Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(37.2687615464\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 54) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( 2\nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{3} \)
|
\(\nu\) | \(=\) |
\( ( \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\) | \(83\) |
\(\chi(n)\) | \(1 - \beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
−4.89898 | + | 2.82843i | 0 | 16.0000 | − | 27.7128i | −36.7423 | − | 21.2132i | 0 | −194.500 | − | 336.884i | 181.019i | 0 | 240.000 | ||||||||||||||||||||||
53.2 | 4.89898 | − | 2.82843i | 0 | 16.0000 | − | 27.7128i | 36.7423 | + | 21.2132i | 0 | −194.500 | − | 336.884i | − | 181.019i | 0 | 240.000 | ||||||||||||||||||||||
107.1 | −4.89898 | − | 2.82843i | 0 | 16.0000 | + | 27.7128i | −36.7423 | + | 21.2132i | 0 | −194.500 | + | 336.884i | − | 181.019i | 0 | 240.000 | ||||||||||||||||||||||
107.2 | 4.89898 | + | 2.82843i | 0 | 16.0000 | + | 27.7128i | 36.7423 | − | 21.2132i | 0 | −194.500 | + | 336.884i | 181.019i | 0 | 240.000 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.7.d.a | 4 | |
3.b | odd | 2 | 1 | inner | 162.7.d.a | 4 | |
9.c | even | 3 | 1 | 54.7.b.b | ✓ | 2 | |
9.c | even | 3 | 1 | inner | 162.7.d.a | 4 | |
9.d | odd | 6 | 1 | 54.7.b.b | ✓ | 2 | |
9.d | odd | 6 | 1 | inner | 162.7.d.a | 4 | |
36.f | odd | 6 | 1 | 432.7.e.c | 2 | ||
36.h | even | 6 | 1 | 432.7.e.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.7.b.b | ✓ | 2 | 9.c | even | 3 | 1 | |
54.7.b.b | ✓ | 2 | 9.d | odd | 6 | 1 | |
162.7.d.a | 4 | 1.a | even | 1 | 1 | trivial | |
162.7.d.a | 4 | 3.b | odd | 2 | 1 | inner | |
162.7.d.a | 4 | 9.c | even | 3 | 1 | inner | |
162.7.d.a | 4 | 9.d | odd | 6 | 1 | inner | |
432.7.e.c | 2 | 36.f | odd | 6 | 1 | ||
432.7.e.c | 2 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 1800T_{5}^{2} + 3240000 \)
acting on \(S_{7}^{\mathrm{new}}(162, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 32T^{2} + 1024 \)
$3$
\( T^{4} \)
$5$
\( T^{4} - 1800 T^{2} + \cdots + 3240000 \)
$7$
\( (T^{2} + 389 T + 151321)^{2} \)
$11$
\( T^{4} - 4321800 T^{2} + \cdots + 18677955240000 \)
$13$
\( (T^{2} + 1415 T + 2002225)^{2} \)
$17$
\( (T^{2} + 5604552)^{2} \)
$19$
\( (T + 3067)^{4} \)
$23$
\( T^{4} - 438198408 T^{2} + \cdots + 19\!\cdots\!64 \)
$29$
\( T^{4} - 167664672 T^{2} + \cdots + 28\!\cdots\!84 \)
$31$
\( (T^{2} - 11338 T + 128550244)^{2} \)
$37$
\( (T - 47135)^{4} \)
$41$
\( T^{4} - 38368800 T^{2} + \cdots + 14\!\cdots\!00 \)
$43$
\( (T^{2} + 145118 T + 21059233924)^{2} \)
$47$
\( T^{4} - 32466616200 T^{2} + \cdots + 10\!\cdots\!00 \)
$53$
\( (T^{2} + 70654915872)^{2} \)
$59$
\( T^{4} - 130852955592 T^{2} + \cdots + 17\!\cdots\!64 \)
$61$
\( (T^{2} - 350305 T + 122713593025)^{2} \)
$67$
\( (T^{2} + 120341 T + 14481956281)^{2} \)
$71$
\( (T^{2} + 112292500608)^{2} \)
$73$
\( (T - 175151)^{4} \)
$79$
\( (T^{2} - 252259 T + 63634603081)^{2} \)
$83$
\( T^{4} - 114981223968 T^{2} + \cdots + 13\!\cdots\!24 \)
$89$
\( (T^{2} + 624054513672)^{2} \)
$97$
\( (T^{2} - 1297105 T + 1682481381025)^{2} \)
show more
show less