5i 0.914059i
\(27\) 0 0
\(28\) −134.277 −0.00611684
\(29\) −32141.8 + 18557.1i −1.31788 + 0.760878i −0.983387 0.181520i \(-0.941898\pi\)
−0.334492 + 0.942399i \(0.608565\pi\)
\(30\) 0 0
\(31\) 12354.2 21398.0i 0.414694 0.718272i −0.580702 0.814116i \(-0.697222\pi\)
0.995396 + 0.0958444i \(0.0305551\pi\)
\(32\) −5016.55 2896.31i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −5560.29 9630.70i −0.141469 0.245031i
\(35\) 875.017i 0.0204086i
\(36\) 0 0
\(37\) −17016.7 −0.335947 −0.167974 0.985791i \(-0.553722\pi\)
−0.167974 + 0.985791i \(0.553722\pi\)
\(38\) −1378.06 + 795.623i −0.0251141 + 0.0144996i
\(39\) 0 0
\(40\) 18873.8 32690.5i 0.294904 0.510788i
\(41\) 100663. + 58117.9i 1.46056 + 0.843253i 0.999037 0.0438761i \(-0.0139707\pi\)
0.461521 + 0.887129i \(0.347304\pi\)
\(42\) 0 0
\(43\) 15331.4 + 26554.8i 0.192831 + 0.333993i 0.946187 0.323619i \(-0.104900\pi\)
−0.753356 + 0.657613i \(0.771566\pi\)
\(44\) 72382.5i 0.849719i
\(45\) 0 0
\(46\) 94720.0 0.973124
\(47\) 67261.3 38833.3i 0.647846 0.374034i −0.139785 0.990182i \(-0.544641\pi\)
0.787630 + 0.616148i \(0.211308\pi\)
\(48\) 0 0
\(49\) 58815.7 101872.i 0.499925 0.865896i
\(50\) 136481. + 78797.5i 1.09185 + 0.630380i
\(51\) 0 0
\(52\) 45440.1 + 78704.6i 0.323169 + 0.559745i
\(53\) 138657.i 0.931354i −0.884955 0.465677i \(-0.845811\pi\)
0.884955 0.465677i \(-0.154189\pi\)
\(54\) 0 0
\(55\) 471682. 2.83505
\(56\) −657.820 + 379.792i −0.00374578 + 0.00216263i
\(57\) 0 0
\(58\) −104975. + 181821.i −0.538022 + 0.931881i
\(59\) −132465. 76478.8i −0.644979 0.372379i 0.141551 0.989931i \(-0.454791\pi\)
−0.786530 + 0.617552i \(0.788124\pi\)
\(60\) 0 0
\(61\) 8069.05 + 13976.0i 0.0355495 + 0.0615735i 0.883253 0.468897i \(-0.155349\pi\)
−0.847703 + 0.530471i \(0.822015\pi\)
\(62\) 139771.i 0.586467i
\(63\) 0 0
\(64\) −32768.0 −0.125000
\(65\) −512880. + 296111.i −1.86756 + 1.07824i
\(66\) 0 0
\(67\) 237334. 411074.i 0.789105 1.36677i −0.137411 0.990514i \(-0.543878\pi\)
0.926516 0.376255i \(-0.122788\pi\)
\(68\) −54479.4 31453.7i −0.173263 0.100033i
\(69\) 0 0
\(70\) −2474.92 4286.69i −0.00721552 0.0124976i
\(71\) 150338.i 0.420043i 0.977697 + 0.210021i \(0.0673534\pi\)
−0.977697 + 0.210021i \(0.932647\pi\)
\(72\) 0 0
\(73\) 331690. 0.852636 0.426318 0.904573i \(-0.359811\pi\)
0.426318 + 0.904573i \(0.359811\pi\)
\(74\) −83364.7 + 48130.6i −0.205725 + 0.118775i
\(75\) 0 0
\(76\) −4500.73 + 7795.49i −0.0102528 + 0.0177583i
\(77\) −8219.88 4745.75i −0.0180050 0.0103952i
\(78\) 0 0
\(79\) 448056. + 776056.i 0.908764 + 1.57403i 0.815783 + 0.578357i \(0.196306\pi\)
0.0929805 + 0.995668i \(0.470361\pi\)
\(80\) 213533.i 0.417057i
\(81\) 0 0
\(82\) 657529. 1.19254
\(83\) −818472. + 472545.i −1.43143 + 0.826435i −0.997230 0.0743823i \(-0.976301\pi\)
−0.434198 + 0.900817i \(0.642968\pi\)
\(84\) 0 0
\(85\) 204969. 355016.i 0.333757 0.578084i
\(86\) 150217. + 86727.7i 0.236169 + 0.136352i
\(87\) 0 0
\(88\) −204729. 354600.i −0.300421 0.520345i
\(89\) 790302.i 1.12105i −0.828139 0.560523i \(-0.810600\pi\)
0.828139 0.560523i \(-0.189400\pi\)
\(90\) 0 0
\(91\) 11917.1 0.0158142
\(92\) 464031. 267909.i 0.595914 0.344051i
\(93\) 0 0
\(94\) 219674. 380487.i 0.264482 0.458096i
\(95\) −50799.4 29329.0i −0.0592499 0.0342080i
\(96\) 0 0
\(97\) −696338. 1.20609e6i −0.762965 1.32149i −0.941316 0.337527i \(-0.890409\pi\)
0.178351 0.983967i \(-0.442924\pi\)
\(98\) 665424.i 0.707001i
\(99\) 0 0
\(100\) 891492. 0.891492
\(101\) −113927. + 65775.9i −0.110577 + 0.0638414i −0.554268 0.832338i \(-0.687002\pi\)
0.443692 + 0.896179i \(0.353669\pi\)
\(102\) 0 0
\(103\) −967305. + 1.67542e6i −0.885221 + 1.53325i −0.0397603 + 0.999209i \(0.512659\pi\)
−0.845460 + 0.534038i \(0.820674\pi\)
\(104\) 445220. + 257048.i 0.395799 + 0.228515i
\(105\) 0 0
\(106\) −392182. 679279.i −0.329283 0.570336i
\(107\) 621916.i 0.507669i 0.967248 + 0.253834i \(0.0816918\pi\)
−0.967248 + 0.253834i \(0.918308\pi\)
\(108\) 0 0
\(109\) −1.34578e6 −1.03919 −0.519594 0.854413i \(-0.673917\pi\)
−0.519594 + 0.854413i \(0.673917\pi\)
\(110\) 2.31076e6 1.33412e6i 1.73611 1.00234i
\(111\) 0 0
\(112\) −2148.43 + 3721.19i −0.00152921 + 0.00264867i
\(113\) 1.07329e6 + 619662.i 0.743841 + 0.429457i 0.823464 0.567368i \(-0.192038\pi\)
−0.0796229 + 0.996825i \(0.525372\pi\)
\(114\) 0 0
\(115\) 1.74583e6 + 3.02387e6i 1.14791 + 1.98824i
\(116\) 1.18765e6i 0.760878i
\(117\) 0 0
\(118\) −865259. −0.526623
\(119\) −7143.88 + 4124.52i −0.00423929 + 0.00244755i
\(120\) 0 0
\(121\) 1.67243e6 2.89674e6i 0.944046 1.63514i
\(122\) 79060.2 + 45645.5i 0.0435390 + 0.0251373i
\(123\) 0 0
\(124\) −395333. 684737.i −0.207347 0.359136i
\(125\) 2.55116e6i 1.30620i
\(126\) 0 0
\(127\) −1.65297e6 −0.806962 −0.403481 0.914988i \(-0.632200\pi\)
−0.403481 + 0.914988i \(0.632200\pi\)
\(128\) −160530. + 92681.9i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −1.67506e6 + 2.90129e6i −0.762430 + 1.32057i
\(131\) −2.30472e6 1.33063e6i −1.02519 0.591893i −0.109586 0.993977i \(-0.534952\pi\)
−0.915602 + 0.402085i \(0.868286\pi\)
\(132\) 0 0
\(133\) 590.179 + 1022.22i 0.000250859 + 0.000434500i
\(134\) 2.68512e6i 1.11596i
\(135\) 0 0
\(136\) −355858. −0.141469
\(137\) −2.26046e6 + 1.30508e6i −0.879092 + 0.507544i −0.870359 0.492418i \(-0.836113\pi\)
−0.00873327 + 0.999962i \(0.502780\pi\)
\(138\) 0 0
\(139\) 350661. 607362.i 0.130570 0.226153i −0.793327 0.608796i \(-0.791653\pi\)
0.923896 + 0.382643i \(0.124986\pi\)
\(140\) −24249.2 14000.3i −0.00883717 0.00510214i
\(141\) 0 0
\(142\) 425220. + 736503.i 0.148508 + 0.257223i
\(143\) 6.42396e6i 2.19682i
\(144\) 0 0
\(145\) −7.73935e6 −2.53864
\(146\) 1.62494e6 938160.i 0.522131 0.301452i
\(147\) 0 0
\(148\) −272268. + 471582.i −0.0839868 + 0.145469i
\(149\) −4.09928e6 2.36672e6i −1.23922 0.715464i −0.270285 0.962780i \(-0.587118\pi\)
−0.968935 + 0.247316i \(0.920451\pi\)
\(150\) 0 0
\(151\) −1.86865e6 3.23659e6i −0.542746 0.940063i −0.998745 0.0500829i \(-0.984051\pi\)
0.455999 0.889980i \(-0.349282\pi\)
\(152\) 50919.9i 0.0144996i
\(153\) 0 0
\(154\) −53692.0 −0.0147010
\(155\) 4.46210e6 2.57619e6i 1.19824 0.691805i
\(156\) 0 0
\(157\) −1.60331e6 + 2.77701e6i −0.414303 + 0.717594i −0.995355 0.0962723i \(-0.969308\pi\)
0.581052 + 0.813867i \(0.302641\pi\)
\(158\) 4.39004e6 + 2.53459e6i 1.11300 + 0.642593i
\(159\) 0 0
\(160\) −603963. 1.04609e6i −0.147452 0.255394i
\(161\) 70261.6i 0.0168361i
\(162\) 0 0
\(163\) −964418. −0.222691 −0.111345 0.993782i \(-0.535516\pi\)
−0.111345 + 0.993782i \(0.535516\pi\)
\(164\) 3.22122e6 1.85977e6i 0.730279 0.421627i
\(165\) 0 0
\(166\) −2.67312e6 + 4.62998e6i −0.584378 + 1.01217i
\(167\) −896330. 517496.i −0.192450 0.111111i 0.400679 0.916219i \(-0.368774\pi\)
−0.593129 + 0.805107i \(0.702108\pi\)
\(168\) 0 0
\(169\) −1.61942e6 2.80491e6i −0.335504 0.581111i
\(170\) 2.31896e6i 0.472004i
\(171\) 0 0
\(172\) 981212. 0.192831
\(173\) −561701. + 324298.i −0.108484 + 0.0626334i −0.553260 0.833008i \(-0.686617\pi\)
0.444776 + 0.895642i \(0.353283\pi\)
\(174\) 0 0
\(175\) 58450.6 101239.i 0.0109062 0.0188901i
\(176\) −2.00592e6 1.15812e6i −0.367939 0.212430i
\(177\) 0 0
\(178\) −2.23531e6 3.87168e6i −0.396349 0.686497i
\(179\) 4.65189e6i 0.811092i −0.914075 0.405546i \(-0.867081\pi\)
0.914075 0.405546i \(-0.132919\pi\)
\(180\) 0 0
\(181\) 3.43720e6 0.579654 0.289827 0.957079i \(-0.406402\pi\)
0.289827 + 0.957079i \(0.406402\pi\)
\(182\) 58381.6 33706.7i 0.00968416 0.00559115i
\(183\) 0 0
\(184\) 1.51552e6 2.62496e6i 0.243281 0.421375i
\(185\) −3.07307e6 1.77424e6i −0.485352 0.280218i
\(186\) 0 0
\(187\) −2.22334e6 3.85094e6i −0.340001 0.588900i
\(188\) 2.48533e6i 0.374034i
\(189\) 0 0
\(190\) −331820. −0.0483774
\(191\) −1.01766e7 + 5.87547e6i −1.46050 + 0.843222i −0.999034 0.0439335i \(-0.986011\pi\)
−0.461470 + 0.887156i \(0.652678\pi\)
\(192\) 0 0
\(193\) −3.47800e6 + 6.02407e6i −0.483790 + 0.837950i −0.999827 0.0186172i \(-0.994074\pi\)
0.516036 + 0.856567i \(0.327407\pi\)
\(194\) −6.82269e6 3.93908e6i −0.934438 0.539498i
\(195\) 0 0
\(196\) −1.88210e6 3.25990e6i −0.249963 0.432948i
\(197\) 409645.i 0.0535807i −0.999641 0.0267904i \(-0.991471\pi\)
0.999641 0.0267904i \(-0.00852866\pi\)
\(198\) 0 0
\(199\) −3.24847e6 −0.412212 −0.206106 0.978530i \(-0.566079\pi\)
−0.206106 + 0.978530i \(0.566079\pi\)
\(200\) 4.36740e6 2.52152e6i 0.545925 0.315190i
\(201\) 0 0
\(202\) −372084. + 644469.i −0.0451427 + 0.0781894i
\(203\) 134872. + 77868.2i 0.0161225 + 0.00930834i
\(204\) 0 0
\(205\) 1.21192e7 + 2.09911e7i 1.40674 + 2.43654i
\(206\) 1.09438e7i 1.25189i
\(207\) 0 0
\(208\) 2.90817e6 0.323169
\(209\) −551032. + 318138.i −0.0603584 + 0.0348480i
\(210\) 0 0
\(211\) 2.49743e6 4.32568e6i 0.265856 0.460476i −0.701932 0.712244i \(-0.747679\pi\)
0.967788 + 0.251768i \(0.0810121\pi\)
\(212\) −3.84258e6 2.21852e6i −0.403288 0.232839i
\(213\) 0 0
\(214\) 1.75904e6 + 3.04676e6i 0.179488 + 0.310882i
\(215\) 6.39408e6i 0.643373i
\(216\) 0 0
\(217\) −103680. −0.0101465
\(218\) −6.59294e6 + 3.80644e6i −0.636370 + 0.367408i
\(219\) 0 0
\(220\) 7.54691e6 1.30716e7i 0.708763 1.22761i
\(221\) 4.83506e6 + 2.79152e6i 0.447946 + 0.258622i
\(222\) 0 0
\(223\) −2.84462e6 4.92703e6i −0.256513 0.444294i 0.708792 0.705417i \(-0.249240\pi\)
−0.965305 + 0.261123i \(0.915907\pi\)
\(224\) 24306.7i 0.00216263i
\(225\) 0 0
\(226\) 7.01068e6 0.607344
\(227\) −1.00514e7 + 5.80319e6i −0.859310 + 0.496123i −0.863781 0.503867i \(-0.831910\pi\)
0.00447105 + 0.999990i \(0.498577\pi\)
\(228\) 0 0
\(229\) 1.72845e6 2.99376e6i 0.143930 0.249294i −0.785043 0.619441i \(-0.787359\pi\)
0.928973 + 0.370147i \(0.120693\pi\)
\(230\) 1.71056e7 + 9.87591e6i 1.40590 + 0.811696i
\(231\) 0 0
\(232\) 3.35919e6 + 5.81828e6i 0.269011 + 0.465941i
\(233\) 1.27739e7i 1.00985i −0.863164 0.504924i \(-0.831520\pi\)
0.863164 0.504924i \(-0.168480\pi\)
\(234\) 0 0
\(235\) 1.61957e7 1.24795
\(236\) −4.23889e6 + 2.44732e6i −0.322490 + 0.186189i
\(237\) 0 0
\(238\) −23331.8 + 40411.9i −0.00173068 + 0.00299763i
\(239\) 1.11918e7 + 6.46157e6i 0.819795 + 0.473309i 0.850346 0.526225i \(-0.176393\pi\)
−0.0305510 + 0.999533i \(0.509726\pi\)
\(240\) 0 0
\(241\) −3.64016e6 6.30494e6i −0.260057 0.450433i 0.706200 0.708013i \(-0.250408\pi\)
−0.966257 + 0.257580i \(0.917075\pi\)
\(242\) 1.89214e7i 1.33508i
\(243\) 0 0
\(244\) 516419. 0.0355495
\(245\) 2.12432e7 1.22647e7i 1.44451 0.833989i
\(246\) 0 0
\(247\) 399440. 691851.i 0.0265070 0.0459115i
\(248\) −3.87346e6 2.23634e6i −0.253947 0.146617i
\(249\) 0 0
\(250\) 7.21578e6 + 1.24981e7i 0.461810 + 0.799879i
\(251\) 1.71927e7i 1.08723i −0.839334 0.543616i \(-0.817055\pi\)
0.839334 0.543616i \(-0.182945\pi\)
\(252\) 0 0
\(253\) 3.78748e7 2.33878
\(254\) −8.09785e6 + 4.67529e6i −0.494161 + 0.285304i
\(255\) 0 0
\(256\) −524288. + 908093.i −0.0312500 + 0.0541266i
\(257\) 6.93783e6 + 4.00556e6i 0.408718 + 0.235974i 0.690239 0.723582i \(-0.257505\pi\)
−0.281521 + 0.959555i \(0.590839\pi\)
\(258\) 0 0
\(259\) 35702.4 + 61838.4i 0.00205494 + 0.00355925i
\(260\) 1.89511e7i 1.07824i
\(261\) 0 0
\(262\) −1.50543e7 −0.837062
\(263\) 1.45674e7 8.41046e6i 0.800780 0.462331i −0.0429637 0.999077i \(-0.513680\pi\)
0.843744 + 0.536746i \(0.180347\pi\)
\(264\) 0 0
\(265\) 1.44570e7 2.50402e7i 0.776856 1.34555i
\(266\) 5782.55 + 3338.56i 0.000307238 + 0.000177384i
\(267\) 0 0
\(268\) −7.59467e6 1.31544e7i −0.394552 0.683385i
\(269\) 3.33514e6i 0.171339i −0.996324 0.0856697i \(-0.972697\pi\)
0.996324 0.0856697i \(-0.0273030\pi\)
\(270\) 0 0
\(271\) −1.47048e7 −0.738840 −0.369420 0.929263i \(-0.620444\pi\)
−0.369420 + 0.929263i \(0.620444\pi\)
\(272\) −1.74334e6 + 1.00652e6i −0.0866315 + 0.0500167i
\(273\) 0 0
\(274\) −7.38262e6 + 1.27871e7i −0.358888 + 0.621612i
\(275\) 5.45735e7 + 3.15080e7i 2.62412 + 1.51504i
\(276\) 0 0
\(277\) 5.46003e6 + 9.45705e6i 0.256895 + 0.444955i 0.965408 0.260742i \(-0.0839672\pi\)
−0.708514 + 0.705697i \(0.750634\pi\)
\(278\) 3.96727e6i 0.184653i
\(279\) 0 0
\(280\) −158395. −0.00721552
\(281\) 1.61727e7 9.33733e6i 0.728894 0.420827i −0.0891235 0.996021i \(-0.528407\pi\)
0.818017 + 0.575194i \(0.195073\pi\)
\(282\) 0 0
\(283\) 7.31274e6 1.26660e7i 0.322642 0.558832i −0.658390 0.752677i \(-0.728762\pi\)
0.981032 + 0.193845i \(0.0620957\pi\)
\(284\) 4.16629e6 + 2.40541e6i 0.181884 + 0.105011i
\(285\) 0 0
\(286\) 1.81697e7 + 3.14709e7i 0.776694 + 1.34527i
\(287\) 487743.i 0.0206322i
\(288\) 0 0
\(289\) 2.02730e7 0.839893
\(290\) −3.79149e7 + 2.18902e7i −1.55459 + 0.897543i
\(291\) 0 0
\(292\) 5.30704e6 9.19206e6i 0.213159 0.369202i
\(293\) −4.14332e7 2.39215e7i −1.64720 0.951010i −0.978179 0.207763i \(-0.933382\pi\)
−0.669018 0.743247i \(-0.733285\pi\)
\(294\) 0 0
\(295\) −1.59480e7 2.76228e7i −0.621213 1.07597i
\(296\) 3.08036e6i 0.118775i
\(297\) 0 0
\(298\) −2.67764e7 −1.01182
\(299\) −4.11829e7 + 2.37769e7i −1.54065 + 0.889493i
\(300\) 0 0
\(301\) 64333.0 111428.i 0.00235904 0.00408597i
\(302\) −1.83089e7 1.05707e7i −0.664725 0.383779i
\(303\) 0 0
\(304\) 144023. + 249456.i 0.00512639 + 0.00887917i
\(305\) 3.36525e6i 0.118609i
\(306\) 0 0
\(307\) 4.24782e7 1.46808 0.734042 0.679104i \(-0.237631\pi\)
0.734042 + 0.679104i \(0.237631\pi\)
\(308\) −263036. + 151864.i −0.00900250 + 0.00519760i
\(309\) 0 0
\(310\) 1.45732e7 2.52415e7i 0.489180 0.847285i
\(311\) −2.68464e7 1.54998e7i −0.892494 0.515282i −0.0177365 0.999843i \(-0.505646\pi\)
−0.874757 + 0.484561i \(0.838979\pi\)
\(312\) 0 0
\(313\) 1.48914e7 + 2.57927e7i 0.485627 + 0.841131i 0.999864 0.0165178i \(-0.00525800\pi\)
−0.514237 + 0.857648i \(0.671925\pi\)
\(314\) 1.81394e7i 0.585913i
\(315\) 0 0
\(316\) 2.86756e7 0.908764
\(317\) −1.88717e6 + 1.08956e6i −0.0592424 + 0.0342036i −0.529329 0.848417i \(-0.677556\pi\)
0.470086 + 0.882620i \(0.344223\pi\)
\(318\) 0 0
\(319\) −4.19752e7 + 7.27031e7i −1.29307 + 2.23966i
\(320\) −5.91760e6 3.41653e6i −0.180591 0.104264i
\(321\) 0 0
\(322\) −198730. 344210.i −0.00595244 0.0103099i
\(323\) 552987.i 0.0164099i
\(324\) 0 0
\(325\) −7.91201e7 −2.30482
\(326\) −4.72466e6 + 2.72779e6i −0.136370 + 0.0787331i
\(327\) 0 0
\(328\) 1.05205e7 1.82220e7i 0.298135 0.516385i
\(329\) −282239. 162951.i −0.00792554 0.00457581i
\(330\) 0 0
\(331\) −6.68355e6 1.15762e7i −0.184299 0.319215i 0.759041 0.651043i \(-0.225668\pi\)
−0.943340 + 0.331827i \(0.892335\pi\)
\(332\) 3.02429e7i 0.826435i
\(333\) 0 0
\(334\) −5.85480e6 −0.157135
\(335\) 8.57206e7 4.94908e7i 2.28008 1.31641i
\(336\) 0 0
\(337\) −2.22744e7 + 3.85804e7i −0.581991 + 1.00804i 0.413252 + 0.910617i \(0.364393\pi\)
−0.995243 + 0.0974216i \(0.968940\pi\)
\(338\) −1.58670e7 9.16080e6i −0.410907 0.237237i
\(339\) 0 0
\(340\) −6.55900e6 1.13605e7i −0.166879 0.289042i
\(341\) 5.58891e7i 1.40950i
\(342\) 0 0
\(343\) −987272. −0.0244655
\(344\) 4.80694e6 2.77529e6i 0.118085 0.0681761i
\(345\) 0 0
\(346\) −1.83451e6 + 3.17746e6i −0.0442885 + 0.0767100i
\(347\) −1.80987e7 1.04493e7i −0.433170 0.250091i 0.267526 0.963551i \(-0.413794\pi\)
−0.700696 + 0.713460i \(0.747127\pi\)
\(348\) 0 0
\(349\) −3.22577e7 5.58720e7i −0.758852 1.31437i −0.943436 0.331554i \(-0.892427\pi\)
0.184584 0.982817i \(-0.440906\pi\)
\(350\) 661293.i 0.0154237i
\(351\) 0 0
\(352\) −1.31026e7 −0.300421
\(353\) 3.64529e6 2.10461e6i 0.0828719 0.0478461i −0.457991 0.888957i \(-0.651431\pi\)
0.540863 + 0.841110i \(0.318098\pi\)
\(354\) 0 0
\(355\) −1.56749e7 + 2.71497e7i −0.350364 + 0.606848i
\(356\) −2.19015e7 1.26448e7i −0.485427 0.280261i
\(357\) 0 0
\(358\) −1.31575e7 2.27895e7i −0.286764 0.496690i
\(359\) 5.61320e7i 1.21319i 0.795012 + 0.606593i \(0.207464\pi\)
−0.795012 + 0.606593i \(0.792536\pi\)
\(360\) 0 0
\(361\) −4.69668e7 −0.998318
\(362\) 1.68388e7 9.72186e6i 0.354964 0.204939i
\(363\) 0 0
\(364\) 190674. 330256.i 0.00395354 0.00684774i
\(365\) 5.99002e7 + 3.45834e7i 1.23183 + 0.711195i
\(366\) 0 0
\(367\) −1.67551e7 2.90207e7i −0.338961 0.587097i 0.645277 0.763949i \(-0.276742\pi\)
−0.984238 + 0.176852i \(0.943409\pi\)
\(368\) 1.71461e7i 0.344051i
\(369\) 0 0
\(370\) −2.00732e7 −0.396289
\(371\) −503877. + 290913.i −0.00986740 + 0.00569695i
\(372\) 0 0
\(373\) −1.11388e7 + 1.92931e7i −0.214642 + 0.371770i −0.953162 0.302461i \(-0.902192\pi\)
0.738520 + 0.674231i \(0.235525\pi\)
\(374\) −2.17842e7 1.25771e7i −0.416415 0.240417i
\(375\) 0 0
\(376\) −7.02958e6 1.21756e7i −0.132241 0.229048i
\(377\) 1.05404e8i 1.96714i
\(378\) 0 0
\(379\) 7.72205e7 1.41845 0.709226 0.704981i \(-0.249044\pi\)
0.709226 + 0.704981i \(0.249044\pi\)
\(380\) −1.62558e6 + 938530.i −0.0296250 + 0.0171040i
\(381\) 0 0
\(382\) −3.32367e7 + 5.75676e7i −0.596248 + 1.03273i
\(383\) −2.88035e7 1.66297e7i −0.512683 0.295998i 0.221253 0.975217i \(-0.428985\pi\)
−0.733936 + 0.679219i \(0.762319\pi\)
\(384\) 0 0
\(385\) −989624. 1.71408e6i −0.0173416 0.0300365i
\(386\) 3.93490e7i 0.684183i
\(387\) 0 0
\(388\) −4.45656e7 −0.762965
\(389\) 1.30734e7 7.54793e6i 0.222096 0.128227i −0.384825 0.922990i \(-0.625738\pi\)
0.606920 + 0.794763i \(0.292405\pi\)
\(390\) 0 0
\(391\) 1.64584e7 2.85069e7i 0.275333 0.476891i
\(392\) −1.84408e7 1.06468e7i −0.306140 0.176750i
\(393\) 0 0
\(394\) −1.15865e6 2.00684e6i −0.0189436 0.0328114i
\(395\) 1.86865e8i 3.03205i
\(396\) 0 0
\(397\) −8.91350e7 −1.42455 −0.712273 0.701902i \(-0.752334\pi\)
−0.712273 + 0.701902i \(0.752334\pi\)
\(398\) −1.59142e7 + 9.18807e6i −0.252427 + 0.145739i
\(399\) 0 0
\(400\) 1.42639e7 2.47058e7i 0.222873 0.386027i
\(401\) −9.70320e7 5.60214e7i −1.50481 0.868803i −0.999984 0.00558177i \(-0.998223\pi\)
−0.504826 0.863221i \(-0.668443\pi\)
\(402\) 0 0
\(403\) 3.50859e7 + 6.07706e7i 0.536065 + 0.928492i
\(404\) 4.20966e6i 0.0638414i
\(405\) 0 0
\(406\) 880978. 0.0131640
\(407\) −3.33342e7 + 1.92455e7i −0.494433 + 0.285461i
\(408\) 0 0
\(409\) 3.33970e7 5.78454e7i 0.488133 0.845471i −0.511774 0.859120i \(-0.671011\pi\)
0.999907 + 0.0136491i \(0.00434478\pi\)
\(410\) 1.18744e8 + 6.85567e7i 1.72290 + 0.994715i
\(411\) 0 0
\(412\) 3.09537e7 + 5.36135e7i 0.442610 + 0.766624i
\(413\) 641833.i 0.00911113i
\(414\) 0 0
\(415\) −1.97078e8 −2.75736
\(416\) 1.42471e7 8.22554e6i 0.197900 0.114257i
\(417\) 0 0
\(418\) −1.79966e6 + 3.11711e6i −0.0246412 + 0.0426799i
\(419\) 4.10125e7 + 2.36786e7i 0.557537 + 0.321894i 0.752156 0.658985i \(-0.229014\pi\)
−0.194619 + 0.980879i \(0.562347\pi\)
\(420\) 0 0
\(421\) −3.30784e7 5.72936e7i −0.443301 0.767820i 0.554631 0.832096i \(-0.312859\pi\)
−0.997932 + 0.0642763i \(0.979526\pi\)
\(422\) 2.82552e7i 0.375977i
\(423\) 0 0
\(424\) −2.50996e7 −0.329283
\(425\) 4.74297e7 2.73835e7i 0.617851 0.356716i
\(426\) 0 0
\(427\) 33859.0 58645.5i 0.000434901 0.000753270i
\(428\) 1.72350e7 + 9.95066e6i 0.219827 + 0.126917i
\(429\) 0 0
\(430\) 1.80852e7 + 3.13245e7i 0.227467 + 0.393984i
\(431\) 9.06666e7i 1.13244i 0.824254 + 0.566221i \(0.191595\pi\)
−0.824254 + 0.566221i \(0.808405\pi\)
\(432\) 0 0
\(433\) −699414. −0.00861530 −0.00430765 0.999991i \(-0.501371\pi\)
−0.00430765 + 0.999991i \(0.501371\pi\)
\(434\) −507926. + 293251.i −0.00621342 + 0.00358732i
\(435\) 0 0
\(436\) −2.15325e7 + 3.72953e7i −0.259797 + 0.449982i
\(437\) −4.07906e6 2.35505e6i −0.0488782 0.0282199i
\(438\) 0 0
\(439\) 1.28648e7 + 2.22825e7i 0.152058 + 0.263372i 0.931984 0.362500i \(-0.118077\pi\)
−0.779926 + 0.625872i \(0.784743\pi\)
\(440\) 8.53835e7i 1.00234i
\(441\) 0 0
\(442\) 3.15825e7 0.365746
\(443\) −143395. + 82789.0i −0.00164938 + 0.000952273i −0.500824 0.865549i \(-0.666970\pi\)
0.499175 + 0.866501i \(0.333636\pi\)
\(444\) 0 0
\(445\) 8.24003e7 1.42721e8i 0.935080 1.61961i
\(446\) −2.78715e7 1.60916e7i −0.314163 0.181382i
\(447\) 0 0
\(448\) 68749.8 + 119078.i 0.000764605 + 0.00132433i
\(449\) 4.30456e7i 0.475542i 0.971321 + 0.237771i \(0.0764169\pi\)
−0.971321 + 0.237771i \(0.923583\pi\)
\(450\) 0 0
\(451\) 2.62920e8 2.86611
\(452\) 3.43452e7 1.98292e7i 0.371921 0.214729i
\(453\) 0 0
\(454\) −3.28278e7 + 5.68594e7i −0.350812 + 0.607624i
\(455\) 2.15212e6 + 1.24253e6i 0.0228472 + 0.0131908i
\(456\) 0 0
\(457\) 6.77455e7 + 1.17339e8i 0.709793 + 1.22940i 0.964934 + 0.262493i \(0.0845448\pi\)
−0.255141 + 0.966904i \(0.582122\pi\)
\(458\) 1.95552e7i 0.203547i
\(459\) 0 0
\(460\) 1.11733e8 1.14791
\(461\) −2.77431e7 + 1.60175e7i −0.283173 + 0.163490i −0.634859 0.772628i \(-0.718942\pi\)
0.351686 + 0.936118i \(0.385608\pi\)
\(462\) 0 0
\(463\) −6.46664e7 + 1.12006e8i −0.651532 + 1.12849i 0.331219 + 0.943554i \(0.392540\pi\)
−0.982751 + 0.184933i \(0.940793\pi\)
\(464\) 3.29132e7 + 1.90024e7i 0.329470 + 0.190220i
\(465\) 0 0
\(466\) −3.61301e7 6.25791e7i −0.357035 0.618403i
\(467\) 8.49294e7i 0.833887i −0.908932 0.416944i \(-0.863101\pi\)
0.908932 0.416944i \(-0.136899\pi\)
\(468\) 0 0
\(469\) −1.99178e6 −0.0193073
\(470\) 7.93424e7 4.58084e7i 0.764209 0.441216i
\(471\) 0 0
\(472\) −1.38441e7 + 2.39788e7i −0.131656 + 0.228035i
\(473\) 6.00657e7 + 3.46790e7i 0.567601 + 0.327705i
\(474\) 0 0
\(475\) −3.91832e6 6.78673e6i −0.0365611 0.0633257i
\(476\) 263969.i 0.00244755i
\(477\) 0 0
\(478\) 7.31043e7 0.669360
\(479\) −1.00215e8 + 5.78593e7i −0.911858 + 0.526461i −0.881028 0.473063i \(-0.843148\pi\)
−0.0308294 + 0.999525i \(0.509815\pi\)
\(480\) 0 0
\(481\) 2.41638e7 4.18530e7i 0.217135 0.376089i
\(482\) −3.56661e7 2.05918e7i −0.318504 0.183888i
\(483\) 0 0
\(484\) −5.35179e7 9.26957e7i −0.472023 0.817568i
\(485\) 2.90412e8i 2.54560i
\(486\) 0 0
\(487\) 4.52839e7 0.392064 0.196032 0.980597i \(-0.437194\pi\)
0.196032 + 0.980597i \(0.437194\pi\)
\(488\) 2.52993e6 1.46065e6i 0.0217695 0.0125686i
\(489\) 0 0
\(490\) 6.93799e7 1.20169e8i 0.589719 1.02142i
\(491\) 1.76939e8 + 1.02156e8i 1.49479 + 0.863017i 0.999982 0.00598645i \(-0.00190556\pi\)
0.494807 + 0.869003i \(0.335239\pi\)
\(492\) 0 0
\(493\) 3.64805e7 + 6.31861e7i 0.304453 + 0.527328i
\(494\) 4.51915e6i 0.0374866i
\(495\) 0 0
\(496\) −2.53013e7 −0.207347
\(497\) 546324. 315420.i 0.00445022 0.00256933i
\(498\) 0 0
\(499\) 1.46495e7 2.53736e7i 0.117902 0.204212i −0.801034 0.598619i \(-0.795717\pi\)
0.918936 + 0.394407i \(0.129050\pi\)
\(500\) 7.06999e7 + 4.08186e7i 0.565600 + 0.326549i
\(501\) 0 0
\(502\) −4.86282e7 8.42265e7i −0.384394 0.665790i
\(503\) 1.64834e8i 1.29522i 0.761973 + 0.647609i \(0.224231\pi\)
−0.761973 + 0.647609i \(0.775769\pi\)
\(504\) 0 0
\(505\) −2.74323e7 −0.213004
\(506\) 1.85548e8 1.07126e8i 1.43220 0.826882i
\(507\) 0 0
\(508\) −2.64475e7 + 4.58083e7i −0.201740 + 0.349425i
\(509\) −1.44920e8 8.36696e7i −1.09894 0.634474i −0.162999 0.986626i \(-0.552117\pi\)
−0.935943 + 0.352152i \(0.885450\pi\)
\(510\) 0 0
\(511\) −695910. 1.20535e6i −0.00521544 0.00903340i
\(512\) 5.93164e6i 0.0441942i
\(513\) 0 0
\(514\) 4.53177e7 0.333717
\(515\) −3.49373e8 + 2.01711e8i −2.55781 + 1.47675i
\(516\) 0 0
\(517\) 8.78391e7 1.52142e8i 0.635648 1.10097i
\(518\) 349811. + 201963.i 0.00251677 + 0.00145306i
\(519\) 0 0
\(520\) 5.36019e7 + 9.28411e7i 0.381215 + 0.660283i
\(521\) 6.01419e7i 0.425270i 0.977132 + 0.212635i \(0.0682045\pi\)
−0.977132 + 0.212635i \(0.931796\pi\)
\(522\) 0 0
\(523\) 1.09251e8 0.763698 0.381849 0.924225i \(-0.375287\pi\)
0.381849 + 0.924225i \(0.375287\pi\)
\(524\) −7.37509e7 + 4.25801e7i −0.512594 + 0.295946i
\(525\) 0 0
\(526\) 4.75768e7 8.24054e7i 0.326917 0.566237i
\(527\) −4.20655e7 2.42865e7i −0.287405 0.165933i
\(528\) 0 0
\(529\) 6.61676e7 + 1.14606e8i 0.446970 + 0.774175i
\(530\) 1.63562e8i 1.09864i
\(531\) 0 0
\(532\) 37771.5 0.000250859
\(533\) −2.85884e8 + 1.65055e8i −1.88803 + 1.09005i
\(534\) 0 0
\(535\) −6.48436e7 + 1.12312e8i −0.423454 + 0.733443i
\(536\) −7.44123e7 4.29620e7i −0.483226 0.278991i
\(537\) 0 0
\(538\) −9.43320e6 1.63388e7i −0.0605776 0.104923i
\(539\) 2.66077e8i 1.69918i
\(540\) 0 0
\(541\) 4.52159e7 0.285561 0.142781 0.989754i \(-0.454396\pi\)
0.142781 + 0.989754i \(0.454396\pi\)
\(542\) −7.20383e7 + 4.15914e7i −0.452445 + 0.261219i
\(543\) 0 0
\(544\) −5.69373e6 + 9.86183e6i −0.0353672 + 0.0612577i
\(545\) −2.43035e8 1.40317e8i −1.50134 0.866801i
\(546\) 0 0
\(547\) −2.55726e7 4.42930e7i −0.156247 0.270628i 0.777265 0.629173i \(-0.216606\pi\)
−0.933512 + 0.358545i \(0.883273\pi\)
\(548\) 8.35248e7i 0.507544i
\(549\) 0 0
\(550\) 3.56473e8 2.14258
\(551\) 9.04133e6 5.22001e6i 0.0540477 0.0312045i
\(552\) 0 0
\(553\) 1.88011e6 3.25645e6i 0.0111175 0.0192561i
\(554\) 5.34971e7 + 3.08866e7i 0.314631 + 0.181652i
\(555\) 0 0
\(556\) −1.12211e7 1.94356e7i −0.0652849 0.113077i
\(557\) 2.43306e7i 0.140795i 0.997519 + 0.0703974i \(0.0224267\pi\)
−0.997519 + 0.0703974i \(0.977573\pi\)
\(558\) 0 0
\(559\) −8.70827e7 −0.498536
\(560\) −775974. + 448009.i −0.00441858 + 0.00255107i
\(561\) 0 0
\(562\) 5.28199e7 9.14868e7i 0.297570 0.515406i
\(563\) 1.25053e8 + 7.21992e7i 0.700758 + 0.404583i 0.807630 0.589690i \(-0.200750\pi\)
−0.106872 + 0.994273i \(0.534083\pi\)
\(564\) 0 0
\(565\) 1.29217e8 + 2.23811e8i 0.716432 + 1.24090i
\(566\) 8.27342e7i 0.456284i
\(567\) 0 0
\(568\) 2.72141e7 0.148508
\(569\) 7.20146e7 4.15777e7i 0.390916 0.225696i −0.291641 0.956528i \(-0.594201\pi\)
0.682557 + 0.730832i \(0.260868\pi\)
\(570\) 0 0
\(571\) 1.13040e8 1.95791e8i 0.607188 1.05168i −0.384513 0.923119i \(-0.625631\pi\)
0.991702 0.128561i \(-0.0410359\pi\)
\(572\) 1.78026e8 + 1.02783e8i 0.951252 + 0.549205i
\(573\) 0 0
\(574\) −1.37955e6 2.38944e6i −0.00729458 0.0126346i
\(575\) 4.66481e8i 2.45375i
\(576\) 0 0
\(577\) 4.11006e7 0.213954 0.106977 0.994261i \(-0.465883\pi\)
0.106977 + 0.994261i \(0.465883\pi\)
\(578\) 9.93169e7 5.73406e7i 0.514327 0.296947i
\(579\) 0 0
\(580\) −1.23830e8 + 2.14479e8i −0.634659 + 1.09926i
\(581\) 3.43443e6 + 1.98287e6i 0.0175116 + 0.0101103i
\(582\) 0 0
\(583\) −1.56818e8 2.71617e8i −0.791390 1.37073i
\(584\) 6.00423e7i 0.301452i
\(585\) 0 0
\(586\) −2.70640e8 −1.34493
\(587\) 9.93271e7 5.73465e7i 0.491081 0.283526i −0.233942 0.972251i \(-0.575162\pi\)
0.725023 + 0.688725i \(0.241829\pi\)
\(588\) 0 0
\(589\) −3.47517e6 + 6.01917e6i −0.0170071 + 0.0294571i
\(590\) −1.56258e8 9.02156e7i −0.760827 0.439264i
\(591\) 0 0
\(592\) 8.71257e6 + 1.50906e7i 0.0419934 + 0.0727347i
\(593\) 2.90487e8i 1.39304i −0.717539 0.696518i \(-0.754731\pi\)
0.717539 0.696518i \(-0.245269\pi\)
\(594\) 0 0
\(595\) −1.72016e6 −0.00816616
\(596\) −1.31177e8 + 7.57350e7i −0.619610 + 0.357732i
\(597\) 0 0
\(598\) −1.34503e8 + 2.32966e8i −0.628966 + 1.08940i
\(599\) 3.09303e8 + 1.78576e8i 1.43914 + 0.830888i 0.997790 0.0664462i \(-0.0211661\pi\)
0.441351 + 0.897335i \(0.354499\pi\)
\(600\) 0 0
\(601\) 4.20047e7 + 7.27542e7i 0.193497 + 0.335147i 0.946407 0.322977i \(-0.104684\pi\)
−0.752910 + 0.658124i \(0.771350\pi\)
\(602\) 727845.i 0.00333618i
\(603\) 0 0
\(604\) −1.19593e8 −0.542746
\(605\) 6.04053e8 3.48750e8i 2.72778 1.57488i
\(606\) 0 0
\(607\) −2.58143e7 + 4.47117e7i −0.115424 + 0.199920i −0.917949 0.396698i \(-0.870156\pi\)
0.802525 + 0.596618i \(0.203489\pi\)
\(608\) 1.41113e6 + 814718.i 0.00627852 + 0.00362491i
\(609\) 0 0
\(610\) 9.51838e6 + 1.64863e7i 0.0419347 + 0.0726330i
\(611\) 2.20574e8i 0.967009i
\(612\) 0 0
\(613\) 4.44326e7 0.192895 0.0964473 0.995338i \(-0.469252\pi\)
0.0964473 + 0.995338i \(0.469252\pi\)
\(614\) 2.08100e8 1.20147e8i 0.899015 0.519046i
\(615\) 0 0
\(616\) −859072. + 1.48796e6i −0.00367526 + 0.00636573i
\(617\) −1.43248e8 8.27040e7i −0.609862 0.352104i 0.163049 0.986618i \(-0.447867\pi\)
−0.772911 + 0.634514i \(0.781200\pi\)
\(618\) 0 0
\(619\) −1.34081e8 2.32235e8i −0.565320 0.979164i −0.997020 0.0771460i \(-0.975419\pi\)
0.431699 0.902018i \(-0.357914\pi\)
\(620\) 1.64876e8i 0.691805i
\(621\) 0 0
\(622\) −1.75360e8 −0.728718
\(623\) −2.87194e6 + 1.65811e6i −0.0118771 + 0.00685726i
\(624\) 0 0
\(625\) −4.83458e7 + 8.37373e7i −0.198024 + 0.342988i
\(626\) 1.45905e8 + 8.42385e7i 0.594769 + 0.343390i
\(627\) 0 0
\(628\) 5.13059e7 + 8.88644e7i 0.207152 + 0.358797i
\(629\) 3.34525e7i 0.134424i
\(630\) 0 0
\(631\) 1.13998e8 0.453741 0.226871 0.973925i \(-0.427151\pi\)
0.226871 + 0.973925i \(0.427151\pi\)
\(632\) 1.40481e8 8.11068e7i 0.556502 0.321297i
\(633\) 0 0
\(634\) −6.16346e6 + 1.06754e7i −0.0241856 + 0.0418907i
\(635\) −2.98511e8 1.72345e8i −1.16584 0.673098i
\(636\) 0 0
\(637\) 1.67037e8 + 2.89317e8i 0.646241 + 1.11932i
\(638\) 4.74895e8i 1.82867i
\(639\) 0 0
\(640\) −3.86536e7 −0.147452
\(641\) −3.16652e7 + 1.82819e7i −0.120229 + 0.0694142i −0.558908 0.829229i \(-0.688780\pi\)
0.438680 + 0.898644i \(0.355446\pi\)
\(642\) 0 0
\(643\) 1.41134e8 2.44452e8i 0.530883 0.919517i −0.468467 0.883481i \(-0.655194\pi\)
0.999350 0.0360362i \(-0.0114732\pi\)
\(644\) −1.94715e6 1.12419e6i −0.00729022 0.00420901i
\(645\) 0 0
\(646\) 1.56408e6 + 2.70907e6i 0.00580179 + 0.0100490i
\(647\) 1.45187e8i 0.536062i −0.963410 0.268031i \(-0.913627\pi\)
0.963410 0.268031i \(-0.0863729\pi\)
\(648\) 0 0
\(649\) −3.45983e8 −1.26567
\(650\) −3.87608e8 + 2.23786e8i −1.41141 + 0.814877i
\(651\) 0 0
\(652\) −1.54307e7 + 2.67267e7i −0.0556727 + 0.0964280i
\(653\) 8.59015e7 + 4.95952e7i 0.308504 + 0.178115i 0.646257 0.763120i \(-0.276333\pi\)
−0.337753 + 0.941235i \(0.609667\pi\)
\(654\) 0 0
\(655\) −2.77474e8 4.80599e8i −0.987412 1.71025i
\(656\) 1.19025e8i 0.421627i
\(657\) 0 0
\(658\) −1.84357e6 −0.00647117
\(659\) −1.46859e8 + 8.47892e7i −0.513150 + 0.296268i −0.734128 0.679011i \(-0.762409\pi\)
0.220977 + 0.975279i \(0.429075\pi\)
\(660\) 0 0
\(661\) −2.69025e8 + 4.65965e8i −0.931511 + 1.61342i −0.150771 + 0.988569i \(0.548176\pi\)
−0.780740 + 0.624856i \(0.785158\pi\)
\(662\) −6.54851e7 3.78079e7i −0.225719 0.130319i
\(663\) 0 0
\(664\) 8.55398e7 + 1.48159e8i 0.292189 + 0.506086i
\(665\) 246138.i 0.000836978i
\(666\) 0 0
\(667\) −6.21449e8 −2.09425
\(668\) −2.86825e7 + 1.65599e7i −0.0962251 + 0.0555556i
\(669\) 0 0
\(670\) 2.79962e8 4.84909e8i 0.930840 1.61226i
\(671\) 3.16131e7 + 1.82518e7i 0.104640 + 0.0604141i
\(672\) 0 0
\(673\) 1.92682e7 + 3.33736e7i 0.0632116 + 0.109486i 0.895899 0.444257i \(-0.146532\pi\)
−0.832688 + 0.553743i \(0.813199\pi\)
\(674\) 2.52006e8i 0.823060i
\(675\) 0 0
\(676\) −1.03643e8 −0.335504
\(677\) 1.65239e8 9.54008e7i 0.532533 0.307458i −0.209514 0.977806i \(-0.567188\pi\)
0.742047 + 0.670347i \(0.233855\pi\)
\(678\) 0 0
\(679\) −2.92194e6 + 5.06095e6i −0.00933387 + 0.0161667i
\(680\) −6.42648e7 3.71033e7i −0.204384 0.118001i
\(681\) 0 0
\(682\) −1.58078e8 2.73799e8i −0.498332 0.863136i
\(683\) 5.45896e8i 1.71336i 0.515850 + 0.856679i \(0.327476\pi\)
−0.515850 + 0.856679i \(0.672524\pi\)
\(684\) 0 0
\(685\) −5.44291e8 −1.69340
\(686\) −4.83663e6 + 2.79243e6i −0.0149820 + 0.00864987i
\(687\) 0 0
\(688\) 1.56994e7 2.71921e7i 0.0482078 0.0834984i
\(689\) 3.41030e8 + 1.96894e8i 1.04264 + 0.601969i
\(690\) 0 0
\(691\) 8.52235e7 + 1.47611e8i 0.258301 + 0.447390i 0.965787 0.259337i \(-0.0835042\pi\)
−0.707486 + 0.706727i \(0.750171\pi\)
\(692\) 2.07551e7i 0.0626334i
\(693\) 0 0
\(694\) −1.18220e8 −0.353682
\(695\) 1.26652e8 7.31227e7i 0.377275 0.217820i
\(696\) 0 0
\(697\) 1.14251e8 1.97889e8i 0.337414 0.584419i
\(698\) −3.16060e8 1.82477e8i −0.929400 0.536589i
\(699\) 0 0
\(700\) −1.87042e6 3.23966e6i −0.00545311 0.00944507i
\(701\) 8.02305e7i 0.232909i 0.993196 + 0.116454i \(0.0371529\pi\)
−0.993196 + 0.116454i \(0.962847\pi\)
\(702\) 0 0
\(703\) 4.78673e6 0.0137776
\(704\) −6.41895e7 + 3.70598e7i −0.183970 + 0.106215i
\(705\) 0 0
\(706\) 1.19055e7 2.06209e7i 0.0338323 0.0585993i
\(707\) 478056. + 276006.i 0.00135276 + 0.000781015i
\(708\) 0 0
\(709\) −2.00566e8 3.47390e8i −0.562754 0.974718i −0.997255 0.0740465i \(-0.976409\pi\)
0.434501 0.900671i \(-0.356925\pi\)
\(710\) 1.77341e8i 0.495489i
\(711\) 0 0
\(712\) −1.43060e8 −0.396349
\(713\) 3.58295e8 2.06862e8i 0.988489 0.570705i
\(714\) 0 0
\(715\) −6.69790e8 + 1.16011e9i −1.83240 + 3.17381i
\(716\) −1.28917e8 7.44302e7i −0.351213 0.202773i
\(717\) 0 0
\(718\) 1.58765e8 + 2.74990e8i 0.428926 + 0.742922i
\(719\) 1.02302e8i 0.275232i 0.990486 + 0.137616i \(0.0439439\pi\)
−0.990486 + 0.137616i \(0.956056\pi\)
\(720\) 0 0
\(721\) 8.11792e6 0.0216590
\(722\) −2.30089e8 + 1.32842e8i −0.611342 + 0.352959i
\(723\) 0 0
\(724\) 5.49951e7 9.52544e7i 0.144913 0.250997i
\(725\) −8.95441e8 5.16983e8i −2.34976 1.35663i
\(726\) 0 0
\(727\) 2.93837e8 + 5.08941e8i 0.764722 + 1.32454i 0.940393 + 0.340089i \(0.110457\pi\)
−0.175671 + 0.984449i \(0.556209\pi\)
\(728\) 2.15723e6i 0.00559115i
\(729\) 0 0
\(730\) 3.91266e8 1.00578
\(731\) 5.22030e7 3.01394e7i 0.133642 0.0771583i
\(732\) 0 0
\(733\) 5.60077e7 9.70083e7i 0.142212 0.246318i −0.786117 0.618077i \(-0.787912\pi\)
0.928329 + 0.371759i \(0.121245\pi\)
\(734\) −1.64166e8 9.47813e7i −0.415141 0.239682i
\(735\) 0 0
\(736\) −4.84966e7 8.39986e7i −0.121640 0.210687i
\(737\) 1.07367e9i 2.68207i
\(738\) 0 0
\(739\) 6.86968e8 1.70217 0.851086 0.525027i \(-0.175945\pi\)
0.851086 + 0.525027i \(0.175945\pi\)
\(740\) −9.83382e7 + 5.67756e7i −0.242676 + 0.140109i
\(741\) 0 0
\(742\) −1.64565e6 + 2.85036e6i −0.00402835 + 0.00697730i
\(743\) 4.82909e8 + 2.78808e8i 1.17733 + 0.679732i 0.955396 0.295329i \(-0.0954292\pi\)
0.221936 + 0.975061i \(0.428763\pi\)
\(744\) 0 0
\(745\) −4.93528e8 8.54816e8i −1.19356 2.06730i
\(746\) 1.26022e8i 0.303549i
\(747\) 0 0
\(748\) −1.42294e8 −0.340001
\(749\) 2.26003e6 1.30483e6i 0.00537859 0.00310533i
\(750\) 0 0
\(751\) −2.02498e8 + 3.50737e8i −0.478080 + 0.828059i −0.999684 0.0251288i \(-0.992000\pi\)
0.521604 + 0.853188i \(0.325334\pi\)
\(752\) −6.88756e7 3.97653e7i −0.161961 0.0935085i
\(753\) 0 0
\(754\) −2.98128e8 5.16374e8i −0.695488 1.20462i
\(755\) 7.79332e8i 1.81085i
\(756\) 0 0
\(757\) 6.51769e8 1.50247 0.751235 0.660035i \(-0.229458\pi\)
0.751235 + 0.660035i \(0.229458\pi\)
\(758\) 3.78301e8 2.18412e8i 0.868621 0.501499i
\(759\) 0 0
\(760\) −5.30912e6 + 9.19567e6i −0.0120943 + 0.0209480i
\(761\) 2.69514e8 + 1.55604e8i 0.611543 + 0.353074i 0.773569 0.633712i \(-0.218470\pi\)
−0.162026 + 0.986786i \(0.551803\pi\)
\(762\) 0 0
\(763\) 2.82355e6 + 4.89053e6i 0.00635655 + 0.0110099i
\(764\) 3.76030e8i 0.843222i
\(765\) 0 0
\(766\) −1.88144e8 −0.418604
\(767\) 3.76202e8 2.17200e8i 0.833749 0.481365i
\(768\) 0 0
\(769\) 2.18605e8 3.78636e8i 0.480708 0.832612i −0.519047 0.854746i \(-0.673713\pi\)
0.999755 + 0.0221345i \(0.00704620\pi\)
\(770\) −9.69629e6 5.59816e6i −0.0212390 0.0122623i
\(771\) 0 0
\(772\) 1.11296e8 + 1.92770e8i 0.241895 + 0.418975i
\(773\) 5.41906e7i 0.117324i 0.998278 + 0.0586619i \(0.0186834\pi\)
−0.998278 +