Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(37.2687615464\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | no (minimal twist has level 54) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( 4\nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( 2\nu^{3} \)
|
\(\nu\) | \(=\) |
\( ( \beta_1 ) / 4 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{3} ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\) | \(83\) |
\(\chi(n)\) | \(1 - \beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
−4.89898 | + | 2.82843i | 0 | 16.0000 | − | 27.7128i | 29.3939 | + | 16.9706i | 0 | 102.500 | + | 177.535i | 181.019i | 0 | −192.000 | ||||||||||||||||||||||
53.2 | 4.89898 | − | 2.82843i | 0 | 16.0000 | − | 27.7128i | −29.3939 | − | 16.9706i | 0 | 102.500 | + | 177.535i | − | 181.019i | 0 | −192.000 | ||||||||||||||||||||||
107.1 | −4.89898 | − | 2.82843i | 0 | 16.0000 | + | 27.7128i | 29.3939 | − | 16.9706i | 0 | 102.500 | − | 177.535i | − | 181.019i | 0 | −192.000 | ||||||||||||||||||||||
107.2 | 4.89898 | + | 2.82843i | 0 | 16.0000 | + | 27.7128i | −29.3939 | + | 16.9706i | 0 | 102.500 | − | 177.535i | 181.019i | 0 | −192.000 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.7.d.c | 4 | |
3.b | odd | 2 | 1 | inner | 162.7.d.c | 4 | |
9.c | even | 3 | 1 | 54.7.b.a | ✓ | 2 | |
9.c | even | 3 | 1 | inner | 162.7.d.c | 4 | |
9.d | odd | 6 | 1 | 54.7.b.a | ✓ | 2 | |
9.d | odd | 6 | 1 | inner | 162.7.d.c | 4 | |
36.f | odd | 6 | 1 | 432.7.e.f | 2 | ||
36.h | even | 6 | 1 | 432.7.e.f | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.7.b.a | ✓ | 2 | 9.c | even | 3 | 1 | |
54.7.b.a | ✓ | 2 | 9.d | odd | 6 | 1 | |
162.7.d.c | 4 | 1.a | even | 1 | 1 | trivial | |
162.7.d.c | 4 | 3.b | odd | 2 | 1 | inner | |
162.7.d.c | 4 | 9.c | even | 3 | 1 | inner | |
162.7.d.c | 4 | 9.d | odd | 6 | 1 | inner | |
432.7.e.f | 2 | 36.f | odd | 6 | 1 | ||
432.7.e.f | 2 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 1152T_{5}^{2} + 1327104 \)
acting on \(S_{7}^{\mathrm{new}}(162, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 32T^{2} + 1024 \)
$3$
\( T^{4} \)
$5$
\( T^{4} - 1152 T^{2} + \cdots + 1327104 \)
$7$
\( (T^{2} - 205 T + 42025)^{2} \)
$11$
\( T^{4} - 1107072 T^{2} + \cdots + 1225608413184 \)
$13$
\( (T^{2} - 2041 T + 4165681)^{2} \)
$17$
\( (T^{2} + 68024448)^{2} \)
$19$
\( (T + 1501)^{4} \)
$23$
\( T^{4} - 50320512 T^{2} + \cdots + 25\!\cdots\!44 \)
$29$
\( T^{4} - 808985088 T^{2} + \cdots + 65\!\cdots\!44 \)
$31$
\( (T^{2} - 34990 T + 1224300100)^{2} \)
$37$
\( (T + 57625)^{4} \)
$41$
\( T^{4} - 18046960128 T^{2} + \cdots + 32\!\cdots\!84 \)
$43$
\( (T^{2} - 62566 T + 3914504356)^{2} \)
$47$
\( T^{4} - 2693192832 T^{2} + \cdots + 72\!\cdots\!24 \)
$53$
\( (T^{2} + 5957079552)^{2} \)
$59$
\( T^{4} - 137850302592 T^{2} + \cdots + 19\!\cdots\!64 \)
$61$
\( (T^{2} - 61297 T + 3757322209)^{2} \)
$67$
\( (T^{2} + 67691 T + 4582071481)^{2} \)
$71$
\( (T^{2} + 259614885888)^{2} \)
$73$
\( (T - 423983)^{4} \)
$79$
\( (T^{2} - 707533 T + 500602946089)^{2} \)
$83$
\( T^{4} - 741235917312 T^{2} + \cdots + 54\!\cdots\!44 \)
$89$
\( (T^{2} + 445764373632)^{2} \)
$97$
\( (T^{2} + 526151 T + 276834874801)^{2} \)
show more
show less