Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(37.2687615464\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{10}\cdot 3^{12} \) |
Twist minimal: | no (minimal twist has level 54) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( 27\zeta_{24}^{2} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{24}^{4} \)
|
\(\beta_{3}\) | \(=\) |
\( 27\zeta_{24}^{6} \)
|
\(\beta_{4}\) | \(=\) |
\( -4\zeta_{24}^{5} - 4\zeta_{24}^{3} + 4\zeta_{24} \)
|
\(\beta_{5}\) | \(=\) |
\( -4\zeta_{24}^{7} + 4\zeta_{24}^{5} + 4\zeta_{24}^{3} \)
|
\(\beta_{6}\) | \(=\) |
\( 108\zeta_{24}^{7} + 108\zeta_{24} \)
|
\(\beta_{7}\) | \(=\) |
\( -108\zeta_{24}^{5} + 108\zeta_{24}^{3} + 108\zeta_{24} \)
|
\(\zeta_{24}\) | \(=\) |
\( ( \beta_{6} + 27\beta_{5} + 27\beta_{4} ) / 216 \)
|
\(\zeta_{24}^{2}\) | \(=\) |
\( ( \beta_1 ) / 27 \)
|
\(\zeta_{24}^{3}\) | \(=\) |
\( ( \beta_{7} - 27\beta_{4} ) / 216 \)
|
\(\zeta_{24}^{4}\) | \(=\) |
\( \beta_{2} \)
|
\(\zeta_{24}^{5}\) | \(=\) |
\( ( -\beta_{7} + \beta_{6} + 27\beta_{5} ) / 216 \)
|
\(\zeta_{24}^{6}\) | \(=\) |
\( ( \beta_{3} ) / 27 \)
|
\(\zeta_{24}^{7}\) | \(=\) |
\( ( \beta_{6} - 27\beta_{5} - 27\beta_{4} ) / 216 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\) | \(83\) |
\(\chi(n)\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
−4.89898 | + | 2.82843i | 0 | 16.0000 | − | 27.7128i | −43.4287 | − | 25.0736i | 0 | −28.1325 | − | 48.7269i | 181.019i | 0 | 283.675 | ||||||||||||||||||||||||||||||||||
53.2 | −4.89898 | + | 2.82843i | 0 | 16.0000 | − | 27.7128i | 190.398 | + | 109.926i | 0 | −180.868 | − | 313.272i | 181.019i | 0 | −1243.68 | |||||||||||||||||||||||||||||||||||
53.3 | 4.89898 | − | 2.82843i | 0 | 16.0000 | − | 27.7128i | −190.398 | − | 109.926i | 0 | −180.868 | − | 313.272i | − | 181.019i | 0 | −1243.68 | ||||||||||||||||||||||||||||||||||
53.4 | 4.89898 | − | 2.82843i | 0 | 16.0000 | − | 27.7128i | 43.4287 | + | 25.0736i | 0 | −28.1325 | − | 48.7269i | − | 181.019i | 0 | 283.675 | ||||||||||||||||||||||||||||||||||
107.1 | −4.89898 | − | 2.82843i | 0 | 16.0000 | + | 27.7128i | −43.4287 | + | 25.0736i | 0 | −28.1325 | + | 48.7269i | − | 181.019i | 0 | 283.675 | ||||||||||||||||||||||||||||||||||
107.2 | −4.89898 | − | 2.82843i | 0 | 16.0000 | + | 27.7128i | 190.398 | − | 109.926i | 0 | −180.868 | + | 313.272i | − | 181.019i | 0 | −1243.68 | ||||||||||||||||||||||||||||||||||
107.3 | 4.89898 | + | 2.82843i | 0 | 16.0000 | + | 27.7128i | −190.398 | + | 109.926i | 0 | −180.868 | + | 313.272i | 181.019i | 0 | −1243.68 | |||||||||||||||||||||||||||||||||||
107.4 | 4.89898 | + | 2.82843i | 0 | 16.0000 | + | 27.7128i | 43.4287 | − | 25.0736i | 0 | −28.1325 | + | 48.7269i | 181.019i | 0 | 283.675 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.7.d.e | 8 | |
3.b | odd | 2 | 1 | inner | 162.7.d.e | 8 | |
9.c | even | 3 | 1 | 54.7.b.c | ✓ | 4 | |
9.c | even | 3 | 1 | inner | 162.7.d.e | 8 | |
9.d | odd | 6 | 1 | 54.7.b.c | ✓ | 4 | |
9.d | odd | 6 | 1 | inner | 162.7.d.e | 8 | |
36.f | odd | 6 | 1 | 432.7.e.h | 4 | ||
36.h | even | 6 | 1 | 432.7.e.h | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.7.b.c | ✓ | 4 | 9.c | even | 3 | 1 | |
54.7.b.c | ✓ | 4 | 9.d | odd | 6 | 1 | |
162.7.d.e | 8 | 1.a | even | 1 | 1 | trivial | |
162.7.d.e | 8 | 3.b | odd | 2 | 1 | inner | |
162.7.d.e | 8 | 9.c | even | 3 | 1 | inner | |
162.7.d.e | 8 | 9.d | odd | 6 | 1 | inner | |
432.7.e.h | 4 | 36.f | odd | 6 | 1 | ||
432.7.e.h | 4 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} - 50850T_{5}^{6} + 2464171875T_{5}^{4} - 6180849281250T_{5}^{2} + 14774554437890625 \)
acting on \(S_{7}^{\mathrm{new}}(162, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - 32 T^{2} + 1024)^{2} \)
$3$
\( T^{8} \)
$5$
\( T^{8} - 50850 T^{6} + \cdots + 14\!\cdots\!25 \)
$7$
\( (T^{4} + 418 T^{3} + 154371 T^{2} + \cdots + 414244609)^{2} \)
$11$
\( T^{8} - 2666178 T^{6} + \cdots + 13\!\cdots\!41 \)
$13$
\( (T^{4} + 220 T^{3} + \cdots + 127207990937104)^{2} \)
$17$
\( (T^{4} + 40352904 T^{2} + \cdots + 14397198164496)^{2} \)
$19$
\( (T^{2} + 3344 T - 46566464)^{4} \)
$23$
\( T^{8} - 172383264 T^{6} + \cdots + 23\!\cdots\!76 \)
$29$
\( T^{8} - 288547848 T^{6} + \cdots + 17\!\cdots\!16 \)
$31$
\( (T^{4} + 80086 T^{3} + \cdots + 25\!\cdots\!01)^{2} \)
$37$
\( (T^{2} + 75272 T + 1154355088)^{4} \)
$41$
\( T^{8} - 13110914592 T^{6} + \cdots + 29\!\cdots\!56 \)
$43$
\( (T^{4} + 45076 T^{3} + \cdots + 89\!\cdots\!16)^{2} \)
$47$
\( T^{8} - 36334830024 T^{6} + \cdots + 80\!\cdots\!36 \)
$53$
\( (T^{4} + 117509051106 T^{2} + \cdots + 34\!\cdots\!21)^{2} \)
$59$
\( T^{8} - 12634340616 T^{6} + \cdots + 15\!\cdots\!96 \)
$61$
\( (T^{4} + 292072 T^{3} + \cdots + 36\!\cdots\!96)^{2} \)
$67$
\( (T^{4} - 383396 T^{3} + \cdots + 11\!\cdots\!96)^{2} \)
$71$
\( (T^{4} + 238720256136 T^{2} + \cdots + 11\!\cdots\!56)^{2} \)
$73$
\( (T^{2} - 787378 T + 154378808689)^{4} \)
$79$
\( (T^{4} + 161500 T^{3} + \cdots + 33\!\cdots\!04)^{2} \)
$83$
\( T^{8} - 574584155154 T^{6} + \cdots + 61\!\cdots\!41 \)
$89$
\( (T^{4} + 992009774088 T^{2} + \cdots + 24\!\cdots\!64)^{2} \)
$97$
\( (T^{4} + 2216470 T^{3} + \cdots + 65\!\cdots\!09)^{2} \)
show more
show less