Properties

Label 162.6.c.h.55.1
Level $162$
Weight $6$
Character 162.55
Analytic conductor $25.982$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,6,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,0,-16,-66,0,-176] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.6.c.h.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(-8.00000 - 13.8564i) q^{4} +(-33.0000 - 57.1577i) q^{5} +(-88.0000 + 152.420i) q^{7} -64.0000 q^{8} -264.000 q^{10} +(-30.0000 + 51.9615i) q^{11} +(329.000 + 569.845i) q^{13} +(352.000 + 609.682i) q^{14} +(-128.000 + 221.703i) q^{16} +414.000 q^{17} +956.000 q^{19} +(-528.000 + 914.523i) q^{20} +(120.000 + 207.846i) q^{22} +(300.000 + 519.615i) q^{23} +(-615.500 + 1066.08i) q^{25} +2632.00 q^{26} +2816.00 q^{28} +(2787.00 - 4827.23i) q^{29} +(1796.00 + 3110.76i) q^{31} +(512.000 + 886.810i) q^{32} +(828.000 - 1434.14i) q^{34} +11616.0 q^{35} -8458.00 q^{37} +(1912.00 - 3311.68i) q^{38} +(2112.00 + 3658.09i) q^{40} +(9597.00 + 16622.5i) q^{41} +(-6658.00 + 11532.0i) q^{43} +960.000 q^{44} +2400.00 q^{46} +(-9840.00 + 17043.4i) q^{47} +(-7084.50 - 12270.7i) q^{49} +(2462.00 + 4264.31i) q^{50} +(5264.00 - 9117.52i) q^{52} +31266.0 q^{53} +3960.00 q^{55} +(5632.00 - 9754.91i) q^{56} +(-11148.0 - 19308.9i) q^{58} +(13170.0 + 22811.1i) q^{59} +(15545.0 - 26924.7i) q^{61} +14368.0 q^{62} +4096.00 q^{64} +(21714.0 - 37609.8i) q^{65} +(8402.00 + 14552.7i) q^{67} +(-3312.00 - 5736.55i) q^{68} +(23232.0 - 40239.0i) q^{70} -6120.00 q^{71} -25558.0 q^{73} +(-16916.0 + 29299.4i) q^{74} +(-7648.00 - 13246.7i) q^{76} +(-5280.00 - 9145.23i) q^{77} +(-37204.0 + 64439.2i) q^{79} +16896.0 q^{80} +76776.0 q^{82} +(-3234.00 + 5601.45i) q^{83} +(-13662.0 - 23663.3i) q^{85} +(26632.0 + 46128.0i) q^{86} +(1920.00 - 3325.54i) q^{88} +32742.0 q^{89} -115808. q^{91} +(4800.00 - 8313.84i) q^{92} +(39360.0 + 68173.5i) q^{94} +(-31548.0 - 54642.7i) q^{95} +(-83041.0 + 143831. i) q^{97} -56676.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 16 q^{4} - 66 q^{5} - 176 q^{7} - 128 q^{8} - 528 q^{10} - 60 q^{11} + 658 q^{13} + 704 q^{14} - 256 q^{16} + 828 q^{17} + 1912 q^{19} - 1056 q^{20} + 240 q^{22} + 600 q^{23} - 1231 q^{25}+ \cdots - 113352 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) 0 0
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) −33.0000 57.1577i −0.590322 1.02247i −0.994189 0.107650i \(-0.965667\pi\)
0.403867 0.914818i \(-0.367666\pi\)
\(6\) 0 0
\(7\) −88.0000 + 152.420i −0.678793 + 1.17570i 0.296551 + 0.955017i \(0.404163\pi\)
−0.975345 + 0.220688i \(0.929170\pi\)
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −264.000 −0.834841
\(11\) −30.0000 + 51.9615i −0.0747549 + 0.129479i −0.900980 0.433861i \(-0.857151\pi\)
0.826225 + 0.563341i \(0.190484\pi\)
\(12\) 0 0
\(13\) 329.000 + 569.845i 0.539930 + 0.935186i 0.998907 + 0.0467382i \(0.0148827\pi\)
−0.458977 + 0.888448i \(0.651784\pi\)
\(14\) 352.000 + 609.682i 0.479979 + 0.831349i
\(15\) 0 0
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) 414.000 0.347439 0.173719 0.984795i \(-0.444421\pi\)
0.173719 + 0.984795i \(0.444421\pi\)
\(18\) 0 0
\(19\) 956.000 0.607539 0.303769 0.952746i \(-0.401755\pi\)
0.303769 + 0.952746i \(0.401755\pi\)
\(20\) −528.000 + 914.523i −0.295161 + 0.511234i
\(21\) 0 0
\(22\) 120.000 + 207.846i 0.0528597 + 0.0915557i
\(23\) 300.000 + 519.615i 0.118250 + 0.204815i 0.919074 0.394084i \(-0.128938\pi\)
−0.800824 + 0.598900i \(0.795605\pi\)
\(24\) 0 0
\(25\) −615.500 + 1066.08i −0.196960 + 0.341145i
\(26\) 2632.00 0.763576
\(27\) 0 0
\(28\) 2816.00 0.678793
\(29\) 2787.00 4827.23i 0.615378 1.06587i −0.374940 0.927049i \(-0.622337\pi\)
0.990318 0.138817i \(-0.0443300\pi\)
\(30\) 0 0
\(31\) 1796.00 + 3110.76i 0.335662 + 0.581384i 0.983612 0.180299i \(-0.0577067\pi\)
−0.647950 + 0.761683i \(0.724373\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 828.000 1434.14i 0.122838 0.212762i
\(35\) 11616.0 1.60283
\(36\) 0 0
\(37\) −8458.00 −1.01570 −0.507848 0.861447i \(-0.669559\pi\)
−0.507848 + 0.861447i \(0.669559\pi\)
\(38\) 1912.00 3311.68i 0.214797 0.372040i
\(39\) 0 0
\(40\) 2112.00 + 3658.09i 0.208710 + 0.361497i
\(41\) 9597.00 + 16622.5i 0.891612 + 1.54432i 0.837943 + 0.545758i \(0.183758\pi\)
0.0536693 + 0.998559i \(0.482908\pi\)
\(42\) 0 0
\(43\) −6658.00 + 11532.0i −0.549127 + 0.951116i 0.449208 + 0.893427i \(0.351706\pi\)
−0.998335 + 0.0576883i \(0.981627\pi\)
\(44\) 960.000 0.0747549
\(45\) 0 0
\(46\) 2400.00 0.167231
\(47\) −9840.00 + 17043.4i −0.649756 + 1.12541i 0.333425 + 0.942777i \(0.391796\pi\)
−0.983181 + 0.182634i \(0.941538\pi\)
\(48\) 0 0
\(49\) −7084.50 12270.7i −0.421521 0.730095i
\(50\) 2462.00 + 4264.31i 0.139272 + 0.241226i
\(51\) 0 0
\(52\) 5264.00 9117.52i 0.269965 0.467593i
\(53\) 31266.0 1.52891 0.764456 0.644676i \(-0.223008\pi\)
0.764456 + 0.644676i \(0.223008\pi\)
\(54\) 0 0
\(55\) 3960.00 0.176518
\(56\) 5632.00 9754.91i 0.239990 0.415674i
\(57\) 0 0
\(58\) −11148.0 19308.9i −0.435138 0.753681i
\(59\) 13170.0 + 22811.1i 0.492556 + 0.853132i 0.999963 0.00857419i \(-0.00272928\pi\)
−0.507407 + 0.861706i \(0.669396\pi\)
\(60\) 0 0
\(61\) 15545.0 26924.7i 0.534892 0.926460i −0.464277 0.885690i \(-0.653686\pi\)
0.999169 0.0407699i \(-0.0129811\pi\)
\(62\) 14368.0 0.474698
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 21714.0 37609.8i 0.637465 1.10412i
\(66\) 0 0
\(67\) 8402.00 + 14552.7i 0.228663 + 0.396056i 0.957412 0.288725i \(-0.0932313\pi\)
−0.728749 + 0.684781i \(0.759898\pi\)
\(68\) −3312.00 5736.55i −0.0868596 0.150445i
\(69\) 0 0
\(70\) 23232.0 40239.0i 0.566685 0.981527i
\(71\) −6120.00 −0.144081 −0.0720403 0.997402i \(-0.522951\pi\)
−0.0720403 + 0.997402i \(0.522951\pi\)
\(72\) 0 0
\(73\) −25558.0 −0.561332 −0.280666 0.959806i \(-0.590555\pi\)
−0.280666 + 0.959806i \(0.590555\pi\)
\(74\) −16916.0 + 29299.4i −0.359102 + 0.621984i
\(75\) 0 0
\(76\) −7648.00 13246.7i −0.151885 0.263072i
\(77\) −5280.00 9145.23i −0.101486 0.175779i
\(78\) 0 0
\(79\) −37204.0 + 64439.2i −0.670690 + 1.16167i 0.307019 + 0.951704i \(0.400669\pi\)
−0.977709 + 0.209966i \(0.932665\pi\)
\(80\) 16896.0 0.295161
\(81\) 0 0
\(82\) 76776.0 1.26093
\(83\) −3234.00 + 5601.45i −0.0515282 + 0.0892494i −0.890639 0.454711i \(-0.849743\pi\)
0.839111 + 0.543960i \(0.183076\pi\)
\(84\) 0 0
\(85\) −13662.0 23663.3i −0.205101 0.355245i
\(86\) 26632.0 + 46128.0i 0.388291 + 0.672540i
\(87\) 0 0
\(88\) 1920.00 3325.54i 0.0264298 0.0457778i
\(89\) 32742.0 0.438157 0.219079 0.975707i \(-0.429695\pi\)
0.219079 + 0.975707i \(0.429695\pi\)
\(90\) 0 0
\(91\) −115808. −1.46600
\(92\) 4800.00 8313.84i 0.0591251 0.102408i
\(93\) 0 0
\(94\) 39360.0 + 68173.5i 0.459447 + 0.795786i
\(95\) −31548.0 54642.7i −0.358643 0.621189i
\(96\) 0 0
\(97\) −83041.0 + 143831.i −0.896114 + 1.55211i −0.0636941 + 0.997969i \(0.520288\pi\)
−0.832420 + 0.554145i \(0.813045\pi\)
\(98\) −56676.0 −0.596120
\(99\) 0 0
\(100\) 19696.0 0.196960
\(101\) −11001.0 + 19054.3i −0.107307 + 0.185861i −0.914678 0.404182i \(-0.867556\pi\)
0.807371 + 0.590044i \(0.200889\pi\)
\(102\) 0 0
\(103\) 39632.0 + 68644.6i 0.368089 + 0.637549i 0.989267 0.146121i \(-0.0466788\pi\)
−0.621178 + 0.783670i \(0.713345\pi\)
\(104\) −21056.0 36470.1i −0.190894 0.330638i
\(105\) 0 0
\(106\) 62532.0 108309.i 0.540552 0.936264i
\(107\) −227988. −1.92510 −0.962548 0.271110i \(-0.912609\pi\)
−0.962548 + 0.271110i \(0.912609\pi\)
\(108\) 0 0
\(109\) −8530.00 −0.0687674 −0.0343837 0.999409i \(-0.510947\pi\)
−0.0343837 + 0.999409i \(0.510947\pi\)
\(110\) 7920.00 13717.8i 0.0624085 0.108095i
\(111\) 0 0
\(112\) −22528.0 39019.6i −0.169698 0.293926i
\(113\) −97719.0 169254.i −0.719918 1.24693i −0.961032 0.276437i \(-0.910846\pi\)
0.241114 0.970497i \(-0.422487\pi\)
\(114\) 0 0
\(115\) 19800.0 34294.6i 0.139611 0.241814i
\(116\) −89184.0 −0.615378
\(117\) 0 0
\(118\) 105360. 0.696580
\(119\) −36432.0 + 63102.1i −0.235839 + 0.408485i
\(120\) 0 0
\(121\) 78725.5 + 136357.i 0.488823 + 0.846667i
\(122\) −62180.0 107699.i −0.378226 0.655106i
\(123\) 0 0
\(124\) 28736.0 49772.2i 0.167831 0.290692i
\(125\) −125004. −0.715565
\(126\) 0 0
\(127\) 173000. 0.951780 0.475890 0.879505i \(-0.342126\pi\)
0.475890 + 0.879505i \(0.342126\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −86856.0 150439.i −0.450756 0.780732i
\(131\) 75630.0 + 130995.i 0.385049 + 0.666924i 0.991776 0.127986i \(-0.0408513\pi\)
−0.606727 + 0.794910i \(0.707518\pi\)
\(132\) 0 0
\(133\) −84128.0 + 145714.i −0.412393 + 0.714286i
\(134\) 67216.0 0.323378
\(135\) 0 0
\(136\) −26496.0 −0.122838
\(137\) −64227.0 + 111244.i −0.292359 + 0.506380i −0.974367 0.224964i \(-0.927773\pi\)
0.682008 + 0.731345i \(0.261107\pi\)
\(138\) 0 0
\(139\) −77098.0 133538.i −0.338459 0.586228i 0.645684 0.763605i \(-0.276572\pi\)
−0.984143 + 0.177376i \(0.943239\pi\)
\(140\) −92928.0 160956.i −0.400707 0.694044i
\(141\) 0 0
\(142\) −12240.0 + 21200.3i −0.0509402 + 0.0882310i
\(143\) −39480.0 −0.161450
\(144\) 0 0
\(145\) −367884. −1.45308
\(146\) −51116.0 + 88535.5i −0.198461 + 0.343744i
\(147\) 0 0
\(148\) 67664.0 + 117197.i 0.253924 + 0.439809i
\(149\) 14727.0 + 25507.9i 0.0543436 + 0.0941259i 0.891917 0.452198i \(-0.149360\pi\)
−0.837574 + 0.546324i \(0.816027\pi\)
\(150\) 0 0
\(151\) 101936. 176558.i 0.363819 0.630153i −0.624767 0.780811i \(-0.714806\pi\)
0.988586 + 0.150658i \(0.0481394\pi\)
\(152\) −61184.0 −0.214797
\(153\) 0 0
\(154\) −42240.0 −0.143523
\(155\) 118536. 205310.i 0.396297 0.686407i
\(156\) 0 0
\(157\) −68071.0 117902.i −0.220401 0.381745i 0.734529 0.678577i \(-0.237403\pi\)
−0.954930 + 0.296832i \(0.904070\pi\)
\(158\) 148816. + 257757.i 0.474250 + 0.821424i
\(159\) 0 0
\(160\) 33792.0 58529.5i 0.104355 0.180748i
\(161\) −105600. −0.321070
\(162\) 0 0
\(163\) −171124. −0.504478 −0.252239 0.967665i \(-0.581167\pi\)
−0.252239 + 0.967665i \(0.581167\pi\)
\(164\) 153552. 265960.i 0.445806 0.772159i
\(165\) 0 0
\(166\) 12936.0 + 22405.8i 0.0364359 + 0.0631089i
\(167\) −338100. 585606.i −0.938110 1.62486i −0.768991 0.639259i \(-0.779241\pi\)
−0.169119 0.985596i \(-0.554092\pi\)
\(168\) 0 0
\(169\) −30835.5 + 53408.7i −0.0830490 + 0.143845i
\(170\) −109296. −0.290056
\(171\) 0 0
\(172\) 213056. 0.549127
\(173\) 66579.0 115318.i 0.169131 0.292943i −0.768984 0.639268i \(-0.779237\pi\)
0.938114 + 0.346325i \(0.112571\pi\)
\(174\) 0 0
\(175\) −108328. 187630.i −0.267390 0.463134i
\(176\) −7680.00 13302.2i −0.0186887 0.0323698i
\(177\) 0 0
\(178\) 65484.0 113422.i 0.154912 0.268316i
\(179\) 693396. 1.61752 0.808758 0.588141i \(-0.200140\pi\)
0.808758 + 0.588141i \(0.200140\pi\)
\(180\) 0 0
\(181\) 377174. 0.855747 0.427873 0.903839i \(-0.359263\pi\)
0.427873 + 0.903839i \(0.359263\pi\)
\(182\) −231616. + 401171.i −0.518311 + 0.897740i
\(183\) 0 0
\(184\) −19200.0 33255.4i −0.0418077 0.0724131i
\(185\) 279114. + 483440.i 0.599587 + 1.03852i
\(186\) 0 0
\(187\) −12420.0 + 21512.1i −0.0259727 + 0.0449861i
\(188\) 314880. 0.649756
\(189\) 0 0
\(190\) −252384. −0.507198
\(191\) −132672. + 229795.i −0.263145 + 0.455781i −0.967076 0.254487i \(-0.918093\pi\)
0.703931 + 0.710269i \(0.251427\pi\)
\(192\) 0 0
\(193\) −147649. 255736.i −0.285323 0.494194i 0.687364 0.726313i \(-0.258768\pi\)
−0.972688 + 0.232118i \(0.925434\pi\)
\(194\) 332164. + 575325.i 0.633648 + 1.09751i
\(195\) 0 0
\(196\) −113352. + 196331.i −0.210760 + 0.365048i
\(197\) −201294. −0.369543 −0.184772 0.982781i \(-0.559155\pi\)
−0.184772 + 0.982781i \(0.559155\pi\)
\(198\) 0 0
\(199\) 652448. 1.16792 0.583960 0.811782i \(-0.301502\pi\)
0.583960 + 0.811782i \(0.301502\pi\)
\(200\) 39392.0 68228.9i 0.0696359 0.120613i
\(201\) 0 0
\(202\) 44004.0 + 76217.2i 0.0758776 + 0.131424i
\(203\) 490512. + 849592.i 0.835429 + 1.44701i
\(204\) 0 0
\(205\) 633402. 1.09708e6i 1.05268 1.82329i
\(206\) 317056. 0.520557
\(207\) 0 0
\(208\) −168448. −0.269965
\(209\) −28680.0 + 49675.2i −0.0454165 + 0.0786636i
\(210\) 0 0
\(211\) 573530. + 993383.i 0.886850 + 1.53607i 0.843579 + 0.537005i \(0.180444\pi\)
0.0432708 + 0.999063i \(0.486222\pi\)
\(212\) −250128. 433234.i −0.382228 0.662039i
\(213\) 0 0
\(214\) −455976. + 789774.i −0.680624 + 1.17888i
\(215\) 878856. 1.29665
\(216\) 0 0
\(217\) −632192. −0.911380
\(218\) −17060.0 + 29548.8i −0.0243130 + 0.0421113i
\(219\) 0 0
\(220\) −31680.0 54871.4i −0.0441294 0.0764344i
\(221\) 136206. + 235916.i 0.187593 + 0.324920i
\(222\) 0 0
\(223\) −350980. + 607915.i −0.472629 + 0.818617i −0.999509 0.0313222i \(-0.990028\pi\)
0.526881 + 0.849939i \(0.323362\pi\)
\(224\) −180224. −0.239990
\(225\) 0 0
\(226\) −781752. −1.01812
\(227\) 618054. 1.07050e6i 0.796089 1.37887i −0.126056 0.992023i \(-0.540232\pi\)
0.922145 0.386844i \(-0.126435\pi\)
\(228\) 0 0
\(229\) −52915.0 91651.5i −0.0666792 0.115492i 0.830758 0.556633i \(-0.187907\pi\)
−0.897438 + 0.441141i \(0.854574\pi\)
\(230\) −79200.0 137178.i −0.0987201 0.170988i
\(231\) 0 0
\(232\) −178368. + 308942.i −0.217569 + 0.376841i
\(233\) 438678. 0.529366 0.264683 0.964335i \(-0.414733\pi\)
0.264683 + 0.964335i \(0.414733\pi\)
\(234\) 0 0
\(235\) 1.29888e6 1.53426
\(236\) 210720. 364978.i 0.246278 0.426566i
\(237\) 0 0
\(238\) 145728. + 252408.i 0.166763 + 0.288843i
\(239\) 14232.0 + 24650.5i 0.0161165 + 0.0279146i 0.873971 0.485978i \(-0.161536\pi\)
−0.857855 + 0.513892i \(0.828203\pi\)
\(240\) 0 0
\(241\) −446281. + 772981.i −0.494955 + 0.857287i −0.999983 0.00581560i \(-0.998149\pi\)
0.505028 + 0.863103i \(0.331482\pi\)
\(242\) 629804. 0.691301
\(243\) 0 0
\(244\) −497440. −0.534892
\(245\) −467577. + 809867.i −0.497666 + 0.861983i
\(246\) 0 0
\(247\) 314524. + 544772.i 0.328028 + 0.568162i
\(248\) −114944. 199089.i −0.118674 0.205550i
\(249\) 0 0
\(250\) −250008. + 433027.i −0.252990 + 0.438192i
\(251\) 110124. 0.110331 0.0551655 0.998477i \(-0.482431\pi\)
0.0551655 + 0.998477i \(0.482431\pi\)
\(252\) 0 0
\(253\) −36000.0 −0.0353591
\(254\) 346000. 599290.i 0.336505 0.582844i
\(255\) 0 0
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) 70401.0 + 121938.i 0.0664884 + 0.115161i 0.897353 0.441313i \(-0.145487\pi\)
−0.830865 + 0.556474i \(0.812154\pi\)
\(258\) 0 0
\(259\) 744304. 1.28917e6i 0.689447 1.19416i
\(260\) −694848. −0.637465
\(261\) 0 0
\(262\) 605040. 0.544541
\(263\) −469380. + 812990.i −0.418442 + 0.724763i −0.995783 0.0917404i \(-0.970757\pi\)
0.577341 + 0.816503i \(0.304090\pi\)
\(264\) 0 0
\(265\) −1.03178e6 1.78709e6i −0.902551 1.56326i
\(266\) 336512. + 582856.i 0.291606 + 0.505076i
\(267\) 0 0
\(268\) 134432. 232843.i 0.114331 0.198028i
\(269\) 1.11451e6 0.939078 0.469539 0.882912i \(-0.344420\pi\)
0.469539 + 0.882912i \(0.344420\pi\)
\(270\) 0 0
\(271\) 567704. 0.469568 0.234784 0.972048i \(-0.424562\pi\)
0.234784 + 0.972048i \(0.424562\pi\)
\(272\) −52992.0 + 91784.8i −0.0434298 + 0.0752227i
\(273\) 0 0
\(274\) 256908. + 444978.i 0.206729 + 0.358065i
\(275\) −36930.0 63964.6i −0.0294474 0.0510045i
\(276\) 0 0
\(277\) 606629. 1.05071e6i 0.475033 0.822781i −0.524558 0.851375i \(-0.675769\pi\)
0.999591 + 0.0285934i \(0.00910280\pi\)
\(278\) −616784. −0.478653
\(279\) 0 0
\(280\) −743424. −0.566685
\(281\) 343869. 595599.i 0.259793 0.449974i −0.706393 0.707819i \(-0.749679\pi\)
0.966186 + 0.257845i \(0.0830124\pi\)
\(282\) 0 0
\(283\) 415454. + 719587.i 0.308359 + 0.534094i 0.978004 0.208588i \(-0.0668868\pi\)
−0.669644 + 0.742682i \(0.733553\pi\)
\(284\) 48960.0 + 84801.2i 0.0360202 + 0.0623887i
\(285\) 0 0
\(286\) −78960.0 + 136763.i −0.0570811 + 0.0988673i
\(287\) −3.37814e6 −2.42088
\(288\) 0 0
\(289\) −1.24846e6 −0.879286
\(290\) −735768. + 1.27439e6i −0.513743 + 0.889829i
\(291\) 0 0
\(292\) 204464. + 354142.i 0.140333 + 0.243064i
\(293\) −656313. 1.13677e6i −0.446624 0.773575i 0.551540 0.834149i \(-0.314040\pi\)
−0.998164 + 0.0605733i \(0.980707\pi\)
\(294\) 0 0
\(295\) 869220. 1.50553e6i 0.581533 1.00725i
\(296\) 541312. 0.359102
\(297\) 0 0
\(298\) 117816. 0.0768535
\(299\) −197400. + 341907.i −0.127694 + 0.221172i
\(300\) 0 0
\(301\) −1.17181e6 2.02963e6i −0.745487 1.29122i
\(302\) −407744. 706233.i −0.257259 0.445585i
\(303\) 0 0
\(304\) −122368. + 211948.i −0.0759423 + 0.131536i
\(305\) −2.05194e6 −1.26303
\(306\) 0 0
\(307\) 1.69022e6 1.02352 0.511761 0.859128i \(-0.328993\pi\)
0.511761 + 0.859128i \(0.328993\pi\)
\(308\) −84480.0 + 146324.i −0.0507431 + 0.0878897i
\(309\) 0 0
\(310\) −474144. 821241.i −0.280224 0.485363i
\(311\) −751020. 1.30080e6i −0.440302 0.762625i 0.557410 0.830238i \(-0.311795\pi\)
−0.997712 + 0.0676123i \(0.978462\pi\)
\(312\) 0 0
\(313\) −405421. + 702210.i −0.233908 + 0.405141i −0.958955 0.283559i \(-0.908485\pi\)
0.725047 + 0.688700i \(0.241818\pi\)
\(314\) −544568. −0.311694
\(315\) 0 0
\(316\) 1.19053e6 0.670690
\(317\) 451779. 782504.i 0.252510 0.437359i −0.711707 0.702477i \(-0.752077\pi\)
0.964216 + 0.265117i \(0.0854107\pi\)
\(318\) 0 0
\(319\) 167220. + 289634.i 0.0920050 + 0.159357i
\(320\) −135168. 234118.i −0.0737902 0.127808i
\(321\) 0 0
\(322\) −211200. + 365809.i −0.113515 + 0.196614i
\(323\) 395784. 0.211082
\(324\) 0 0
\(325\) −809998. −0.425379
\(326\) −342248. + 592791.i −0.178360 + 0.308928i
\(327\) 0 0
\(328\) −614208. 1.06384e6i −0.315232 0.545999i
\(329\) −1.73184e6 2.99963e6i −0.882100 1.52784i
\(330\) 0 0
\(331\) −560986. + 971656.i −0.281438 + 0.487464i −0.971739 0.236058i \(-0.924145\pi\)
0.690301 + 0.723522i \(0.257478\pi\)
\(332\) 103488. 0.0515282
\(333\) 0 0
\(334\) −2.70480e6 −1.32669
\(335\) 554532. 960478.i 0.269969 0.467601i
\(336\) 0 0
\(337\) 1.37609e6 + 2.38345e6i 0.660041 + 1.14323i 0.980604 + 0.195998i \(0.0627946\pi\)
−0.320563 + 0.947227i \(0.603872\pi\)
\(338\) 123342. + 213635.i 0.0587245 + 0.101714i
\(339\) 0 0
\(340\) −218592. + 378612.i −0.102550 + 0.177622i
\(341\) −215520. −0.100369
\(342\) 0 0
\(343\) −464288. −0.213085
\(344\) 426112. 738048.i 0.194146 0.336270i
\(345\) 0 0
\(346\) −266316. 461273.i −0.119593 0.207142i
\(347\) 958746. + 1.66060e6i 0.427445 + 0.740356i 0.996645 0.0818428i \(-0.0260806\pi\)
−0.569201 + 0.822199i \(0.692747\pi\)
\(348\) 0 0
\(349\) −918295. + 1.59053e6i −0.403570 + 0.699003i −0.994154 0.107973i \(-0.965564\pi\)
0.590584 + 0.806976i \(0.298897\pi\)
\(350\) −866624. −0.378147
\(351\) 0 0
\(352\) −61440.0 −0.0264298
\(353\) −311007. + 538680.i −0.132841 + 0.230088i −0.924771 0.380525i \(-0.875743\pi\)
0.791929 + 0.610613i \(0.209077\pi\)
\(354\) 0 0
\(355\) 201960. + 349805.i 0.0850539 + 0.147318i
\(356\) −261936. 453686.i −0.109539 0.189728i
\(357\) 0 0
\(358\) 1.38679e6 2.40199e6i 0.571878 0.990523i
\(359\) −3.74062e6 −1.53182 −0.765909 0.642949i \(-0.777711\pi\)
−0.765909 + 0.642949i \(0.777711\pi\)
\(360\) 0 0
\(361\) −1.56216e6 −0.630897
\(362\) 754348. 1.30657e6i 0.302552 0.524036i
\(363\) 0 0
\(364\) 926464. + 1.60468e6i 0.366501 + 0.634798i
\(365\) 843414. + 1.46084e6i 0.331367 + 0.573944i
\(366\) 0 0
\(367\) −8116.00 + 14057.3i −0.00314541 + 0.00544801i −0.867594 0.497274i \(-0.834335\pi\)
0.864448 + 0.502722i \(0.167668\pi\)
\(368\) −153600. −0.0591251
\(369\) 0 0
\(370\) 2.23291e6 0.847944
\(371\) −2.75141e6 + 4.76558e6i −1.03782 + 1.79755i
\(372\) 0 0
\(373\) −146803. 254270.i −0.0546340 0.0946288i 0.837415 0.546568i \(-0.184066\pi\)
−0.892049 + 0.451939i \(0.850733\pi\)
\(374\) 49680.0 + 86048.3i 0.0183655 + 0.0318100i
\(375\) 0 0
\(376\) 629760. 1.09078e6i 0.229724 0.397893i
\(377\) 3.66769e6 1.32904
\(378\) 0 0
\(379\) 3.18012e6 1.13722 0.568611 0.822607i \(-0.307481\pi\)
0.568611 + 0.822607i \(0.307481\pi\)
\(380\) −504768. + 874284.i −0.179322 + 0.310594i
\(381\) 0 0
\(382\) 530688. + 919179.i 0.186072 + 0.322286i
\(383\) −1.48992e6 2.58062e6i −0.518998 0.898932i −0.999756 0.0220782i \(-0.992972\pi\)
0.480758 0.876853i \(-0.340362\pi\)
\(384\) 0 0
\(385\) −348480. + 603585.i −0.119819 + 0.207533i
\(386\) −1.18119e6 −0.403508
\(387\) 0 0
\(388\) 2.65731e6 0.896114
\(389\) 1.72989e6 2.99625e6i 0.579620 1.00393i −0.415902 0.909409i \(-0.636534\pi\)
0.995523 0.0945228i \(-0.0301325\pi\)
\(390\) 0 0
\(391\) 124200. + 215121.i 0.0410847 + 0.0711607i
\(392\) 453408. + 785326.i 0.149030 + 0.258128i
\(393\) 0 0
\(394\) −402588. + 697303.i −0.130653 + 0.226298i
\(395\) 4.91093e6 1.58369
\(396\) 0 0
\(397\) −3.90416e6 −1.24323 −0.621615 0.783323i \(-0.713523\pi\)
−0.621615 + 0.783323i \(0.713523\pi\)
\(398\) 1.30490e6 2.26015e6i 0.412922 0.715202i
\(399\) 0 0
\(400\) −157568. 272916.i −0.0492400 0.0852862i
\(401\) 2.72058e6 + 4.71218e6i 0.844890 + 1.46339i 0.885717 + 0.464226i \(0.153667\pi\)
−0.0408270 + 0.999166i \(0.512999\pi\)
\(402\) 0 0
\(403\) −1.18177e6 + 2.04688e6i −0.362468 + 0.627813i
\(404\) 352032. 0.107307
\(405\) 0 0
\(406\) 3.92410e6 1.18148
\(407\) 253740. 439491.i 0.0759282 0.131511i
\(408\) 0 0
\(409\) −984973. 1.70602e6i −0.291150 0.504286i 0.682932 0.730482i \(-0.260704\pi\)
−0.974082 + 0.226196i \(0.927371\pi\)
\(410\) −2.53361e6 4.38834e6i −0.744354 1.28926i
\(411\) 0 0
\(412\) 634112. 1.09831e6i 0.184045 0.318774i
\(413\) −4.63584e6 −1.33738
\(414\) 0 0
\(415\) 426888. 0.121673
\(416\) −336896. + 583521.i −0.0954471 + 0.165319i
\(417\) 0 0
\(418\) 114720. + 198701.i 0.0321143 + 0.0556236i
\(419\) 69510.0 + 120395.i 0.0193425 + 0.0335022i 0.875535 0.483155i \(-0.160509\pi\)
−0.856192 + 0.516658i \(0.827176\pi\)
\(420\) 0 0
\(421\) −2.16372e6 + 3.74766e6i −0.594970 + 1.03052i 0.398581 + 0.917133i \(0.369503\pi\)
−0.993551 + 0.113385i \(0.963831\pi\)
\(422\) 4.58824e6 1.25419
\(423\) 0 0
\(424\) −2.00102e6 −0.540552
\(425\) −254817. + 441356.i −0.0684315 + 0.118527i
\(426\) 0 0
\(427\) 2.73592e6 + 4.73875e6i 0.726162 + 1.25775i
\(428\) 1.82390e6 + 3.15909e6i 0.481274 + 0.833591i
\(429\) 0 0
\(430\) 1.75771e6 3.04445e6i 0.458434 0.794031i
\(431\) 2.79936e6 0.725881 0.362941 0.931812i \(-0.381773\pi\)
0.362941 + 0.931812i \(0.381773\pi\)
\(432\) 0 0
\(433\) −5.90241e6 −1.51290 −0.756449 0.654052i \(-0.773068\pi\)
−0.756449 + 0.654052i \(0.773068\pi\)
\(434\) −1.26438e6 + 2.18998e6i −0.322222 + 0.558104i
\(435\) 0 0
\(436\) 68240.0 + 118195.i 0.0171919 + 0.0297772i
\(437\) 286800. + 496752.i 0.0718415 + 0.124433i
\(438\) 0 0
\(439\) 223256. 386691.i 0.0552894 0.0957640i −0.837056 0.547117i \(-0.815725\pi\)
0.892345 + 0.451353i \(0.149059\pi\)
\(440\) −253440. −0.0624085
\(441\) 0 0
\(442\) 1.08965e6 0.265296
\(443\) 1.74763e6 3.02698e6i 0.423096 0.732824i −0.573144 0.819454i \(-0.694277\pi\)
0.996241 + 0.0866303i \(0.0276099\pi\)
\(444\) 0 0
\(445\) −1.08049e6 1.87146e6i −0.258654 0.448002i
\(446\) 1.40392e6 + 2.43166e6i 0.334199 + 0.578850i
\(447\) 0 0
\(448\) −360448. + 624314.i −0.0848492 + 0.146963i
\(449\) 1.20613e6 0.282343 0.141171 0.989985i \(-0.454913\pi\)
0.141171 + 0.989985i \(0.454913\pi\)
\(450\) 0 0
\(451\) −1.15164e6 −0.266609
\(452\) −1.56350e6 + 2.70807e6i −0.359959 + 0.623467i
\(453\) 0 0
\(454\) −2.47222e6 4.28200e6i −0.562920 0.975006i
\(455\) 3.82166e6 + 6.61932e6i 0.865414 + 1.49894i
\(456\) 0 0
\(457\) −116773. + 202257.i −0.0261548 + 0.0453015i −0.878807 0.477178i \(-0.841660\pi\)
0.852652 + 0.522480i \(0.174993\pi\)
\(458\) −423320. −0.0942986
\(459\) 0 0
\(460\) −633600. −0.139611
\(461\) −872445. + 1.51112e6i −0.191199 + 0.331166i −0.945648 0.325192i \(-0.894571\pi\)
0.754449 + 0.656359i \(0.227904\pi\)
\(462\) 0 0
\(463\) 1.45893e6 + 2.52694e6i 0.316288 + 0.547827i 0.979710 0.200418i \(-0.0642301\pi\)
−0.663423 + 0.748245i \(0.730897\pi\)
\(464\) 713472. + 1.23577e6i 0.153845 + 0.266466i
\(465\) 0 0
\(466\) 877356. 1.51963e6i 0.187159 0.324169i
\(467\) 5.31076e6 1.12684 0.563422 0.826169i \(-0.309484\pi\)
0.563422 + 0.826169i \(0.309484\pi\)
\(468\) 0 0
\(469\) −2.95750e6 −0.620859
\(470\) 2.59776e6 4.49945e6i 0.542443 0.939539i
\(471\) 0 0
\(472\) −842880. 1.45991e6i −0.174145 0.301628i
\(473\) −399480. 691920.i −0.0820998 0.142201i
\(474\) 0 0
\(475\) −588418. + 1.01917e6i −0.119661 + 0.207259i
\(476\) 1.16582e6 0.235839
\(477\) 0 0
\(478\) 113856. 0.0227922
\(479\) 1.17233e6 2.03053e6i 0.233459 0.404363i −0.725365 0.688365i \(-0.758329\pi\)
0.958824 + 0.284002i \(0.0916622\pi\)
\(480\) 0 0
\(481\) −2.78268e6 4.81975e6i −0.548404 0.949864i
\(482\) 1.78512e6 + 3.09193e6i 0.349986 + 0.606194i
\(483\) 0 0
\(484\) 1.25961e6 2.18171e6i 0.244412 0.423333i
\(485\) 1.09614e7 2.11598
\(486\) 0 0
\(487\) 9.81531e6 1.87535 0.937674 0.347517i \(-0.112975\pi\)
0.937674 + 0.347517i \(0.112975\pi\)
\(488\) −994880. + 1.72318e6i −0.189113 + 0.327553i
\(489\) 0 0
\(490\) 1.87031e6 + 3.23947e6i 0.351903 + 0.609514i
\(491\) −2.97260e6 5.14869e6i −0.556458 0.963814i −0.997788 0.0664690i \(-0.978827\pi\)
0.441330 0.897345i \(-0.354507\pi\)
\(492\) 0 0
\(493\) 1.15382e6 1.99847e6i 0.213806 0.370323i
\(494\) 2.51619e6 0.463902
\(495\) 0 0
\(496\) −919552. −0.167831
\(497\) 538560. 932813.i 0.0978010 0.169396i
\(498\) 0 0
\(499\) −3.23916e6 5.61039e6i −0.582346 1.00865i −0.995201 0.0978554i \(-0.968802\pi\)
0.412855 0.910797i \(-0.364532\pi\)
\(500\) 1.00003e6 + 1.73211e6i 0.178891 + 0.309849i
\(501\) 0 0
\(502\) 220248. 381481.i 0.0390079 0.0675637i
\(503\) −4.71794e6 −0.831444 −0.415722 0.909492i \(-0.636471\pi\)
−0.415722 + 0.909492i \(0.636471\pi\)
\(504\) 0 0
\(505\) 1.45213e6 0.253383
\(506\) −72000.0 + 124708.i −0.0125013 + 0.0216529i
\(507\) 0 0
\(508\) −1.38400e6 2.39716e6i −0.237945 0.412133i
\(509\) −953853. 1.65212e6i −0.163188 0.282649i 0.772823 0.634622i \(-0.218844\pi\)
−0.936010 + 0.351973i \(0.885511\pi\)
\(510\) 0 0
\(511\) 2.24910e6 3.89556e6i 0.381028 0.659960i
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 563208. 0.0940288
\(515\) 2.61571e6 4.53055e6i 0.434582 0.752718i
\(516\) 0 0
\(517\) −590400. 1.02260e6i −0.0971449 0.168260i
\(518\) −2.97722e6 5.15669e6i −0.487513 0.844397i
\(519\) 0 0
\(520\) −1.38970e6 + 2.40702e6i −0.225378 + 0.390366i
\(521\) −8.01974e6 −1.29439 −0.647196 0.762324i \(-0.724059\pi\)
−0.647196 + 0.762324i \(0.724059\pi\)
\(522\) 0 0
\(523\) 1.91162e6 0.305596 0.152798 0.988257i \(-0.451172\pi\)
0.152798 + 0.988257i \(0.451172\pi\)
\(524\) 1.21008e6 2.09592e6i 0.192524 0.333462i
\(525\) 0 0
\(526\) 1.87752e6 + 3.25196e6i 0.295883 + 0.512485i
\(527\) 743544. + 1.28786e6i 0.116622 + 0.201995i
\(528\) 0 0
\(529\) 3.03817e6 5.26227e6i 0.472034 0.817587i
\(530\) −8.25422e6 −1.27640
\(531\) 0 0
\(532\) 2.69210e6 0.412393
\(533\) −6.31483e6 + 1.09376e7i −0.962816 + 1.66765i
\(534\) 0 0
\(535\) 7.52360e6 + 1.30313e7i 1.13643 + 1.96835i
\(536\) −537728. 931372.i −0.0808445 0.140027i
\(537\) 0 0
\(538\) 2.22901e6 3.86076e6i 0.332014 0.575066i
\(539\) 850140. 0.126043
\(540\) 0 0
\(541\) −1.19900e7 −1.76128 −0.880639 0.473788i \(-0.842886\pi\)
−0.880639 + 0.473788i \(0.842886\pi\)
\(542\) 1.13541e6 1.96658e6i 0.166017 0.287551i
\(543\) 0 0
\(544\) 211968. + 367139.i 0.0307095 + 0.0531905i
\(545\) 281490. + 487555.i 0.0405949 + 0.0703125i
\(546\) 0 0
\(547\) −2.22905e6 + 3.86082e6i −0.318530 + 0.551711i −0.980182 0.198101i \(-0.936523\pi\)
0.661651 + 0.749812i \(0.269856\pi\)
\(548\) 2.05526e6 0.292359
\(549\) 0 0
\(550\) −295440. −0.0416450
\(551\) 2.66437e6 4.61483e6i 0.373866 0.647555i
\(552\) 0 0
\(553\) −6.54790e6 1.13413e7i −0.910520 1.57707i
\(554\) −2.42652e6 4.20285e6i −0.335899 0.581794i
\(555\) 0 0
\(556\) −1.23357e6 + 2.13660e6i −0.169230 + 0.293114i
\(557\) −9.02612e6 −1.23272 −0.616358 0.787466i \(-0.711393\pi\)
−0.616358 + 0.787466i \(0.711393\pi\)
\(558\) 0 0
\(559\) −8.76193e6 −1.18596
\(560\) −1.48685e6 + 2.57530e6i −0.200353 + 0.347022i
\(561\) 0 0
\(562\) −1.37548e6 2.38239e6i −0.183701 0.318180i
\(563\) 3.42449e6 + 5.93140e6i 0.455329 + 0.788653i 0.998707 0.0508350i \(-0.0161883\pi\)
−0.543378 + 0.839488i \(0.682855\pi\)
\(564\) 0 0
\(565\) −6.44945e6 + 1.11708e7i −0.849967 + 1.47219i
\(566\) 3.32363e6 0.436086
\(567\) 0 0
\(568\) 391680. 0.0509402
\(569\) −2.73161e6 + 4.73129e6i −0.353703 + 0.612631i −0.986895 0.161364i \(-0.948411\pi\)
0.633192 + 0.773994i \(0.281744\pi\)
\(570\) 0 0
\(571\) 5.11619e6 + 8.86150e6i 0.656684 + 1.13741i 0.981469 + 0.191622i \(0.0613748\pi\)
−0.324785 + 0.945788i \(0.605292\pi\)
\(572\) 315840. + 547051.i 0.0403624 + 0.0699097i
\(573\) 0 0
\(574\) −6.75629e6 + 1.17022e7i −0.855911 + 1.48248i
\(575\) −738600. −0.0931622
\(576\) 0 0
\(577\) 1.59437e7 1.99365 0.996825 0.0796186i \(-0.0253702\pi\)
0.996825 + 0.0796186i \(0.0253702\pi\)
\(578\) −2.49692e6 + 4.32480e6i −0.310875 + 0.538451i
\(579\) 0 0
\(580\) 2.94307e6 + 5.09755e6i 0.363271 + 0.629204i
\(581\) −569184. 985856.i −0.0699540 0.121164i
\(582\) 0 0
\(583\) −937980. + 1.62463e6i −0.114294 + 0.197962i
\(584\) 1.63571e6 0.198461
\(585\) 0 0
\(586\) −5.25050e6 −0.631622
\(587\) −4.73857e6 + 8.20744e6i −0.567612 + 0.983133i 0.429189 + 0.903215i \(0.358799\pi\)
−0.996801 + 0.0799185i \(0.974534\pi\)
\(588\) 0 0
\(589\) 1.71698e6 + 2.97389e6i 0.203928 + 0.353213i
\(590\) −3.47688e6 6.02213e6i −0.411206 0.712230i
\(591\) 0 0
\(592\) 1.08262e6 1.87516e6i 0.126962 0.219904i
\(593\) −2.45349e6 −0.286515 −0.143258 0.989685i \(-0.545758\pi\)
−0.143258 + 0.989685i \(0.545758\pi\)
\(594\) 0 0
\(595\) 4.80902e6 0.556884
\(596\) 235632. 408127.i 0.0271718 0.0470630i
\(597\) 0 0
\(598\) 789600. + 1.36763e6i 0.0902930 + 0.156392i
\(599\) −4.64989e6 8.05385e6i −0.529512 0.917142i −0.999407 0.0344196i \(-0.989042\pi\)
0.469895 0.882722i \(-0.344292\pi\)
\(600\) 0 0
\(601\) 5.73085e6 9.92613e6i 0.647192 1.12097i −0.336599 0.941648i \(-0.609277\pi\)
0.983791 0.179321i \(-0.0573900\pi\)
\(602\) −9.37446e6 −1.05428
\(603\) 0 0
\(604\) −3.26195e6 −0.363819
\(605\) 5.19588e6 8.99953e6i 0.577126 0.999612i
\(606\) 0 0
\(607\) −5.63919e6 9.76736e6i −0.621219 1.07598i −0.989259 0.146173i \(-0.953304\pi\)
0.368040 0.929810i \(-0.380029\pi\)
\(608\) 489472. + 847790.i 0.0536993 + 0.0930100i
\(609\) 0 0
\(610\) −4.10388e6 + 7.10813e6i −0.446550 + 0.773447i
\(611\) −1.29494e7 −1.40329
\(612\) 0 0
\(613\) 93782.0 0.0100802 0.00504009 0.999987i \(-0.498396\pi\)
0.00504009 + 0.999987i \(0.498396\pi\)
\(614\) 3.38044e6 5.85509e6i 0.361870 0.626777i
\(615\) 0 0
\(616\) 337920. + 585295.i 0.0358808 + 0.0621474i
\(617\) −7.48208e6 1.29593e7i −0.791242 1.37047i −0.925198 0.379484i \(-0.876102\pi\)
0.133957 0.990987i \(-0.457232\pi\)
\(618\) 0 0
\(619\) 2.53444e6 4.38978e6i 0.265861 0.460485i −0.701928 0.712248i \(-0.747677\pi\)
0.967789 + 0.251763i \(0.0810104\pi\)
\(620\) −3.79315e6 −0.396297
\(621\) 0 0
\(622\) −6.00816e6 −0.622681
\(623\) −2.88130e6 + 4.99055e6i −0.297418 + 0.515144i
\(624\) 0 0
\(625\) 6.04857e6 + 1.04764e7i 0.619374 + 1.07279i
\(626\) 1.62168e6 + 2.80884e6i 0.165398 + 0.286478i
\(627\) 0 0
\(628\) −1.08914e6 + 1.88644e6i −0.110200 + 0.190873i
\(629\) −3.50161e6 −0.352892
\(630\) 0 0
\(631\) 1.55919e7 1.55892 0.779462 0.626450i \(-0.215493\pi\)
0.779462 + 0.626450i \(0.215493\pi\)
\(632\) 2.38106e6 4.12411e6i 0.237125 0.410712i
\(633\) 0 0
\(634\) −1.80712e6 3.13002e6i −0.178551 0.309260i
\(635\) −5.70900e6 9.88828e6i −0.561857 0.973165i
\(636\) 0 0
\(637\) 4.66160e6 8.07413e6i 0.455184 0.788401i
\(638\) 1.33776e6 0.130115
\(639\) 0 0
\(640\) −1.08134e6 −0.104355
\(641\) 5.48506e6 9.50041e6i 0.527274 0.913266i −0.472220 0.881481i \(-0.656547\pi\)
0.999495 0.0317855i \(-0.0101193\pi\)
\(642\) 0 0
\(643\) 1.41852e6 + 2.45695e6i 0.135303 + 0.234352i 0.925713 0.378226i \(-0.123466\pi\)
−0.790410 + 0.612578i \(0.790132\pi\)
\(644\) 844800. + 1.46324e6i 0.0802674 + 0.139027i
\(645\) 0 0
\(646\) 791568. 1.37104e6i 0.0746289 0.129261i
\(647\) 6.05686e6 0.568835 0.284418 0.958700i \(-0.408200\pi\)
0.284418 + 0.958700i \(0.408200\pi\)
\(648\) 0 0
\(649\) −1.58040e6 −0.147284
\(650\) −1.62000e6 + 2.80592e6i −0.150394 + 0.260490i
\(651\) 0 0
\(652\) 1.36899e6 + 2.37116e6i 0.126119 + 0.218445i
\(653\) −544461. 943034.i −0.0499671 0.0865455i 0.839960 0.542648i \(-0.182578\pi\)
−0.889927 + 0.456103i \(0.849245\pi\)
\(654\) 0 0
\(655\) 4.99158e6 8.64567e6i 0.454606 0.787400i
\(656\) −4.91366e6 −0.445806
\(657\) 0 0
\(658\) −1.38547e7 −1.24748
\(659\) 3.70901e6 6.42420e6i 0.332694 0.576243i −0.650345 0.759639i \(-0.725376\pi\)
0.983039 + 0.183396i \(0.0587091\pi\)
\(660\) 0 0
\(661\) −383827. 664808.i −0.0341690 0.0591824i 0.848435 0.529299i \(-0.177545\pi\)
−0.882604 + 0.470117i \(0.844212\pi\)
\(662\) 2.24394e6 + 3.88663e6i 0.199006 + 0.344689i
\(663\) 0 0
\(664\) 206976. 358493.i 0.0182180 0.0315544i
\(665\) 1.11049e7 0.973779
\(666\) 0 0
\(667\) 3.34440e6 0.291074
\(668\) −5.40960e6 + 9.36970e6i −0.469055 + 0.812428i
\(669\) 0 0
\(670\) −2.21813e6 3.84191e6i −0.190897 0.330644i
\(671\) 932700. + 1.61548e6i 0.0799716 + 0.138515i
\(672\) 0 0
\(673\) −711313. + 1.23203e6i −0.0605373 + 0.104854i −0.894706 0.446656i \(-0.852615\pi\)
0.834168 + 0.551510i \(0.185948\pi\)
\(674\) 1.10087e7 0.933439
\(675\) 0 0
\(676\) 986736. 0.0830490
\(677\) −3.08115e6 + 5.33671e6i −0.258370 + 0.447509i −0.965805 0.259268i \(-0.916519\pi\)
0.707436 + 0.706778i \(0.249852\pi\)
\(678\) 0 0
\(679\) −1.46152e7 2.53143e7i −1.21655 2.10713i
\(680\) 874368. + 1.51445e6i 0.0725140 + 0.125598i
\(681\) 0 0
\(682\) −431040. + 746583.i −0.0354860 + 0.0614635i
\(683\) −1.50621e7 −1.23548 −0.617739 0.786383i \(-0.711951\pi\)
−0.617739 + 0.786383i \(0.711951\pi\)
\(684\) 0 0
\(685\) 8.47796e6 0.690343
\(686\) −928576. + 1.60834e6i −0.0753368 + 0.130487i
\(687\) 0 0
\(688\) −1.70445e6 2.95219e6i −0.137282 0.237779i
\(689\) 1.02865e7 + 1.78168e7i 0.825506 + 1.42982i
\(690\) 0 0
\(691\) 2.93818e6 5.08907e6i 0.234090 0.405456i −0.724918 0.688835i \(-0.758122\pi\)
0.959008 + 0.283380i \(0.0914556\pi\)
\(692\) −2.13053e6 −0.169131
\(693\) 0 0
\(694\) 7.66997e6 0.604498
\(695\) −5.08847e6 + 8.81349e6i −0.399600 + 0.692127i
\(696\) 0 0
\(697\) 3.97316e6 + 6.88171e6i 0.309780 + 0.536555i
\(698\) 3.67318e6 + 6.36213e6i 0.285367 + 0.494270i
\(699\) 0 0
\(700\) −1.73325e6 + 3.00207e6i −0.133695 + 0.231567i
\(701\) −3.60077e6 −0.276758 −0.138379 0.990379i \(-0.544189\pi\)
−0.138379 + 0.990379i \(0.544189\pi\)
\(702\) 0 0
\(703\) −8.08585e6 −0.617074
\(704\) −122880. + 212834.i −0.00934436 + 0.0161849i
\(705\) 0 0
\(706\) 1.24403e6 + 2.15472e6i 0.0939330 + 0.162697i
\(707\) −1.93618e6 3.35356e6i −0.145679 0.252323i
\(708\) 0 0
\(709\) −4.61258e6 + 7.98922e6i −0.344610 + 0.596883i −0.985283 0.170932i \(-0.945322\pi\)
0.640673 + 0.767814i \(0.278656\pi\)
\(710\) 1.61568e6 0.120284
\(711\) 0 0
\(712\) −2.09549e6 −0.154912
\(713\) −1.07760e6 + 1.86646e6i −0.0793841 + 0.137497i
\(714\) 0 0
\(715\) 1.30284e6 + 2.25659e6i 0.0953073 + 0.165077i
\(716\) −5.54717e6 9.60798e6i −0.404379 0.700405i
\(717\) 0 0
\(718\) −7.48123e6 + 1.29579e7i −0.541579 + 0.938043i
\(719\) 2.63923e7 1.90395 0.951975 0.306177i \(-0.0990500\pi\)
0.951975 + 0.306177i \(0.0990500\pi\)
\(720\) 0 0
\(721\) −1.39505e7 −0.999426
\(722\) −3.12433e6 + 5.41149e6i −0.223056 + 0.386344i
\(723\) 0 0
\(724\) −3.01739e6 5.22628e6i −0.213937 0.370549i
\(725\) 3.43080e6 + 5.94231e6i 0.242410 + 0.419866i
\(726\) 0 0
\(727\) 4.89742e6 8.48259e6i 0.343662 0.595240i −0.641448 0.767167i \(-0.721666\pi\)
0.985110 + 0.171927i \(0.0549992\pi\)
\(728\) 7.41171e6 0.518311
\(729\) 0 0
\(730\) 6.74731e6 0.468623
\(731\) −2.75641e6 + 4.77425e6i −0.190788 + 0.330454i
\(732\) 0 0
\(733\) −2.03792e6 3.52978e6i −0.140096 0.242654i 0.787436 0.616396i \(-0.211408\pi\)
−0.927533 + 0.373742i \(0.878075\pi\)
\(734\) 32464.0 + 56229.3i 0.00222414 + 0.00385232i
\(735\) 0 0
\(736\) −307200. + 532086.i −0.0209039 + 0.0362066i
\(737\) −1.00824e6 −0.0683747
\(738\) 0 0
\(739\) −1.65709e7 −1.11618 −0.558089 0.829781i \(-0.688465\pi\)
−0.558089 + 0.829781i \(0.688465\pi\)
\(740\) 4.46582e6 7.73503e6i 0.299794 0.519258i
\(741\) 0 0
\(742\) 1.10056e7 + 1.90623e7i 0.733846 + 1.27106i
\(743\) 7.20707e6 + 1.24830e7i 0.478946 + 0.829559i 0.999709 0.0241427i \(-0.00768562\pi\)
−0.520762 + 0.853702i \(0.674352\pi\)
\(744\) 0 0
\(745\) 971982. 1.68352e6i 0.0641605 0.111129i
\(746\) −1.17442e6 −0.0772641
\(747\) 0 0
\(748\) 397440. 0.0259727
\(749\) 2.00629e7 3.47500e7i 1.30674 2.26334i
\(750\) 0 0
\(751\) −8.39722e6 1.45444e7i −0.543295 0.941015i −0.998712 0.0507363i \(-0.983843\pi\)
0.455417 0.890278i \(-0.349490\pi\)
\(752\) −2.51904e6 4.36311e6i −0.162439 0.281353i
\(753\) 0 0
\(754\) 7.33538e6 1.27053e7i 0.469888 0.813870i
\(755\) −1.34556e7 −0.859081
\(756\) 0 0
\(757\) 1.32943e7 0.843188 0.421594 0.906785i \(-0.361471\pi\)
0.421594 + 0.906785i \(0.361471\pi\)
\(758\) 6.36023e6 1.10162e7i 0.402068 0.696403i
\(759\) 0 0
\(760\) 2.01907e6 + 3.49714e6i 0.126800 + 0.219623i
\(761\) −1.07393e6 1.86010e6i −0.0672225 0.116433i 0.830455 0.557085i \(-0.188080\pi\)
−0.897678 + 0.440653i \(0.854747\pi\)
\(762\) 0 0
\(763\) 750640. 1.30015e6i 0.0466789 0.0808502i
\(764\) 4.24550e6 0.263145
\(765\) 0 0
\(766\) −1.19194e7 −0.733975
\(767\) −8.66586e6 + 1.50097e7i −0.531892 + 0.921264i
\(768\) 0 0
\(769\) 6.55296e6 + 1.13501e7i 0.399596 + 0.692121i 0.993676 0.112285i \(-0.0358169\pi\)
−0.594080 + 0.804406i \(0.702484\pi\)
\(770\) 1.39392e6 + 2.41434e6i 0.0847249 + 0.146748i
\(771\) 0 0
\(772\) −2.36238e6 + 4.09177e6i −0.142662 + 0.247097i
\(773\) 2.37154e7 1.42752 0.713759 0.700392i \(-0.246991\pi\)
0.713759 + 0.700392i \(0.246991\pi\)
\(774\) 0 0
\(775\) −4.42175e6 −0.264448
\(776\) 5.31462e6 9.20520e6i 0.316824 0.548755i
\(777\) 0 0
\(778\) −6.91955e6 1.19850e7i −0.409854 0.709887i
\(779\) 9.17473e6 + 1.58911e7i 0.541689 + 0.938232i
\(780\) 0 0
\(781\) 183600. 318005.i 0.0107707 0.0186554i
\(782\) 993600. 0.0581025
\(783\) 0 0
\(784\) 3.62726e6 0.210760
\(785\) −4.49269e6 + 7.78156e6i −0.260215 + 0.450705i
\(786\) 0 0
\(787\) 4.20024e6 + 7.27503e6i 0.241734 + 0.418695i 0.961208 0.275824i \(-0.0889506\pi\)
−0.719474 + 0.694519i \(0.755617\pi\)
\(788\) 1.61035e6 + 2.78921e6i 0.0923858 + 0.160017i
\(789\) 0 0
\(790\) 9.82186e6 1.70120e7i 0.559920 0.969810i
\(791\) 3.43971e7 1.95470
\(792\) 0 0
\(793\) 2.04572e7 1.15522
\(794\) −7.80832e6 + 1.35244e7i −0.439548 + 0.761320i
\(795\) 0 0
\(796\) −5.21958e6 9.04058e6i −0.291980 0.505724i
\(797\) 2.70512e6 + 4.68540e6i 0.150848 + 0.261277i 0.931539 0.363640i \(-0.118466\pi\)
−0.780691 + 0.624917i \(0.785133\pi\)
\(798\) 0 0
\(799\) −4.07376e6 + 7.05596e6i −0.225750 + 0.391011i
\(800\) −1.26054e6 −0.0696359
\(801\) 0 0
\(802\) 2.17646e7 1.19485
\(803\) 766740. 1.32803e6i 0.0419623 0.0726808i
\(804\) 0 0
\(805\) 3.48480e6 + 6.03585e6i 0.189534 + 0.328283i
\(806\) 4.72707e6 + 8.18753e6i 0.256304 + 0.443931i
\(807\) 0 0
\(808\) 704064. 1.21947e6i 0.0379388 0.0657120i
\(809\) 2.60777e7 1.40087 0.700436 0.713715i \(-0.252989\pi\)
0.700436 + 0.713715i \(0.252989\pi\)
\(810\) 0 0
\(811\) 1.90021e7 1.01449 0.507247 0.861800i \(-0.330663\pi\)
0.507247 + 0.861800i \(0.330663\pi\)
\(812\) 7.84819e6 1.35935e7i 0.417714 0.723503i
\(813\) 0 0
\(814\) −1.01496e6 1.75796e6i −0.0536893 0.0929926i
\(815\) 5.64709e6 + 9.78105e6i 0.297804 + 0.515812i
\(816\) 0 0
\(817\) −6.36505e6 + 1.10246e7i −0.333616 + 0.577839i
\(818\) −7.87978e6 −0.411748
\(819\) 0 0
\(820\) −2.02689e7 −1.05268
\(821\) −1.55086e7 + 2.68618e7i −0.803001 + 1.39084i 0.114632 + 0.993408i \(0.463431\pi\)
−0.917633 + 0.397430i \(0.869902\pi\)
\(822\) 0 0
\(823\) 7.81448e6 + 1.35351e7i 0.402162 + 0.696564i 0.993987 0.109502i \(-0.0349257\pi\)
−0.591825 + 0.806066i \(0.701592\pi\)
\(824\) −2.53645e6 4.39326e6i −0.130139 0.225408i
\(825\) 0 0
\(826\) −9.27168e6 + 1.60590e7i −0.472834 + 0.818972i
\(827\) −1.58421e7 −0.805467 −0.402733 0.915317i \(-0.631940\pi\)
−0.402733 + 0.915317i \(0.631940\pi\)
\(828\) 0 0
\(829\) 2.06176e6 0.104196 0.0520980 0.998642i \(-0.483409\pi\)
0.0520980 + 0.998642i \(0.483409\pi\)
\(830\) 853776. 1.47878e6i 0.0430179 0.0745091i
\(831\) 0 0
\(832\) 1.34758e6 + 2.33408e6i 0.0674913 + 0.116898i
\(833\) −2.93298e6 5.08008e6i −0.146453 0.253663i
\(834\) 0 0
\(835\) −2.23146e7 + 3.86500e7i −1.10757 + 1.91838i
\(836\) 917760. 0.0454165
\(837\) 0 0
\(838\) 556080. 0.0273544
\(839\) 1.51950e7 2.63185e7i 0.745240 1.29079i −0.204843 0.978795i \(-0.565668\pi\)
0.950083 0.311999i \(-0.100998\pi\)
\(840\) 0 0
\(841\) −5.27916e6 9.14378e6i −0.257380 0.445796i
\(842\) 8.65486e6 + 1.49907e7i 0.420707 + 0.728686i
\(843\) 0 0
\(844\) 9.17648e6 1.58941e7i 0.443425 0.768034i
\(845\) 4.07029e6 0.196103
\(846\) 0 0
\(847\) −2.77114e7 −1.32724
\(848\) −4.00205e6 + 6.93175e6i −0.191114 + 0.331019i
\(849\) 0 0
\(850\) 1.01927e6 + 1.76542e6i 0.0483884 + 0.0838111i
\(851\) −2.53740e6 4.39491e6i −0.120106 0.208030i
\(852\) 0 0
\(853\) 1.48869e7 2.57849e7i 0.700538 1.21337i −0.267740 0.963491i \(-0.586277\pi\)
0.968278 0.249876i \(-0.0803898\pi\)
\(854\) 2.18874e7 1.02695
\(855\) 0 0
\(856\) 1.45912e7 0.680624
\(857\) 4.32050e6 7.48333e6i 0.200947 0.348051i −0.747887 0.663826i \(-0.768931\pi\)
0.948834 + 0.315776i \(0.102265\pi\)
\(858\) 0 0
\(859\) 1.67831e7 + 2.90693e7i 0.776051 + 1.34416i 0.934202 + 0.356745i \(0.116114\pi\)
−0.158151 + 0.987415i \(0.550553\pi\)
\(860\) −7.03085e6 1.21778e7i −0.324162 0.561464i
\(861\) 0 0
\(862\) 5.59872e6 9.69727e6i 0.256638 0.444510i
\(863\) −3.90191e7 −1.78341 −0.891703 0.452621i \(-0.850489\pi\)
−0.891703 + 0.452621i \(0.850489\pi\)
\(864\) 0 0
\(865\) −8.78843e6 −0.399366
\(866\) −1.18048e7 + 2.04466e7i −0.534891 + 0.926458i
\(867\) 0 0
\(868\) 5.05754e6 + 8.75991e6i 0.227845 + 0.394639i
\(869\) −2.23224e6 3.86635e6i −0.100275 0.173681i
\(870\) 0 0
\(871\) −5.52852e6 + 9.57567e6i −0.246924 + 0.427685i
\(872\) 545920. 0.0243130
\(873\) 0 0
\(874\) 2.29440e6 0.101599
\(875\) 1.10004e7 1.90532e7i 0.485721 0.841293i
\(876\) 0 0
\(877\) 9.06909e6 + 1.57081e7i 0.398166 + 0.689645i 0.993500 0.113834i \(-0.0363133\pi\)
−0.595333 + 0.803479i \(0.702980\pi\)
\(878\) −893024. 1.54676e6i −0.0390955 0.0677154i
\(879\) 0 0
\(880\) −506880. + 877942.i −0.0220647 + 0.0382172i
\(881\) −3.05312e7 −1.32527 −0.662634 0.748943i \(-0.730562\pi\)
−0.662634 + 0.748943i \(0.730562\pi\)
\(882\) 0 0
\(883\) −4.35533e7 −1.87983 −0.939916 0.341405i \(-0.889097\pi\)
−0.939916 + 0.341405i \(0.889097\pi\)
\(884\) 2.17930e6 3.77465e6i 0.0937963 0.162460i
\(885\) 0 0
\(886\) −6.99050e6 1.21079e7i −0.299174 0.518185i
\(887\) −6.70758e6 1.16179e7i −0.286257 0.495812i 0.686656 0.726983i \(-0.259078\pi\)
−0.972913 + 0.231170i \(0.925745\pi\)
\(888\) 0 0
\(889\) −1.52240e7 + 2.63687e7i −0.646062 + 1.11901i
\(890\) −8.64389e6 −0.365792
\(891\) 0 0
\(892\) 1.12314e7 0.472629
\(893\) −9.40704e6 + 1.62935e7i −0.394752 + 0.683731i
\(894\) 0 0
\(895\) −2.28821e7 3.96329e7i −0.954856 1.65386i
\(896\) 1.44179e6 + 2.49726e6i 0.0599974 + 0.103919i
\(897\) 0 0
\(898\) 2.41225e6 4.17814e6i 0.0998233 0.172899i
\(899\) 2.00218e7 0.826236
\(900\) 0 0
\(901\) 1.29441e7 0.531203
\(902\) −2.30328e6 + 3.98940e6i −0.0942606 + 0.163264i
\(903\) 0 0
\(904\) 6.25402e6 + 1.08323e7i 0.254529 + 0.440858i
\(905\) −1.24467e7 2.15584e7i −0.505166 0.874973i
\(906\) 0 0
\(907\) −1.55408e6 + 2.69175e6i −0.0627272 + 0.108647i −0.895684 0.444692i \(-0.853313\pi\)
0.832956 + 0.553339i \(0.186646\pi\)
\(908\) −1.97777e7 −0.796089
\(909\) 0 0
\(910\) 3.05733e7 1.22388
\(911\) 595176. 1.03088e6i 0.0237602 0.0411538i −0.853901 0.520436i \(-0.825770\pi\)
0.877661 + 0.479282i \(0.159103\pi\)
\(912\) 0 0
\(913\) −194040. 336087.i −0.00770397 0.0133437i
\(914\) 467092. + 809027.i 0.0184943 + 0.0320330i
\(915\) 0 0
\(916\) −846640. + 1.46642e6i −0.0333396 + 0.0577458i
\(917\) −2.66218e7 −1.04547
\(918\) 0 0
\(919\) −4.71996e7 −1.84353 −0.921764 0.387752i \(-0.873252\pi\)
−0.921764 + 0.387752i \(0.873252\pi\)
\(920\) −1.26720e6 + 2.19485e6i −0.0493601 + 0.0854941i
\(921\) 0 0
\(922\) 3.48978e6 + 6.04448e6i 0.135198 + 0.234170i
\(923\) −2.01348e6 3.48745e6i −0.0777935 0.134742i
\(924\) 0 0
\(925\) 5.20590e6 9.01688e6i 0.200051 0.346499i
\(926\) 1.16715e7 0.447299
\(927\) 0 0
\(928\) 5.70778e6 0.217569
\(929\) 667977. 1.15697e6i 0.0253935 0.0439828i −0.853049 0.521830i \(-0.825249\pi\)
0.878443 + 0.477847i \(0.158583\pi\)
\(930\) 0 0
\(931\) −6.77278e6 1.17308e7i −0.256090 0.443561i
\(932\) −3.50942e6 6.07850e6i −0.132342 0.229222i
\(933\) 0 0
\(934\) 1.06215e7 1.83970e7i 0.398400 0.690049i
\(935\) 1.63944e6 0.0613291
\(936\) 0 0
\(937\) 1.47238e7 0.547861 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(938\) −5.91501e6 + 1.02451e7i −0.219507 + 0.380197i
\(939\) 0 0
\(940\) −1.03910e7 1.79978e7i −0.383565 0.664355i
\(941\) −1.34598e7 2.33131e7i −0.495525 0.858274i 0.504462 0.863434i \(-0.331691\pi\)
−0.999987 + 0.00516005i \(0.998357\pi\)
\(942\) 0 0
\(943\) −5.75820e6 + 9.97349e6i −0.210866 + 0.365231i
\(944\) −6.74304e6 −0.246278
\(945\) 0 0
\(946\) −3.19584e6 −0.116107
\(947\) −1.86580e6 + 3.23166e6i −0.0676068 + 0.117098i −0.897847 0.440307i \(-0.854870\pi\)
0.830241 + 0.557405i \(0.188203\pi\)
\(948\) 0 0
\(949\) −8.40858e6 1.45641e7i −0.303080 0.524950i
\(950\) 2.35367e6 + 4.07668e6i 0.0846130 + 0.146554i
\(951\) 0 0
\(952\) 2.33165e6 4.03853e6i 0.0833817 0.144421i
\(953\) −2.18735e7 −0.780166 −0.390083 0.920780i \(-0.627554\pi\)
−0.390083 + 0.920780i \(0.627554\pi\)
\(954\) 0 0
\(955\) 1.75127e7 0.621362
\(956\) 227712. 394409.i 0.00805826 0.0139573i
\(957\) 0 0
\(958\) −4.68931e6 8.12213e6i −0.165080 0.285928i
\(959\) −1.13040e7 1.95790e7i −0.396902 0.687455i
\(960\) 0 0
\(961\) 7.86334e6 1.36197e7i 0.274662 0.475729i
\(962\) −2.22615e7 −0.775561
\(963\) 0 0
\(964\) 1.42810e7 0.494955
\(965\) −9.74483e6 + 1.68785e7i −0.336865 + 0.583468i
\(966\) 0 0
\(967\) −8.80125e6 1.52442e7i −0.302676 0.524250i 0.674065 0.738672i \(-0.264547\pi\)
−0.976741 + 0.214422i \(0.931213\pi\)
\(968\) −5.03843e6 8.72682e6i −0.172825 0.299342i
\(969\) 0 0
\(970\) 2.19228e7 3.79714e7i 0.748113 1.29577i
\(971\) −1.67317e7 −0.569497 −0.284749 0.958602i \(-0.591910\pi\)
−0.284749 + 0.958602i \(0.591910\pi\)
\(972\) 0 0
\(973\) 2.71385e7 0.918975
\(974\) 1.96306e7 3.40012e7i 0.663035 1.14841i
\(975\) 0 0
\(976\) 3.97952e6 + 6.89273e6i 0.133723 + 0.231615i
\(977\) 2.77691e7 + 4.80975e7i 0.930733 + 1.61208i 0.782071 + 0.623189i \(0.214163\pi\)
0.148662 + 0.988888i \(0.452503\pi\)
\(978\) 0 0
\(979\) −982260. + 1.70132e6i −0.0327544 + 0.0567323i
\(980\) 1.49625e7 0.497666
\(981\) 0 0
\(982\) −2.37808e7 −0.786951
\(983\) −1.93392e7 + 3.34965e7i −0.638344 + 1.10564i 0.347452 + 0.937698i \(0.387047\pi\)
−0.985796 + 0.167947i \(0.946286\pi\)
\(984\) 0 0
\(985\) 6.64270e6 + 1.15055e7i 0.218149 + 0.377846i
\(986\) −4.61527e6 7.99389e6i −0.151184 0.261858i
\(987\) 0 0
\(988\) 5.03238e6 8.71634e6i 0.164014 0.284081i
\(989\) −7.98960e6 −0.259737
\(990\) 0 0
\(991\) 9.58498e6 0.310033 0.155016 0.987912i \(-0.450457\pi\)
0.155016 + 0.987912i \(0.450457\pi\)
\(992\) −1.83910e6 + 3.18542e6i −0.0593372 + 0.102775i
\(993\) 0 0
\(994\) −2.15424e6 3.73125e6i −0.0691557 0.119781i
\(995\) −2.15308e7 3.72924e7i −0.689449 1.19416i
\(996\) 0 0
\(997\) 5.18252e6 8.97638e6i 0.165121 0.285998i −0.771577 0.636136i \(-0.780532\pi\)
0.936698 + 0.350137i \(0.113865\pi\)
\(998\) −2.59133e7 −0.823561
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.6.c.h.55.1 2
3.2 odd 2 162.6.c.e.55.1 2
9.2 odd 6 6.6.a.a.1.1 1
9.4 even 3 inner 162.6.c.h.109.1 2
9.5 odd 6 162.6.c.e.109.1 2
9.7 even 3 18.6.a.b.1.1 1
36.7 odd 6 144.6.a.j.1.1 1
36.11 even 6 48.6.a.c.1.1 1
45.2 even 12 150.6.c.b.49.2 2
45.7 odd 12 450.6.c.j.199.1 2
45.29 odd 6 150.6.a.d.1.1 1
45.34 even 6 450.6.a.m.1.1 1
45.38 even 12 150.6.c.b.49.1 2
45.43 odd 12 450.6.c.j.199.2 2
63.2 odd 6 294.6.e.g.67.1 2
63.11 odd 6 294.6.e.g.79.1 2
63.20 even 6 294.6.a.m.1.1 1
63.34 odd 6 882.6.a.a.1.1 1
63.38 even 6 294.6.e.a.79.1 2
63.47 even 6 294.6.e.a.67.1 2
72.11 even 6 192.6.a.g.1.1 1
72.29 odd 6 192.6.a.o.1.1 1
72.43 odd 6 576.6.a.i.1.1 1
72.61 even 6 576.6.a.j.1.1 1
99.65 even 6 726.6.a.a.1.1 1
117.38 odd 6 1014.6.a.c.1.1 1
144.11 even 12 768.6.d.p.385.1 2
144.29 odd 12 768.6.d.c.385.1 2
144.83 even 12 768.6.d.p.385.2 2
144.101 odd 12 768.6.d.c.385.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.6.a.a.1.1 1 9.2 odd 6
18.6.a.b.1.1 1 9.7 even 3
48.6.a.c.1.1 1 36.11 even 6
144.6.a.j.1.1 1 36.7 odd 6
150.6.a.d.1.1 1 45.29 odd 6
150.6.c.b.49.1 2 45.38 even 12
150.6.c.b.49.2 2 45.2 even 12
162.6.c.e.55.1 2 3.2 odd 2
162.6.c.e.109.1 2 9.5 odd 6
162.6.c.h.55.1 2 1.1 even 1 trivial
162.6.c.h.109.1 2 9.4 even 3 inner
192.6.a.g.1.1 1 72.11 even 6
192.6.a.o.1.1 1 72.29 odd 6
294.6.a.m.1.1 1 63.20 even 6
294.6.e.a.67.1 2 63.47 even 6
294.6.e.a.79.1 2 63.38 even 6
294.6.e.g.67.1 2 63.2 odd 6
294.6.e.g.79.1 2 63.11 odd 6
450.6.a.m.1.1 1 45.34 even 6
450.6.c.j.199.1 2 45.7 odd 12
450.6.c.j.199.2 2 45.43 odd 12
576.6.a.i.1.1 1 72.43 odd 6
576.6.a.j.1.1 1 72.61 even 6
726.6.a.a.1.1 1 99.65 even 6
768.6.d.c.385.1 2 144.29 odd 12
768.6.d.c.385.2 2 144.101 odd 12
768.6.d.p.385.1 2 144.11 even 12
768.6.d.p.385.2 2 144.83 even 12
882.6.a.a.1.1 1 63.34 odd 6
1014.6.a.c.1.1 1 117.38 odd 6