Properties

Label 162.6.c.h
Level $162$
Weight $6$
Character orbit 162.c
Analytic conductor $25.982$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,6,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,0,-16,-66,0,-176] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 \zeta_{6} + 4) q^{2} - 16 \zeta_{6} q^{4} - 66 \zeta_{6} q^{5} + (176 \zeta_{6} - 176) q^{7} - 64 q^{8} - 264 q^{10} + (60 \zeta_{6} - 60) q^{11} + 658 \zeta_{6} q^{13} + 704 \zeta_{6} q^{14} + \cdots - 56676 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 16 q^{4} - 66 q^{5} - 176 q^{7} - 128 q^{8} - 528 q^{10} - 60 q^{11} + 658 q^{13} + 704 q^{14} - 256 q^{16} + 828 q^{17} + 1912 q^{19} - 1056 q^{20} + 240 q^{22} + 600 q^{23} - 1231 q^{25}+ \cdots - 113352 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 + 0.866025i
0.500000 0.866025i
2.00000 3.46410i 0 −8.00000 13.8564i −33.0000 57.1577i 0 −88.0000 + 152.420i −64.0000 0 −264.000
109.1 2.00000 + 3.46410i 0 −8.00000 + 13.8564i −33.0000 + 57.1577i 0 −88.0000 152.420i −64.0000 0 −264.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.6.c.h 2
3.b odd 2 1 162.6.c.e 2
9.c even 3 1 18.6.a.b 1
9.c even 3 1 inner 162.6.c.h 2
9.d odd 6 1 6.6.a.a 1
9.d odd 6 1 162.6.c.e 2
36.f odd 6 1 144.6.a.j 1
36.h even 6 1 48.6.a.c 1
45.h odd 6 1 150.6.a.d 1
45.j even 6 1 450.6.a.m 1
45.k odd 12 2 450.6.c.j 2
45.l even 12 2 150.6.c.b 2
63.i even 6 1 294.6.e.a 2
63.j odd 6 1 294.6.e.g 2
63.l odd 6 1 882.6.a.a 1
63.n odd 6 1 294.6.e.g 2
63.o even 6 1 294.6.a.m 1
63.s even 6 1 294.6.e.a 2
72.j odd 6 1 192.6.a.o 1
72.l even 6 1 192.6.a.g 1
72.n even 6 1 576.6.a.j 1
72.p odd 6 1 576.6.a.i 1
99.g even 6 1 726.6.a.a 1
117.n odd 6 1 1014.6.a.c 1
144.u even 12 2 768.6.d.p 2
144.w odd 12 2 768.6.d.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.6.a.a 1 9.d odd 6 1
18.6.a.b 1 9.c even 3 1
48.6.a.c 1 36.h even 6 1
144.6.a.j 1 36.f odd 6 1
150.6.a.d 1 45.h odd 6 1
150.6.c.b 2 45.l even 12 2
162.6.c.e 2 3.b odd 2 1
162.6.c.e 2 9.d odd 6 1
162.6.c.h 2 1.a even 1 1 trivial
162.6.c.h 2 9.c even 3 1 inner
192.6.a.g 1 72.l even 6 1
192.6.a.o 1 72.j odd 6 1
294.6.a.m 1 63.o even 6 1
294.6.e.a 2 63.i even 6 1
294.6.e.a 2 63.s even 6 1
294.6.e.g 2 63.j odd 6 1
294.6.e.g 2 63.n odd 6 1
450.6.a.m 1 45.j even 6 1
450.6.c.j 2 45.k odd 12 2
576.6.a.i 1 72.p odd 6 1
576.6.a.j 1 72.n even 6 1
726.6.a.a 1 99.g even 6 1
768.6.d.c 2 144.w odd 12 2
768.6.d.p 2 144.u even 12 2
882.6.a.a 1 63.l odd 6 1
1014.6.a.c 1 117.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 66T_{5} + 4356 \) acting on \(S_{6}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 66T + 4356 \) Copy content Toggle raw display
$7$ \( T^{2} + 176T + 30976 \) Copy content Toggle raw display
$11$ \( T^{2} + 60T + 3600 \) Copy content Toggle raw display
$13$ \( T^{2} - 658T + 432964 \) Copy content Toggle raw display
$17$ \( (T - 414)^{2} \) Copy content Toggle raw display
$19$ \( (T - 956)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 600T + 360000 \) Copy content Toggle raw display
$29$ \( T^{2} - 5574 T + 31069476 \) Copy content Toggle raw display
$31$ \( T^{2} - 3592 T + 12902464 \) Copy content Toggle raw display
$37$ \( (T + 8458)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 19194 T + 368409636 \) Copy content Toggle raw display
$43$ \( T^{2} + 13316 T + 177315856 \) Copy content Toggle raw display
$47$ \( T^{2} + 19680 T + 387302400 \) Copy content Toggle raw display
$53$ \( (T - 31266)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 26340 T + 693795600 \) Copy content Toggle raw display
$61$ \( T^{2} - 31090 T + 966588100 \) Copy content Toggle raw display
$67$ \( T^{2} - 16804 T + 282374416 \) Copy content Toggle raw display
$71$ \( (T + 6120)^{2} \) Copy content Toggle raw display
$73$ \( (T + 25558)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 5536550464 \) Copy content Toggle raw display
$83$ \( T^{2} + 6468 T + 41835024 \) Copy content Toggle raw display
$89$ \( (T - 32742)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 27583230724 \) Copy content Toggle raw display
show more
show less