Properties

Label 162.7.b.c
Level 162162
Weight 77
Character orbit 162.b
Analytic conductor 37.26937.269
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,7,Mod(161,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.161"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: N N == 162=234 162 = 2 \cdot 3^{4}
Weight: k k == 7 7
Character orbit: [χ][\chi] == 162.b (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 37.268761546437.2687615464
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+370x10+51793x8+3491832x6+117603792x4+1832032512x2+10453017600 x^{12} + 370x^{10} + 51793x^{8} + 3491832x^{6} + 117603792x^{4} + 1832032512x^{2} + 10453017600 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 216342 2^{16}\cdot 3^{42}
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q232q4+β8q5+(β140)q732β2q8+β3q10+(β103β819β2)q11+(β4280)q13+(β9+2β840β2)q14++(84β11++22525β2)q98+O(q100) q + \beta_{2} q^{2} - 32 q^{4} + \beta_{8} q^{5} + ( - \beta_1 - 40) q^{7} - 32 \beta_{2} q^{8} + \beta_{3} q^{10} + ( - \beta_{10} - 3 \beta_{8} - 19 \beta_{2}) q^{11} + (\beta_{4} - 280) q^{13} + (\beta_{9} + 2 \beta_{8} - 40 \beta_{2}) q^{14}+ \cdots + ( - 84 \beta_{11} + \cdots + 22525 \beta_{2}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q384q4480q73360q13+12288q162820q19+7200q2216188q25+15360q2842960q31+54720q3425536q37142860q43135072q46+271908q49++77748q97+O(q100) 12 q - 384 q^{4} - 480 q^{7} - 3360 q^{13} + 12288 q^{16} - 2820 q^{19} + 7200 q^{22} - 16188 q^{25} + 15360 q^{28} - 42960 q^{31} + 54720 q^{34} - 25536 q^{37} - 142860 q^{43} - 135072 q^{46} + 271908 q^{49}+ \cdots + 77748 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+370x10+51793x8+3491832x6+117603792x4+1832032512x2+10453017600 x^{12} + 370x^{10} + 51793x^{8} + 3491832x^{6} + 117603792x^{4} + 1832032512x^{2} + 10453017600 : Copy content Toggle raw display

β1\beta_{1}== (13081ν105302927ν8773457883ν648532556637ν4+10233017042400)/3086858160 ( - 13081 \nu^{10} - 5302927 \nu^{8} - 773457883 \nu^{6} - 48532556637 \nu^{4} + \cdots - 10233017042400 ) / 3086858160 Copy content Toggle raw display
β2\beta_{2}== (26659ν11+7658854ν9+735955987ν7+28995600888ν5+806248446336ν)/1753335434880 ( 26659 \nu^{11} + 7658854 \nu^{9} + 735955987 \nu^{7} + 28995600888 \nu^{5} + \cdots - 806248446336 \nu ) / 1753335434880 Copy content Toggle raw display
β3\beta_{3}== (210097ν10+67295716ν8+7678096429ν6+391082105466ν4++66081730824000)/3086858160 ( 210097 \nu^{10} + 67295716 \nu^{8} + 7678096429 \nu^{6} + 391082105466 \nu^{4} + \cdots + 66081730824000 ) / 3086858160 Copy content Toggle raw display
β4\beta_{4}== (225662ν10+73086479ν8+8515647236ν6+451736622819ν4++98574178616640)/3086858160 ( 225662 \nu^{10} + 73086479 \nu^{8} + 8515647236 \nu^{6} + 451736622819 \nu^{4} + \cdots + 98574178616640 ) / 3086858160 Copy content Toggle raw display
β5\beta_{5}== (1009529ν10+306190910ν8+31261162145ν6+1265226360660ν4++59476995947520)/4115810880 ( 1009529 \nu^{10} + 306190910 \nu^{8} + 31261162145 \nu^{6} + 1265226360660 \nu^{4} + \cdots + 59476995947520 ) / 4115810880 Copy content Toggle raw display
β6\beta_{6}== (3267469ν10+1216138966ν8+166433693269ν6+10303228617156ν4++24 ⁣ ⁣00)/12347432640 ( 3267469 \nu^{10} + 1216138966 \nu^{8} + 166433693269 \nu^{6} + 10303228617156 \nu^{4} + \cdots + 24\!\cdots\!00 ) / 12347432640 Copy content Toggle raw display
β7\beta_{7}== (1385069ν11+3076022942ν9+982609562195ν7+97465949305360ν5++37 ⁣ ⁣68ν)/2337780579840 ( - 1385069 \nu^{11} + 3076022942 \nu^{9} + 982609562195 \nu^{7} + 97465949305360 \nu^{5} + \cdots + 37\!\cdots\!68 \nu ) / 2337780579840 Copy content Toggle raw display
β8\beta_{8}== (9191227ν11+3200148886ν9+405374895019ν7+23127582217656ν5++46 ⁣ ⁣80ν)/7013341739520 ( 9191227 \nu^{11} + 3200148886 \nu^{9} + 405374895019 \nu^{7} + 23127582217656 \nu^{5} + \cdots + 46\!\cdots\!80 \nu ) / 7013341739520 Copy content Toggle raw display
β9\beta_{9}== (42893003ν1114985851078ν91900173246107ν7+21 ⁣ ⁣40ν)/3506670869760 ( - 42893003 \nu^{11} - 14985851078 \nu^{9} - 1900173246107 \nu^{7} + \cdots - 21\!\cdots\!40 \nu ) / 3506670869760 Copy content Toggle raw display
β10\beta_{10}== (186692297ν11+65156440394ν9+8325664614761ν7++10 ⁣ ⁣20ν)/14026683479040 ( 186692297 \nu^{11} + 65156440394 \nu^{9} + 8325664614761 \nu^{7} + \cdots + 10\!\cdots\!20 \nu ) / 14026683479040 Copy content Toggle raw display
β11\beta_{11}== (500693495ν11172073646566ν921610924592375ν7+28 ⁣ ⁣44ν)/14026683479040 ( - 500693495 \nu^{11} - 172073646566 \nu^{9} - 21610924592375 \nu^{7} + \cdots - 28\!\cdots\!44 \nu ) / 14026683479040 Copy content Toggle raw display
ν\nu== (β11β104β953β8122β2)/1458 ( -\beta_{11} - \beta_{10} - 4\beta_{9} - 53\beta_{8} - 122\beta_{2} ) / 1458 Copy content Toggle raw display
ν2\nu^{2}== (7β6+β5+79β475β3221β1269730)/4374 ( -7\beta_{6} + \beta_{5} + 79\beta_{4} - 75\beta_{3} - 221\beta _1 - 269730 ) / 4374 Copy content Toggle raw display
ν3\nu^{3}== (47β11+263β10+476β9+3679β836β755457β2)/1458 ( 47\beta_{11} + 263\beta_{10} + 476\beta_{9} + 3679\beta_{8} - 36\beta_{7} - 55457\beta_{2} ) / 1458 Copy content Toggle raw display
ν4\nu^{4}== (1531β6+275β510039β4+6819β3+47861β1+24285906)/4374 ( 1531\beta_{6} + 275\beta_{5} - 10039\beta_{4} + 6819\beta_{3} + 47861\beta _1 + 24285906 ) / 4374 Copy content Toggle raw display
ν5\nu^{5}== (17841β11153073β10176680β9910113β8++29162487β2)/4374 ( - 17841 \beta_{11} - 153073 \beta_{10} - 176680 \beta_{9} - 910113 \beta_{8} + \cdots + 29162487 \beta_{2} ) / 4374 Copy content Toggle raw display
ν6\nu^{6}== (84433β630377β5+412409β4164953β32565667β1884098638)/1458 ( -84433\beta_{6} - 30377\beta_{5} + 412409\beta_{4} - 164953\beta_{3} - 2565667\beta _1 - 884098638 ) / 1458 Copy content Toggle raw display
ν7\nu^{7}== (2532885β11+24684205β10+23196280β9+82540461β8+4223775003β2)/4374 ( 2532885 \beta_{11} + 24684205 \beta_{10} + 23196280 \beta_{9} + 82540461 \beta_{8} + \cdots - 4223775003 \beta_{2} ) / 4374 Copy content Toggle raw display
ν8\nu^{8}== (38381363β6+17581675β5160101575β4+29748507β3++322428746610)/4374 ( 38381363 \beta_{6} + 17581675 \beta_{5} - 160101575 \beta_{4} + 29748507 \beta_{3} + \cdots + 322428746610 ) / 4374 Copy content Toggle raw display
ν9\nu^{9}== (117062251β111228877051β101049537384β9++196243285213β2)/1458 ( - 117062251 \beta_{11} - 1228877051 \beta_{10} - 1049537384 \beta_{9} + \cdots + 196243285213 \beta_{2} ) / 1458 Copy content Toggle raw display
ν10\nu^{10}== (5595014987β62854696819β5+21460960859β4946680195β3+41687065381770)/4374 ( - 5595014987 \beta_{6} - 2854696819 \beta_{5} + 21460960859 \beta_{4} - 946680195 \beta_{3} + \cdots - 41687065381770 ) / 4374 Copy content Toggle raw display
ν11\nu^{11}== (48110080821β11+531932678909β10+433999027448β9+81411526600971β2)/4374 ( 48110080821 \beta_{11} + 531932678909 \beta_{10} + 433999027448 \beta_{9} + \cdots - 81411526600971 \beta_{2} ) / 4374 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/162Z)×\left(\mathbb{Z}/162\mathbb{Z}\right)^\times.

nn 8383
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
161.1
4.28281i
8.15670i
3.87527i
11.8022i
7.20150i
8.88570i
8.88570i
7.20150i
11.8022i
3.87527i
8.15670i
4.28281i
5.65685i 0 −32.0000 181.232i 0 −208.612 181.019i 0 −1025.20
161.2 5.65685i 0 −32.0000 110.679i 0 326.338 181.019i 0 −626.092
161.3 5.65685i 0 −32.0000 1.84488i 0 −12.6882 181.019i 0 10.4362
161.4 5.65685i 0 −32.0000 10.8441i 0 −644.082 181.019i 0 61.3435
161.5 5.65685i 0 −32.0000 45.6802i 0 490.195 181.019i 0 258.406
161.6 5.65685i 0 −32.0000 233.541i 0 −191.150 181.019i 0 1321.11
161.7 5.65685i 0 −32.0000 233.541i 0 −191.150 181.019i 0 1321.11
161.8 5.65685i 0 −32.0000 45.6802i 0 490.195 181.019i 0 258.406
161.9 5.65685i 0 −32.0000 10.8441i 0 −644.082 181.019i 0 61.3435
161.10 5.65685i 0 −32.0000 1.84488i 0 −12.6882 181.019i 0 10.4362
161.11 5.65685i 0 −32.0000 110.679i 0 326.338 181.019i 0 −626.092
161.12 5.65685i 0 −32.0000 181.232i 0 −208.612 181.019i 0 −1025.20
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 161.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.7.b.c 12
3.b odd 2 1 inner 162.7.b.c 12
9.c even 3 1 18.7.d.a 12
9.c even 3 1 54.7.d.a 12
9.d odd 6 1 18.7.d.a 12
9.d odd 6 1 54.7.d.a 12
36.f odd 6 1 144.7.q.c 12
36.f odd 6 1 432.7.q.b 12
36.h even 6 1 144.7.q.c 12
36.h even 6 1 432.7.q.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.7.d.a 12 9.c even 3 1
18.7.d.a 12 9.d odd 6 1
54.7.d.a 12 9.c even 3 1
54.7.d.a 12 9.d odd 6 1
144.7.q.c 12 36.f odd 6 1
144.7.q.c 12 36.h even 6 1
162.7.b.c 12 1.a even 1 1 trivial
162.7.b.c 12 3.b odd 2 1 inner
432.7.q.b 12 36.f odd 6 1
432.7.q.b 12 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T512+101844T510+3082099734T58+28287732473100T56++18 ⁣ ⁣00 T_{5}^{12} + 101844 T_{5}^{10} + 3082099734 T_{5}^{8} + 28287732473100 T_{5}^{6} + \cdots + 18\!\cdots\!00 acting on S7new(162,[χ])S_{7}^{\mathrm{new}}(162, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+32)6 (T^{2} + 32)^{6} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12++18 ⁣ ⁣00 T^{12} + \cdots + 18\!\cdots\!00 Copy content Toggle raw display
77 (T6++52130539391500)2 (T^{6} + \cdots + 52130539391500)^{2} Copy content Toggle raw display
1111 T12++83 ⁣ ⁣09 T^{12} + \cdots + 83\!\cdots\!09 Copy content Toggle raw display
1313 (T6++99 ⁣ ⁣04)2 (T^{6} + \cdots + 99\!\cdots\!04)^{2} Copy content Toggle raw display
1717 T12++64 ⁣ ⁣00 T^{12} + \cdots + 64\!\cdots\!00 Copy content Toggle raw display
1919 (T6+71 ⁣ ⁣00)2 (T^{6} + \cdots - 71\!\cdots\!00)^{2} Copy content Toggle raw display
2323 T12++18 ⁣ ⁣84 T^{12} + \cdots + 18\!\cdots\!84 Copy content Toggle raw display
2929 T12++50 ⁣ ⁣00 T^{12} + \cdots + 50\!\cdots\!00 Copy content Toggle raw display
3131 (T6+15 ⁣ ⁣40)2 (T^{6} + \cdots - 15\!\cdots\!40)^{2} Copy content Toggle raw display
3737 (T6++54 ⁣ ⁣48)2 (T^{6} + \cdots + 54\!\cdots\!48)^{2} Copy content Toggle raw display
4141 T12++10 ⁣ ⁣25 T^{12} + \cdots + 10\!\cdots\!25 Copy content Toggle raw display
4343 (T6++13 ⁣ ⁣55)2 (T^{6} + \cdots + 13\!\cdots\!55)^{2} Copy content Toggle raw display
4747 T12++11 ⁣ ⁣84 T^{12} + \cdots + 11\!\cdots\!84 Copy content Toggle raw display
5353 T12++27 ⁣ ⁣00 T^{12} + \cdots + 27\!\cdots\!00 Copy content Toggle raw display
5959 T12++10 ⁣ ⁣25 T^{12} + \cdots + 10\!\cdots\!25 Copy content Toggle raw display
6161 (T6+10 ⁣ ⁣52)2 (T^{6} + \cdots - 10\!\cdots\!52)^{2} Copy content Toggle raw display
6767 (T6+22 ⁣ ⁣45)2 (T^{6} + \cdots - 22\!\cdots\!45)^{2} Copy content Toggle raw display
7171 T12++58 ⁣ ⁣76 T^{12} + \cdots + 58\!\cdots\!76 Copy content Toggle raw display
7373 (T6+49 ⁣ ⁣60)2 (T^{6} + \cdots - 49\!\cdots\!60)^{2} Copy content Toggle raw display
7979 (T6+18 ⁣ ⁣00)2 (T^{6} + \cdots - 18\!\cdots\!00)^{2} Copy content Toggle raw display
8383 T12++42 ⁣ ⁣36 T^{12} + \cdots + 42\!\cdots\!36 Copy content Toggle raw display
8989 T12++74 ⁣ ⁣00 T^{12} + \cdots + 74\!\cdots\!00 Copy content Toggle raw display
9797 (T6+12 ⁣ ⁣55)2 (T^{6} + \cdots - 12\!\cdots\!55)^{2} Copy content Toggle raw display
show more
show less