gp: [N,k,chi] = [162,7,Mod(161,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 7, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.161");
S:= CuspForms(chi, 7);
N := Newforms(S);
Newform invariants
sage: traces = [12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 + 370 x 10 + 51793 x 8 + 3491832 x 6 + 117603792 x 4 + 1832032512 x 2 + 10453017600 x^{12} + 370x^{10} + 51793x^{8} + 3491832x^{6} + 117603792x^{4} + 1832032512x^{2} + 10453017600 x 1 2 + 3 7 0 x 1 0 + 5 1 7 9 3 x 8 + 3 4 9 1 8 3 2 x 6 + 1 1 7 6 0 3 7 9 2 x 4 + 1 8 3 2 0 3 2 5 1 2 x 2 + 1 0 4 5 3 0 1 7 6 0 0
x^12 + 370*x^10 + 51793*x^8 + 3491832*x^6 + 117603792*x^4 + 1832032512*x^2 + 10453017600
:
β 1 \beta_{1} β 1 = = =
( − 13081 ν 10 − 5302927 ν 8 − 773457883 ν 6 − 48532556637 ν 4 + ⋯ − 10233017042400 ) / 3086858160 ( - 13081 \nu^{10} - 5302927 \nu^{8} - 773457883 \nu^{6} - 48532556637 \nu^{4} + \cdots - 10233017042400 ) / 3086858160 ( − 1 3 0 8 1 ν 1 0 − 5 3 0 2 9 2 7 ν 8 − 7 7 3 4 5 7 8 8 3 ν 6 − 4 8 5 3 2 5 5 6 6 3 7 ν 4 + ⋯ − 1 0 2 3 3 0 1 7 0 4 2 4 0 0 ) / 3 0 8 6 8 5 8 1 6 0
(-13081*v^10 - 5302927*v^8 - 773457883*v^6 - 48532556637*v^4 - 1247487287112*v^2 - 10233017042400) / 3086858160
β 2 \beta_{2} β 2 = = =
( 26659 ν 11 + 7658854 ν 9 + 735955987 ν 7 + 28995600888 ν 5 + ⋯ − 806248446336 ν ) / 1753335434880 ( 26659 \nu^{11} + 7658854 \nu^{9} + 735955987 \nu^{7} + 28995600888 \nu^{5} + \cdots - 806248446336 \nu ) / 1753335434880 ( 2 6 6 5 9 ν 1 1 + 7 6 5 8 8 5 4 ν 9 + 7 3 5 9 5 5 9 8 7 ν 7 + 2 8 9 9 5 6 0 0 8 8 8 ν 5 + ⋯ − 8 0 6 2 4 8 4 4 6 3 3 6 ν ) / 1 7 5 3 3 3 5 4 3 4 8 8 0
(26659*v^11 + 7658854*v^9 + 735955987*v^7 + 28995600888*v^5 + 410789456208*v^3 - 806248446336*v) / 1753335434880
β 3 \beta_{3} β 3 = = =
( 210097 ν 10 + 67295716 ν 8 + 7678096429 ν 6 + 391082105466 ν 4 + ⋯ + 66081730824000 ) / 3086858160 ( 210097 \nu^{10} + 67295716 \nu^{8} + 7678096429 \nu^{6} + 391082105466 \nu^{4} + \cdots + 66081730824000 ) / 3086858160 ( 2 1 0 0 9 7 ν 1 0 + 6 7 2 9 5 7 1 6 ν 8 + 7 6 7 8 0 9 6 4 2 9 ν 6 + 3 9 1 0 8 2 1 0 5 4 6 6 ν 4 + ⋯ + 6 6 0 8 1 7 3 0 8 2 4 0 0 0 ) / 3 0 8 6 8 5 8 1 6 0
(210097*v^10 + 67295716*v^8 + 7678096429*v^6 + 391082105466*v^4 + 8756856645192*v^2 + 66081730824000) / 3086858160
β 4 \beta_{4} β 4 = = =
( 225662 ν 10 + 73086479 ν 8 + 8515647236 ν 6 + 451736622819 ν 4 + ⋯ + 98574178616640 ) / 3086858160 ( 225662 \nu^{10} + 73086479 \nu^{8} + 8515647236 \nu^{6} + 451736622819 \nu^{4} + \cdots + 98574178616640 ) / 3086858160 ( 2 2 5 6 6 2 ν 1 0 + 7 3 0 8 6 4 7 9 ν 8 + 8 5 1 5 6 4 7 2 3 6 ν 6 + 4 5 1 7 3 6 6 2 2 8 1 9 ν 4 + ⋯ + 9 8 5 7 4 1 7 8 6 1 6 6 4 0 ) / 3 0 8 6 8 5 8 1 6 0
(225662*v^10 + 73086479*v^8 + 8515647236*v^6 + 451736622819*v^4 + 11025749885544*v^2 + 98574178616640) / 3086858160
β 5 \beta_{5} β 5 = = =
( 1009529 ν 10 + 306190910 ν 8 + 31261162145 ν 6 + 1265226360660 ν 4 + ⋯ + 59476995947520 ) / 4115810880 ( 1009529 \nu^{10} + 306190910 \nu^{8} + 31261162145 \nu^{6} + 1265226360660 \nu^{4} + \cdots + 59476995947520 ) / 4115810880 ( 1 0 0 9 5 2 9 ν 1 0 + 3 0 6 1 9 0 9 1 0 ν 8 + 3 1 2 6 1 1 6 2 1 4 5 ν 6 + 1 2 6 5 2 2 6 3 6 0 6 6 0 ν 4 + ⋯ + 5 9 4 7 6 9 9 5 9 4 7 5 2 0 ) / 4 1 1 5 8 1 0 8 8 0
(1009529*v^10 + 306190910*v^8 + 31261162145*v^6 + 1265226360660*v^4 + 17476432457616*v^2 + 59476995947520) / 4115810880
β 6 \beta_{6} β 6 = = =
( 3267469 ν 10 + 1216138966 ν 8 + 166433693269 ν 6 + 10303228617156 ν 4 + ⋯ + 24 ⋯ 00 ) / 12347432640 ( 3267469 \nu^{10} + 1216138966 \nu^{8} + 166433693269 \nu^{6} + 10303228617156 \nu^{4} + \cdots + 24\!\cdots\!00 ) / 12347432640 ( 3 2 6 7 4 6 9 ν 1 0 + 1 2 1 6 1 3 8 9 6 6 ν 8 + 1 6 6 4 3 3 6 9 3 2 6 9 ν 6 + 1 0 3 0 3 2 2 8 6 1 7 1 5 6 ν 4 + ⋯ + 2 4 ⋯ 0 0 ) / 1 2 3 4 7 4 3 2 6 4 0
(3267469*v^10 + 1216138966*v^8 + 166433693269*v^6 + 10303228617156*v^4 + 279754337012400*v^2 + 2459838034713600) / 12347432640
β 7 \beta_{7} β 7 = = =
( − 1385069 ν 11 + 3076022942 ν 9 + 982609562195 ν 7 + 97465949305360 ν 5 + ⋯ + 37 ⋯ 68 ν ) / 2337780579840 ( - 1385069 \nu^{11} + 3076022942 \nu^{9} + 982609562195 \nu^{7} + 97465949305360 \nu^{5} + \cdots + 37\!\cdots\!68 \nu ) / 2337780579840 ( − 1 3 8 5 0 6 9 ν 1 1 + 3 0 7 6 0 2 2 9 4 2 ν 9 + 9 8 2 6 0 9 5 6 2 1 9 5 ν 7 + 9 7 4 6 5 9 4 9 3 0 5 3 6 0 ν 5 + ⋯ + 3 7 ⋯ 6 8 ν ) / 2 3 3 7 7 8 0 5 7 9 8 4 0
(-1385069*v^11 + 3076022942*v^9 + 982609562195*v^7 + 97465949305360*v^5 + 3617974672064304*v^3 + 37729052485757568*v) / 2337780579840
β 8 \beta_{8} β 8 = = =
( 9191227 ν 11 + 3200148886 ν 9 + 405374895019 ν 7 + 23127582217656 ν 5 + ⋯ + 46 ⋯ 80 ν ) / 7013341739520 ( 9191227 \nu^{11} + 3200148886 \nu^{9} + 405374895019 \nu^{7} + 23127582217656 \nu^{5} + \cdots + 46\!\cdots\!80 \nu ) / 7013341739520 ( 9 1 9 1 2 2 7 ν 1 1 + 3 2 0 0 1 4 8 8 8 6 ν 9 + 4 0 5 3 7 4 8 9 5 0 1 9 ν 7 + 2 3 1 2 7 5 8 2 2 1 7 6 5 6 ν 5 + ⋯ + 4 6 ⋯ 8 0 ν ) / 7 0 1 3 3 4 1 7 3 9 5 2 0
(9191227*v^11 + 3200148886*v^9 + 405374895019*v^7 + 23127582217656*v^5 + 578696810407632*v^3 + 4695274771908480*v) / 7013341739520
β 9 \beta_{9} β 9 = = =
( − 42893003 ν 11 − 14985851078 ν 9 − 1900173246107 ν 7 + ⋯ − 21 ⋯ 40 ν ) / 3506670869760 ( - 42893003 \nu^{11} - 14985851078 \nu^{9} - 1900173246107 \nu^{7} + \cdots - 21\!\cdots\!40 \nu ) / 3506670869760 ( − 4 2 8 9 3 0 0 3 ν 1 1 − 1 4 9 8 5 8 5 1 0 7 8 ν 9 − 1 9 0 0 1 7 3 2 4 6 1 0 7 ν 7 + ⋯ − 2 1 ⋯ 4 0 ν ) / 3 5 0 6 6 7 0 8 6 9 7 6 0
(-42893003*v^11 - 14985851078*v^9 - 1900173246107*v^7 - 107709393330888*v^5 - 2633148078796944*v^3 - 21101455040250240*v) / 3506670869760
β 10 \beta_{10} β 1 0 = = =
( 186692297 ν 11 + 65156440394 ν 9 + 8325664614761 ν 7 + ⋯ + 10 ⋯ 20 ν ) / 14026683479040 ( 186692297 \nu^{11} + 65156440394 \nu^{9} + 8325664614761 \nu^{7} + \cdots + 10\!\cdots\!20 \nu ) / 14026683479040 ( 1 8 6 6 9 2 2 9 7 ν 1 1 + 6 5 1 5 6 4 4 0 3 9 4 ν 9 + 8 3 2 5 6 6 4 6 1 4 7 6 1 ν 7 + ⋯ + 1 0 ⋯ 2 0 ν ) / 1 4 0 2 6 6 8 3 4 7 9 0 4 0
(186692297*v^11 + 65156440394*v^9 + 8325664614761*v^7 + 483226339488384*v^5 + 12321432128900304*v^3 + 101244861147611520*v) / 14026683479040
β 11 \beta_{11} β 1 1 = = =
( − 500693495 ν 11 − 172073646566 ν 9 − 21610924592375 ν 7 + ⋯ − 28 ⋯ 44 ν ) / 14026683479040 ( - 500693495 \nu^{11} - 172073646566 \nu^{9} - 21610924592375 \nu^{7} + \cdots - 28\!\cdots\!44 \nu ) / 14026683479040 ( − 5 0 0 6 9 3 4 9 5 ν 1 1 − 1 7 2 0 7 3 6 4 6 5 6 6 ν 9 − 2 1 6 1 0 9 2 4 5 9 2 3 7 5 ν 7 + ⋯ − 2 8 ⋯ 4 4 ν ) / 1 4 0 2 6 6 8 3 4 7 9 0 4 0
(-500693495*v^11 - 172073646566*v^9 - 21610924592375*v^7 - 1239699467732400*v^5 - 31933855280617200*v^3 - 280984712354722944*v) / 14026683479040
ν \nu ν = = =
( − β 11 − β 10 − 4 β 9 − 53 β 8 − 122 β 2 ) / 1458 ( -\beta_{11} - \beta_{10} - 4\beta_{9} - 53\beta_{8} - 122\beta_{2} ) / 1458 ( − β 1 1 − β 1 0 − 4 β 9 − 5 3 β 8 − 1 2 2 β 2 ) / 1 4 5 8
(-b11 - b10 - 4*b9 - 53*b8 - 122*b2) / 1458
ν 2 \nu^{2} ν 2 = = =
( − 7 β 6 + β 5 + 79 β 4 − 75 β 3 − 221 β 1 − 269730 ) / 4374 ( -7\beta_{6} + \beta_{5} + 79\beta_{4} - 75\beta_{3} - 221\beta _1 - 269730 ) / 4374 ( − 7 β 6 + β 5 + 7 9 β 4 − 7 5 β 3 − 2 2 1 β 1 − 2 6 9 7 3 0 ) / 4 3 7 4
(-7*b6 + b5 + 79*b4 - 75*b3 - 221*b1 - 269730) / 4374
ν 3 \nu^{3} ν 3 = = =
( 47 β 11 + 263 β 10 + 476 β 9 + 3679 β 8 − 36 β 7 − 55457 β 2 ) / 1458 ( 47\beta_{11} + 263\beta_{10} + 476\beta_{9} + 3679\beta_{8} - 36\beta_{7} - 55457\beta_{2} ) / 1458 ( 4 7 β 1 1 + 2 6 3 β 1 0 + 4 7 6 β 9 + 3 6 7 9 β 8 − 3 6 β 7 − 5 5 4 5 7 β 2 ) / 1 4 5 8
(47*b11 + 263*b10 + 476*b9 + 3679*b8 - 36*b7 - 55457*b2) / 1458
ν 4 \nu^{4} ν 4 = = =
( 1531 β 6 + 275 β 5 − 10039 β 4 + 6819 β 3 + 47861 β 1 + 24285906 ) / 4374 ( 1531\beta_{6} + 275\beta_{5} - 10039\beta_{4} + 6819\beta_{3} + 47861\beta _1 + 24285906 ) / 4374 ( 1 5 3 1 β 6 + 2 7 5 β 5 − 1 0 0 3 9 β 4 + 6 8 1 9 β 3 + 4 7 8 6 1 β 1 + 2 4 2 8 5 9 0 6 ) / 4 3 7 4
(1531*b6 + 275*b5 - 10039*b4 + 6819*b3 + 47861*b1 + 24285906) / 4374
ν 5 \nu^{5} ν 5 = = =
( − 17841 β 11 − 153073 β 10 − 176680 β 9 − 910113 β 8 + ⋯ + 29162487 β 2 ) / 4374 ( - 17841 \beta_{11} - 153073 \beta_{10} - 176680 \beta_{9} - 910113 \beta_{8} + \cdots + 29162487 \beta_{2} ) / 4374 ( − 1 7 8 4 1 β 1 1 − 1 5 3 0 7 3 β 1 0 − 1 7 6 6 8 0 β 9 − 9 1 0 1 1 3 β 8 + ⋯ + 2 9 1 6 2 4 8 7 β 2 ) / 4 3 7 4
(-17841*b11 - 153073*b10 - 176680*b9 - 910113*b8 + 19024*b7 + 29162487*b2) / 4374
ν 6 \nu^{6} ν 6 = = =
( − 84433 β 6 − 30377 β 5 + 412409 β 4 − 164953 β 3 − 2565667 β 1 − 884098638 ) / 1458 ( -84433\beta_{6} - 30377\beta_{5} + 412409\beta_{4} - 164953\beta_{3} - 2565667\beta _1 - 884098638 ) / 1458 ( − 8 4 4 3 3 β 6 − 3 0 3 7 7 β 5 + 4 1 2 4 0 9 β 4 − 1 6 4 9 5 3 β 3 − 2 5 6 5 6 6 7 β 1 − 8 8 4 0 9 8 6 3 8 ) / 1 4 5 8
(-84433*b6 - 30377*b5 + 412409*b4 - 164953*b3 - 2565667*b1 - 884098638) / 1458
ν 7 \nu^{7} ν 7 = = =
( 2532885 β 11 + 24684205 β 10 + 23196280 β 9 + 82540461 β 8 + ⋯ − 4223775003 β 2 ) / 4374 ( 2532885 \beta_{11} + 24684205 \beta_{10} + 23196280 \beta_{9} + 82540461 \beta_{8} + \cdots - 4223775003 \beta_{2} ) / 4374 ( 2 5 3 2 8 8 5 β 1 1 + 2 4 6 8 4 2 0 5 β 1 0 + 2 3 1 9 6 2 8 0 β 9 + 8 2 5 4 0 4 6 1 β 8 + ⋯ − 4 2 2 3 7 7 5 0 0 3 β 2 ) / 4 3 7 4
(2532885*b11 + 24684205*b10 + 23196280*b9 + 82540461*b8 - 2791348*b7 - 4223775003*b2) / 4374
ν 8 \nu^{8} ν 8 = = =
( 38381363 β 6 + 17581675 β 5 − 160101575 β 4 + 29748507 β 3 + ⋯ + 322428746610 ) / 4374 ( 38381363 \beta_{6} + 17581675 \beta_{5} - 160101575 \beta_{4} + 29748507 \beta_{3} + \cdots + 322428746610 ) / 4374 ( 3 8 3 8 1 3 6 3 β 6 + 1 7 5 8 1 6 7 5 β 5 − 1 6 0 1 0 1 5 7 5 β 4 + 2 9 7 4 8 5 0 7 β 3 + ⋯ + 3 2 2 4 2 8 7 4 6 6 1 0 ) / 4 3 7 4
(38381363*b6 + 17581675*b5 - 160101575*b4 + 29748507*b3 + 1130312437*b1 + 322428746610) / 4374
ν 9 \nu^{9} ν 9 = = =
( − 117062251 β 11 − 1228877051 β 10 − 1049537384 β 9 + ⋯ + 196243285213 β 2 ) / 1458 ( - 117062251 \beta_{11} - 1228877051 \beta_{10} - 1049537384 \beta_{9} + \cdots + 196243285213 \beta_{2} ) / 1458 ( − 1 1 7 0 6 2 2 5 1 β 1 1 − 1 2 2 8 8 7 7 0 5 1 β 1 0 − 1 0 4 9 5 3 7 3 8 4 β 9 + ⋯ + 1 9 6 2 4 3 2 8 5 2 1 3 β 2 ) / 1 4 5 8
(-117062251*b11 - 1228877051*b10 - 1049537384*b9 - 2721206603*b8 + 131450920*b7 + 196243285213*b2) / 1458
ν 10 \nu^{10} ν 1 0 = = =
( − 5595014987 β 6 − 2854696819 β 5 + 21460960859 β 4 − 946680195 β 3 + ⋯ − 41687065381770 ) / 4374 ( - 5595014987 \beta_{6} - 2854696819 \beta_{5} + 21460960859 \beta_{4} - 946680195 \beta_{3} + \cdots - 41687065381770 ) / 4374 ( − 5 5 9 5 0 1 4 9 8 7 β 6 − 2 8 5 4 6 9 6 8 1 9 β 5 + 2 1 4 6 0 9 6 0 8 5 9 β 4 − 9 4 6 6 8 0 1 9 5 β 3 + ⋯ − 4 1 6 8 7 0 6 5 3 8 1 7 7 0 ) / 4 3 7 4
(-5595014987*b6 - 2854696819*b5 + 21460960859*b4 - 946680195*b3 - 160636202281*b1 - 41687065381770) / 4374
ν 11 \nu^{11} ν 1 1 = = =
( 48110080821 β 11 + 531932678909 β 10 + 433999027448 β 9 + ⋯ − 81411526600971 β 2 ) / 4374 ( 48110080821 \beta_{11} + 531932678909 \beta_{10} + 433999027448 \beta_{9} + \cdots - 81411526600971 \beta_{2} ) / 4374 ( 4 8 1 1 0 0 8 0 8 2 1 β 1 1 + 5 3 1 9 3 2 6 7 8 9 0 9 β 1 0 + 4 3 3 9 9 9 0 2 7 4 4 8 β 9 + ⋯ − 8 1 4 1 1 5 2 6 6 0 0 9 7 1 β 2 ) / 4 3 7 4
(48110080821*b11 + 531932678909*b10 + 433999027448*b9 + 881691825117*b8 - 55261937468*b7 - 81411526600971*b2) / 4374
Character values
We give the values of χ \chi χ on generators for ( Z / 162 Z ) × \left(\mathbb{Z}/162\mathbb{Z}\right)^\times ( Z / 1 6 2 Z ) × .
n n n
83 83 8 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 12 + 101844 T 5 10 + 3082099734 T 5 8 + 28287732473100 T 5 6 + ⋯ + 18 ⋯ 00 T_{5}^{12} + 101844 T_{5}^{10} + 3082099734 T_{5}^{8} + 28287732473100 T_{5}^{6} + \cdots + 18\!\cdots\!00 T 5 1 2 + 1 0 1 8 4 4 T 5 1 0 + 3 0 8 2 0 9 9 7 3 4 T 5 8 + 2 8 2 8 7 7 3 2 4 7 3 1 0 0 T 5 6 + ⋯ + 1 8 ⋯ 0 0
T5^12 + 101844*T5^10 + 3082099734*T5^8 + 28287732473100*T5^6 + 49170069564710625*T5^4 + 5551794796611375000*T5^2 + 18327410507756250000
acting on S 7 n e w ( 162 , [ χ ] ) S_{7}^{\mathrm{new}}(162, [\chi]) S 7 n e w ( 1 6 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 32 ) 6 (T^{2} + 32)^{6} ( T 2 + 3 2 ) 6
(T^2 + 32)^6
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + ⋯ + 18 ⋯ 00 T^{12} + \cdots + 18\!\cdots\!00 T 1 2 + ⋯ + 1 8 ⋯ 0 0
T^12 + 101844*T^10 + 3082099734*T^8 + 28287732473100*T^6 + 49170069564710625*T^4 + 5551794796611375000*T^2 + 18327410507756250000
7 7 7
( T 6 + ⋯ + 52130539391500 ) 2 (T^{6} + \cdots + 52130539391500)^{2} ( T 6 + ⋯ + 5 2 1 3 0 5 3 9 3 9 1 5 0 0 ) 2
(T^6 + 240*T^5 - 392124*T^4 - 55146328*T^3 + 25960208811*T^2 + 4446040761060*T + 52130539391500)^2
11 11 1 1
T 12 + ⋯ + 83 ⋯ 09 T^{12} + \cdots + 83\!\cdots\!09 T 1 2 + ⋯ + 8 3 ⋯ 0 9
T^12 + 10575414*T^10 + 29066350433391*T^8 + 32270582355839795988*T^6 + 15347811718723259758268799*T^4 + 2588767524926685496381340733174*T^2 + 8396331763261806334931312268678609
13 13 1 3
( T 6 + ⋯ + 99 ⋯ 04 ) 2 (T^{6} + \cdots + 99\!\cdots\!04)^{2} ( T 6 + ⋯ + 9 9 ⋯ 0 4 ) 2
(T^6 + 1680*T^5 - 8159682*T^4 - 15757013464*T^3 + 4082544117537*T^2 + 11403560244690744*T + 994262964821436304)^2
17 17 1 7
T 12 + ⋯ + 64 ⋯ 00 T^{12} + \cdots + 64\!\cdots\!00 T 1 2 + ⋯ + 6 4 ⋯ 0 0
T^12 + 215347950*T^10 + 18049393789365897*T^8 + 744245857097477811160200*T^6 + 15758822831665576279553603396496*T^4 + 163019786997880499892255044713099468800*T^2 + 647615845301140144271862466834882809692160000
19 19 1 9
( T 6 + ⋯ − 71 ⋯ 00 ) 2 (T^{6} + \cdots - 71\!\cdots\!00)^{2} ( T 6 + ⋯ − 7 1 ⋯ 0 0 ) 2
(T^6 + 1410*T^5 - 191867007*T^4 - 382630142176*T^3 + 8146570540915536*T^2 + 10520181713913585216*T - 71656106187277592075600)^2
23 23 2 3
T 12 + ⋯ + 18 ⋯ 84 T^{12} + \cdots + 18\!\cdots\!84 T 1 2 + ⋯ + 1 8 ⋯ 8 4
T^12 + 1572370272*T^10 + 986814766259255862*T^8 + 316978130829381946284296592*T^6 + 55221840693370860046390796852576025*T^4 + 4970366415762720821310254683382073545247360*T^2 + 181274508901672738342803717379344218269940306448384
29 29 2 9
T 12 + ⋯ + 50 ⋯ 00 T^{12} + \cdots + 50\!\cdots\!00 T 1 2 + ⋯ + 5 0 ⋯ 0 0
T^12 + 3053068740*T^10 + 3176774649999521766*T^8 + 1278686398779790229104936092*T^6 + 155026724487719161371797580161350545*T^4 + 1741362037654040738643734450561954258698392*T^2 + 5027955642030876021255666273173542092600730976400
31 31 3 1
( T 6 + ⋯ − 15 ⋯ 40 ) 2 (T^{6} + \cdots - 15\!\cdots\!40)^{2} ( T 6 + ⋯ − 1 5 ⋯ 4 0 ) 2
(T^6 + 21480*T^5 - 1454594160*T^4 - 23532175741012*T^3 + 232995605666379171*T^2 + 2292663668715229007904*T - 15085208683835164120221440)^2
37 37 3 7
( T 6 + ⋯ + 54 ⋯ 48 ) 2 (T^{6} + \cdots + 54\!\cdots\!48)^{2} ( T 6 + ⋯ + 5 4 ⋯ 4 8 ) 2
(T^6 + 12768*T^5 - 8080025376*T^4 - 290657217707008*T^3 + 7707967525365861840*T^2 + 469731024283389663754752*T + 5433204259070256480499243648)^2
41 41 4 1
T 12 + ⋯ + 10 ⋯ 25 T^{12} + \cdots + 10\!\cdots\!25 T 1 2 + ⋯ + 1 0 ⋯ 2 5
T^12 + 22899698514*T^10 + 204388751561180881383*T^8 + 908175034324898785502044932636*T^6 + 2115890835830226181604439565401824247807*T^4 + 2444822188907796198916690984976438850226229246322*T^2 + 1093108903660218461443878297074432990317363772002989236025
43 43 4 3
( T 6 + ⋯ + 13 ⋯ 55 ) 2 (T^{6} + \cdots + 13\!\cdots\!55)^{2} ( T 6 + ⋯ + 1 3 ⋯ 5 5 ) 2
(T^6 + 71430*T^5 - 19451843031*T^4 - 2101393973600548*T^3 - 688128595459799925*T^2 + 5540401975799043971812878*T + 139940106815041240108843786555)^2
47 47 4 7
T 12 + ⋯ + 11 ⋯ 84 T^{12} + \cdots + 11\!\cdots\!84 T 1 2 + ⋯ + 1 1 ⋯ 8 4
T^12 + 81383295024*T^10 + 2296938542781412473606*T^8 + 25781973207317087654480445921888*T^6 + 95110951318350617343321792372008684134089*T^4 + 69548638930485713387226249211504819402417927872864*T^2 + 11352325507954713356415354329196820130174509398775533129984
53 53 5 3
T 12 + ⋯ + 27 ⋯ 00 T^{12} + \cdots + 27\!\cdots\!00 T 1 2 + ⋯ + 2 7 ⋯ 0 0
T^12 + 154278905256*T^10 + 8929906998468019106832*T^8 + 242364011133635868206769530075136*T^6 + 3115411623824000275138802196347949885751296*T^4 + 16594198074713880237911795558339712988334889369600000*T^2 + 27589190625545302529950674339088056232779384635365785600000000
59 59 5 9
T 12 + ⋯ + 10 ⋯ 25 T^{12} + \cdots + 10\!\cdots\!25 T 1 2 + ⋯ + 1 0 ⋯ 2 5
T^12 + 208169231526*T^10 + 11640269148823256101695*T^8 + 157974059853798371268624740982708*T^6 + 535270872961769052596761723357357892714079*T^4 + 537761633636372109209374504450231548241131731683302*T^2 + 107845408856258274391484618313163672169674229202492971208225
61 61 6 1
( T 6 + ⋯ − 10 ⋯ 52 ) 2 (T^{6} + \cdots - 10\!\cdots\!52)^{2} ( T 6 + ⋯ − 1 0 ⋯ 5 2 ) 2
(T^6 + 135744*T^5 - 43933928682*T^4 - 1932063220934656*T^3 + 129976021141079429625*T^2 + 2749503284100061829621520*T - 100612235400443333905146287552)^2
67 67 6 7
( T 6 + ⋯ − 22 ⋯ 45 ) 2 (T^{6} + \cdots - 22\!\cdots\!45)^{2} ( T 6 + ⋯ − 2 2 ⋯ 4 5 ) 2
(T^6 - 289938*T^5 - 218991722871*T^4 + 62105624235201044*T^3 + 10540183365224733764283*T^2 - 2170547738162640439030115778*T - 224344684993932975881534855111045)^2
71 71 7 1
T 12 + ⋯ + 58 ⋯ 76 T^{12} + \cdots + 58\!\cdots\!76 T 1 2 + ⋯ + 5 8 ⋯ 7 6
T^12 + 745338015792*T^10 + 211841158536200161770336*T^8 + 28713696316493810302171965937294080*T^6 + 1893914369983922634606747358098864471034941696*T^4 + 55745672477261347012021180913449485413864611458529886208*T^2 + 582020661731963214582116915368004114657702490515906873653173682176
73 73 7 3
( T 6 + ⋯ − 49 ⋯ 60 ) 2 (T^{6} + \cdots - 49\!\cdots\!60)^{2} ( T 6 + ⋯ − 4 9 ⋯ 6 0 ) 2
(T^6 + 488850*T^5 - 288767754939*T^4 - 107502764253120628*T^3 + 23592072114350415315708*T^2 + 5039310210860382018228509568*T - 490992446252487733477028437974560)^2
79 79 7 9
( T 6 + ⋯ − 18 ⋯ 00 ) 2 (T^{6} + \cdots - 18\!\cdots\!00)^{2} ( T 6 + ⋯ − 1 8 ⋯ 0 0 ) 2
(T^6 - 764796*T^5 - 376982580180*T^4 + 196897165313692484*T^3 + 46665826532094930953019*T^2 - 12444035566937602730456425620*T - 1853044026966572310725283136114100)^2
83 83 8 3
T 12 + ⋯ + 42 ⋯ 36 T^{12} + \cdots + 42\!\cdots\!36 T 1 2 + ⋯ + 4 2 ⋯ 3 6
T^12 + 1934136240336*T^10 + 1113173908435832197079718*T^8 + 183585490901956048708389465614198592*T^6 + 8299806760406099223930037188577351237182090153*T^4 + 125467396346269293918229947342064473972018449411551369056*T^2 + 428234183684530679408589452662634798291924379086971779603014881536
89 89 8 9
T 12 + ⋯ + 74 ⋯ 00 T^{12} + \cdots + 74\!\cdots\!00 T 1 2 + ⋯ + 7 4 ⋯ 0 0
T^12 + 1318308583464*T^10 + 565622194723694711012880*T^8 + 99406449004429134652575271908317184*T^6 + 6536931386011703438167308234917695080675999744*T^4 + 58291273547747417478210468610446183294029635135104614400*T^2 + 74277694524736955403755792553253864629289012250507854479360000
97 97 9 7
( T 6 + ⋯ − 12 ⋯ 55 ) 2 (T^{6} + \cdots - 12\!\cdots\!55)^{2} ( T 6 + ⋯ − 1 2 ⋯ 5 5 ) 2
(T^6 - 38874*T^5 - 1781930852337*T^4 + 517722176935493876*T^3 + 449902704158409366729375*T^2 - 114777293257140786199157416986*T - 12763236632317836815428259595623855)^2
show more
show less