Properties

Label 162.6.a.i.1.3
Level $162$
Weight $6$
Character 162.1
Self dual yes
Analytic conductor $25.982$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,6,Mod(1,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-12,0,48,-54,0,132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.125628.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 63x + 159 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(6.81933\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +66.0868 q^{5} +114.190 q^{7} -64.0000 q^{8} -264.347 q^{10} +385.625 q^{11} +1032.57 q^{13} -456.762 q^{14} +256.000 q^{16} -959.020 q^{17} -464.576 q^{19} +1057.39 q^{20} -1542.50 q^{22} -2303.41 q^{23} +1242.47 q^{25} -4130.30 q^{26} +1827.05 q^{28} -7098.27 q^{29} +7763.06 q^{31} -1024.00 q^{32} +3836.08 q^{34} +7546.48 q^{35} +9317.57 q^{37} +1858.31 q^{38} -4229.56 q^{40} +13323.3 q^{41} -2112.58 q^{43} +6169.99 q^{44} +9213.62 q^{46} -2494.80 q^{47} -3767.56 q^{49} -4969.88 q^{50} +16521.2 q^{52} +10044.2 q^{53} +25484.7 q^{55} -7308.18 q^{56} +28393.1 q^{58} -5440.66 q^{59} +34188.8 q^{61} -31052.2 q^{62} +4096.00 q^{64} +68239.6 q^{65} +53585.2 q^{67} -15344.3 q^{68} -30185.9 q^{70} +970.010 q^{71} -72400.3 q^{73} -37270.3 q^{74} -7433.22 q^{76} +44034.6 q^{77} +32197.7 q^{79} +16918.2 q^{80} -53293.1 q^{82} +36093.2 q^{83} -63378.6 q^{85} +8450.34 q^{86} -24680.0 q^{88} -42622.2 q^{89} +117910. q^{91} -36854.5 q^{92} +9979.21 q^{94} -30702.4 q^{95} -43853.9 q^{97} +15070.2 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} + 48 q^{4} - 54 q^{5} + 132 q^{7} - 192 q^{8} + 216 q^{10} - 315 q^{11} + 744 q^{13} - 528 q^{14} + 768 q^{16} - 1449 q^{17} + 1131 q^{19} - 864 q^{20} + 1260 q^{22} - 3168 q^{23} + 2883 q^{25}+ \cdots - 211428 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 66.0868 1.18220 0.591099 0.806599i \(-0.298694\pi\)
0.591099 + 0.806599i \(0.298694\pi\)
\(6\) 0 0
\(7\) 114.190 0.880814 0.440407 0.897798i \(-0.354834\pi\)
0.440407 + 0.897798i \(0.354834\pi\)
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −264.347 −0.835940
\(11\) 385.625 0.960911 0.480455 0.877019i \(-0.340471\pi\)
0.480455 + 0.877019i \(0.340471\pi\)
\(12\) 0 0
\(13\) 1032.57 1.69458 0.847292 0.531128i \(-0.178232\pi\)
0.847292 + 0.531128i \(0.178232\pi\)
\(14\) −456.762 −0.622830
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −959.020 −0.804832 −0.402416 0.915457i \(-0.631829\pi\)
−0.402416 + 0.915457i \(0.631829\pi\)
\(18\) 0 0
\(19\) −464.576 −0.295239 −0.147619 0.989044i \(-0.547161\pi\)
−0.147619 + 0.989044i \(0.547161\pi\)
\(20\) 1057.39 0.591099
\(21\) 0 0
\(22\) −1542.50 −0.679466
\(23\) −2303.41 −0.907927 −0.453963 0.891020i \(-0.649990\pi\)
−0.453963 + 0.891020i \(0.649990\pi\)
\(24\) 0 0
\(25\) 1242.47 0.397590
\(26\) −4130.30 −1.19825
\(27\) 0 0
\(28\) 1827.05 0.440407
\(29\) −7098.27 −1.56732 −0.783659 0.621191i \(-0.786649\pi\)
−0.783659 + 0.621191i \(0.786649\pi\)
\(30\) 0 0
\(31\) 7763.06 1.45087 0.725435 0.688291i \(-0.241639\pi\)
0.725435 + 0.688291i \(0.241639\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) 3836.08 0.569102
\(35\) 7546.48 1.04130
\(36\) 0 0
\(37\) 9317.57 1.11892 0.559459 0.828858i \(-0.311009\pi\)
0.559459 + 0.828858i \(0.311009\pi\)
\(38\) 1858.31 0.208765
\(39\) 0 0
\(40\) −4229.56 −0.417970
\(41\) 13323.3 1.23780 0.618901 0.785469i \(-0.287578\pi\)
0.618901 + 0.785469i \(0.287578\pi\)
\(42\) 0 0
\(43\) −2112.58 −0.174238 −0.0871190 0.996198i \(-0.527766\pi\)
−0.0871190 + 0.996198i \(0.527766\pi\)
\(44\) 6169.99 0.480455
\(45\) 0 0
\(46\) 9213.62 0.642001
\(47\) −2494.80 −0.164737 −0.0823686 0.996602i \(-0.526248\pi\)
−0.0823686 + 0.996602i \(0.526248\pi\)
\(48\) 0 0
\(49\) −3767.56 −0.224166
\(50\) −4969.88 −0.281139
\(51\) 0 0
\(52\) 16521.2 0.847292
\(53\) 10044.2 0.491163 0.245582 0.969376i \(-0.421021\pi\)
0.245582 + 0.969376i \(0.421021\pi\)
\(54\) 0 0
\(55\) 25484.7 1.13599
\(56\) −7308.18 −0.311415
\(57\) 0 0
\(58\) 28393.1 1.10826
\(59\) −5440.66 −0.203480 −0.101740 0.994811i \(-0.532441\pi\)
−0.101740 + 0.994811i \(0.532441\pi\)
\(60\) 0 0
\(61\) 34188.8 1.17641 0.588206 0.808711i \(-0.299834\pi\)
0.588206 + 0.808711i \(0.299834\pi\)
\(62\) −31052.2 −1.02592
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 68239.6 2.00333
\(66\) 0 0
\(67\) 53585.2 1.45834 0.729169 0.684334i \(-0.239907\pi\)
0.729169 + 0.684334i \(0.239907\pi\)
\(68\) −15344.3 −0.402416
\(69\) 0 0
\(70\) −30185.9 −0.736308
\(71\) 970.010 0.0228365 0.0114183 0.999935i \(-0.496365\pi\)
0.0114183 + 0.999935i \(0.496365\pi\)
\(72\) 0 0
\(73\) −72400.3 −1.59013 −0.795066 0.606523i \(-0.792564\pi\)
−0.795066 + 0.606523i \(0.792564\pi\)
\(74\) −37270.3 −0.791195
\(75\) 0 0
\(76\) −7433.22 −0.147619
\(77\) 44034.6 0.846384
\(78\) 0 0
\(79\) 32197.7 0.580440 0.290220 0.956960i \(-0.406271\pi\)
0.290220 + 0.956960i \(0.406271\pi\)
\(80\) 16918.2 0.295549
\(81\) 0 0
\(82\) −53293.1 −0.875258
\(83\) 36093.2 0.575082 0.287541 0.957768i \(-0.407162\pi\)
0.287541 + 0.957768i \(0.407162\pi\)
\(84\) 0 0
\(85\) −63378.6 −0.951470
\(86\) 8450.34 0.123205
\(87\) 0 0
\(88\) −24680.0 −0.339733
\(89\) −42622.2 −0.570375 −0.285188 0.958472i \(-0.592056\pi\)
−0.285188 + 0.958472i \(0.592056\pi\)
\(90\) 0 0
\(91\) 117910. 1.49261
\(92\) −36854.5 −0.453963
\(93\) 0 0
\(94\) 9979.21 0.116487
\(95\) −30702.4 −0.349030
\(96\) 0 0
\(97\) −43853.9 −0.473237 −0.236618 0.971603i \(-0.576039\pi\)
−0.236618 + 0.971603i \(0.576039\pi\)
\(98\) 15070.2 0.158509
\(99\) 0 0
\(100\) 19879.5 0.198795
\(101\) −24113.3 −0.235209 −0.117604 0.993061i \(-0.537522\pi\)
−0.117604 + 0.993061i \(0.537522\pi\)
\(102\) 0 0
\(103\) −137221. −1.27446 −0.637231 0.770673i \(-0.719920\pi\)
−0.637231 + 0.770673i \(0.719920\pi\)
\(104\) −66084.8 −0.599126
\(105\) 0 0
\(106\) −40176.8 −0.347305
\(107\) 167979. 1.41839 0.709195 0.705012i \(-0.249059\pi\)
0.709195 + 0.705012i \(0.249059\pi\)
\(108\) 0 0
\(109\) −21224.0 −0.171104 −0.0855521 0.996334i \(-0.527265\pi\)
−0.0855521 + 0.996334i \(0.527265\pi\)
\(110\) −101939. −0.803263
\(111\) 0 0
\(112\) 29232.7 0.220204
\(113\) 28841.6 0.212482 0.106241 0.994340i \(-0.466118\pi\)
0.106241 + 0.994340i \(0.466118\pi\)
\(114\) 0 0
\(115\) −152225. −1.07335
\(116\) −113572. −0.783659
\(117\) 0 0
\(118\) 21762.6 0.143882
\(119\) −109511. −0.708908
\(120\) 0 0
\(121\) −12344.7 −0.0766509
\(122\) −136755. −0.831849
\(123\) 0 0
\(124\) 124209. 0.725435
\(125\) −124410. −0.712167
\(126\) 0 0
\(127\) −215062. −1.18319 −0.591594 0.806236i \(-0.701501\pi\)
−0.591594 + 0.806236i \(0.701501\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −272958. −1.41657
\(131\) 189309. 0.963815 0.481908 0.876222i \(-0.339944\pi\)
0.481908 + 0.876222i \(0.339944\pi\)
\(132\) 0 0
\(133\) −53050.2 −0.260050
\(134\) −214341. −1.03120
\(135\) 0 0
\(136\) 61377.3 0.284551
\(137\) 3619.56 0.0164761 0.00823805 0.999966i \(-0.497378\pi\)
0.00823805 + 0.999966i \(0.497378\pi\)
\(138\) 0 0
\(139\) 120880. 0.530662 0.265331 0.964157i \(-0.414519\pi\)
0.265331 + 0.964157i \(0.414519\pi\)
\(140\) 120744. 0.520648
\(141\) 0 0
\(142\) −3880.04 −0.0161479
\(143\) 398186. 1.62834
\(144\) 0 0
\(145\) −469102. −1.85288
\(146\) 289601. 1.12439
\(147\) 0 0
\(148\) 149081. 0.559459
\(149\) −74816.3 −0.276077 −0.138039 0.990427i \(-0.544080\pi\)
−0.138039 + 0.990427i \(0.544080\pi\)
\(150\) 0 0
\(151\) −359953. −1.28470 −0.642352 0.766410i \(-0.722041\pi\)
−0.642352 + 0.766410i \(0.722041\pi\)
\(152\) 29732.9 0.104383
\(153\) 0 0
\(154\) −176138. −0.598484
\(155\) 513036. 1.71521
\(156\) 0 0
\(157\) 47966.6 0.155307 0.0776533 0.996980i \(-0.475257\pi\)
0.0776533 + 0.996980i \(0.475257\pi\)
\(158\) −128791. −0.410433
\(159\) 0 0
\(160\) −67672.9 −0.208985
\(161\) −263027. −0.799715
\(162\) 0 0
\(163\) 361063. 1.06442 0.532212 0.846611i \(-0.321361\pi\)
0.532212 + 0.846611i \(0.321361\pi\)
\(164\) 213172. 0.618901
\(165\) 0 0
\(166\) −144373. −0.406644
\(167\) −116466. −0.323154 −0.161577 0.986860i \(-0.551658\pi\)
−0.161577 + 0.986860i \(0.551658\pi\)
\(168\) 0 0
\(169\) 694917. 1.87161
\(170\) 253514. 0.672791
\(171\) 0 0
\(172\) −33801.4 −0.0871190
\(173\) −103526. −0.262987 −0.131493 0.991317i \(-0.541977\pi\)
−0.131493 + 0.991317i \(0.541977\pi\)
\(174\) 0 0
\(175\) 141878. 0.350203
\(176\) 98719.9 0.240228
\(177\) 0 0
\(178\) 170489. 0.403316
\(179\) 78941.2 0.184150 0.0920748 0.995752i \(-0.470650\pi\)
0.0920748 + 0.995752i \(0.470650\pi\)
\(180\) 0 0
\(181\) 586108. 1.32978 0.664892 0.746940i \(-0.268478\pi\)
0.664892 + 0.746940i \(0.268478\pi\)
\(182\) −471640. −1.05544
\(183\) 0 0
\(184\) 147418. 0.321001
\(185\) 615769. 1.32278
\(186\) 0 0
\(187\) −369822. −0.773372
\(188\) −39916.8 −0.0823686
\(189\) 0 0
\(190\) 122810. 0.246802
\(191\) −772053. −1.53131 −0.765656 0.643251i \(-0.777585\pi\)
−0.765656 + 0.643251i \(0.777585\pi\)
\(192\) 0 0
\(193\) −17439.3 −0.0337005 −0.0168503 0.999858i \(-0.505364\pi\)
−0.0168503 + 0.999858i \(0.505364\pi\)
\(194\) 175416. 0.334629
\(195\) 0 0
\(196\) −60280.9 −0.112083
\(197\) −340729. −0.625524 −0.312762 0.949832i \(-0.601254\pi\)
−0.312762 + 0.949832i \(0.601254\pi\)
\(198\) 0 0
\(199\) 14239.7 0.0254899 0.0127450 0.999919i \(-0.495943\pi\)
0.0127450 + 0.999919i \(0.495943\pi\)
\(200\) −79518.1 −0.140569
\(201\) 0 0
\(202\) 96453.4 0.166318
\(203\) −810554. −1.38052
\(204\) 0 0
\(205\) 880493. 1.46333
\(206\) 548883. 0.901181
\(207\) 0 0
\(208\) 264339. 0.423646
\(209\) −179152. −0.283698
\(210\) 0 0
\(211\) −48098.4 −0.0743745 −0.0371873 0.999308i \(-0.511840\pi\)
−0.0371873 + 0.999308i \(0.511840\pi\)
\(212\) 160707. 0.245582
\(213\) 0 0
\(214\) −671916. −1.00295
\(215\) −139614. −0.205984
\(216\) 0 0
\(217\) 886466. 1.27795
\(218\) 84896.0 0.120989
\(219\) 0 0
\(220\) 407755. 0.567993
\(221\) −990259. −1.36386
\(222\) 0 0
\(223\) 783977. 1.05570 0.527851 0.849337i \(-0.322998\pi\)
0.527851 + 0.849337i \(0.322998\pi\)
\(224\) −116931. −0.155707
\(225\) 0 0
\(226\) −115366. −0.150248
\(227\) 555796. 0.715898 0.357949 0.933741i \(-0.383476\pi\)
0.357949 + 0.933741i \(0.383476\pi\)
\(228\) 0 0
\(229\) 114692. 0.144526 0.0722630 0.997386i \(-0.476978\pi\)
0.0722630 + 0.997386i \(0.476978\pi\)
\(230\) 608899. 0.758972
\(231\) 0 0
\(232\) 454289. 0.554131
\(233\) 111177. 0.134161 0.0670805 0.997748i \(-0.478632\pi\)
0.0670805 + 0.997748i \(0.478632\pi\)
\(234\) 0 0
\(235\) −164874. −0.194752
\(236\) −87050.6 −0.101740
\(237\) 0 0
\(238\) 438043. 0.501274
\(239\) 739047. 0.836907 0.418453 0.908238i \(-0.362572\pi\)
0.418453 + 0.908238i \(0.362572\pi\)
\(240\) 0 0
\(241\) −1.29036e6 −1.43109 −0.715547 0.698564i \(-0.753823\pi\)
−0.715547 + 0.698564i \(0.753823\pi\)
\(242\) 49378.8 0.0542004
\(243\) 0 0
\(244\) 547021. 0.588206
\(245\) −248986. −0.265008
\(246\) 0 0
\(247\) −479710. −0.500307
\(248\) −496836. −0.512960
\(249\) 0 0
\(250\) 497642. 0.503578
\(251\) −1.29383e6 −1.29626 −0.648129 0.761530i \(-0.724448\pi\)
−0.648129 + 0.761530i \(0.724448\pi\)
\(252\) 0 0
\(253\) −888250. −0.872437
\(254\) 860247. 0.836640
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −624362. −0.589663 −0.294831 0.955549i \(-0.595263\pi\)
−0.294831 + 0.955549i \(0.595263\pi\)
\(258\) 0 0
\(259\) 1.06398e6 0.985559
\(260\) 1.09183e6 1.00167
\(261\) 0 0
\(262\) −757237. −0.681520
\(263\) 1.16499e6 1.03856 0.519281 0.854603i \(-0.326200\pi\)
0.519281 + 0.854603i \(0.326200\pi\)
\(264\) 0 0
\(265\) 663790. 0.580652
\(266\) 212201. 0.183883
\(267\) 0 0
\(268\) 857363. 0.729169
\(269\) −1.58951e6 −1.33932 −0.669659 0.742669i \(-0.733560\pi\)
−0.669659 + 0.742669i \(0.733560\pi\)
\(270\) 0 0
\(271\) −977878. −0.808837 −0.404419 0.914574i \(-0.632526\pi\)
−0.404419 + 0.914574i \(0.632526\pi\)
\(272\) −245509. −0.201208
\(273\) 0 0
\(274\) −14478.2 −0.0116504
\(275\) 479127. 0.382049
\(276\) 0 0
\(277\) −1.29049e6 −1.01054 −0.505271 0.862961i \(-0.668607\pi\)
−0.505271 + 0.862961i \(0.668607\pi\)
\(278\) −483521. −0.375235
\(279\) 0 0
\(280\) −482975. −0.368154
\(281\) −1.66732e6 −1.25966 −0.629831 0.776732i \(-0.716876\pi\)
−0.629831 + 0.776732i \(0.716876\pi\)
\(282\) 0 0
\(283\) 1.12914e6 0.838070 0.419035 0.907970i \(-0.362368\pi\)
0.419035 + 0.907970i \(0.362368\pi\)
\(284\) 15520.2 0.0114183
\(285\) 0 0
\(286\) −1.59274e6 −1.15141
\(287\) 1.52139e6 1.09027
\(288\) 0 0
\(289\) −500138. −0.352245
\(290\) 1.87641e6 1.31018
\(291\) 0 0
\(292\) −1.15840e6 −0.795066
\(293\) −2.05631e6 −1.39933 −0.699663 0.714473i \(-0.746666\pi\)
−0.699663 + 0.714473i \(0.746666\pi\)
\(294\) 0 0
\(295\) −359556. −0.240553
\(296\) −596324. −0.395597
\(297\) 0 0
\(298\) 299265. 0.195216
\(299\) −2.37844e6 −1.53856
\(300\) 0 0
\(301\) −241237. −0.153471
\(302\) 1.43981e6 0.908423
\(303\) 0 0
\(304\) −118932. −0.0738097
\(305\) 2.25943e6 1.39075
\(306\) 0 0
\(307\) 1.52149e6 0.921346 0.460673 0.887570i \(-0.347608\pi\)
0.460673 + 0.887570i \(0.347608\pi\)
\(308\) 704554. 0.423192
\(309\) 0 0
\(310\) −2.05214e6 −1.21284
\(311\) 2.70840e6 1.58786 0.793928 0.608011i \(-0.208032\pi\)
0.793928 + 0.608011i \(0.208032\pi\)
\(312\) 0 0
\(313\) −651166. −0.375691 −0.187845 0.982199i \(-0.560150\pi\)
−0.187845 + 0.982199i \(0.560150\pi\)
\(314\) −191866. −0.109818
\(315\) 0 0
\(316\) 515164. 0.290220
\(317\) 116111. 0.0648969 0.0324484 0.999473i \(-0.489670\pi\)
0.0324484 + 0.999473i \(0.489670\pi\)
\(318\) 0 0
\(319\) −2.73727e6 −1.50605
\(320\) 270692. 0.147775
\(321\) 0 0
\(322\) 1.05211e6 0.565484
\(323\) 445538. 0.237618
\(324\) 0 0
\(325\) 1.28294e6 0.673750
\(326\) −1.44425e6 −0.752661
\(327\) 0 0
\(328\) −852689. −0.437629
\(329\) −284882. −0.145103
\(330\) 0 0
\(331\) 317657. 0.159363 0.0796816 0.996820i \(-0.474610\pi\)
0.0796816 + 0.996820i \(0.474610\pi\)
\(332\) 577491. 0.287541
\(333\) 0 0
\(334\) 465866. 0.228504
\(335\) 3.54128e6 1.72404
\(336\) 0 0
\(337\) 430550. 0.206514 0.103257 0.994655i \(-0.467074\pi\)
0.103257 + 0.994655i \(0.467074\pi\)
\(338\) −2.77967e6 −1.32343
\(339\) 0 0
\(340\) −1.01406e6 −0.475735
\(341\) 2.99363e6 1.39416
\(342\) 0 0
\(343\) −2.34942e6 −1.07826
\(344\) 135205. 0.0616024
\(345\) 0 0
\(346\) 414103. 0.185960
\(347\) 4.14039e6 1.84594 0.922971 0.384870i \(-0.125754\pi\)
0.922971 + 0.384870i \(0.125754\pi\)
\(348\) 0 0
\(349\) −3.46095e6 −1.52101 −0.760505 0.649332i \(-0.775049\pi\)
−0.760505 + 0.649332i \(0.775049\pi\)
\(350\) −567512. −0.247631
\(351\) 0 0
\(352\) −394880. −0.169867
\(353\) −2.64457e6 −1.12958 −0.564792 0.825233i \(-0.691044\pi\)
−0.564792 + 0.825233i \(0.691044\pi\)
\(354\) 0 0
\(355\) 64104.9 0.0269973
\(356\) −681955. −0.285188
\(357\) 0 0
\(358\) −315765. −0.130213
\(359\) −2.13123e6 −0.872761 −0.436380 0.899762i \(-0.643740\pi\)
−0.436380 + 0.899762i \(0.643740\pi\)
\(360\) 0 0
\(361\) −2.26027e6 −0.912834
\(362\) −2.34443e6 −0.940299
\(363\) 0 0
\(364\) 1.88656e6 0.746307
\(365\) −4.78471e6 −1.87985
\(366\) 0 0
\(367\) −1.28007e6 −0.496099 −0.248049 0.968747i \(-0.579790\pi\)
−0.248049 + 0.968747i \(0.579790\pi\)
\(368\) −589672. −0.226982
\(369\) 0 0
\(370\) −2.46307e6 −0.935348
\(371\) 1.14695e6 0.432624
\(372\) 0 0
\(373\) −3.89466e6 −1.44943 −0.724716 0.689048i \(-0.758029\pi\)
−0.724716 + 0.689048i \(0.758029\pi\)
\(374\) 1.47929e6 0.546856
\(375\) 0 0
\(376\) 159667. 0.0582434
\(377\) −7.32949e6 −2.65595
\(378\) 0 0
\(379\) −2.83335e6 −1.01322 −0.506609 0.862176i \(-0.669101\pi\)
−0.506609 + 0.862176i \(0.669101\pi\)
\(380\) −491238. −0.174515
\(381\) 0 0
\(382\) 3.08821e6 1.08280
\(383\) −2.36499e6 −0.823819 −0.411909 0.911225i \(-0.635138\pi\)
−0.411909 + 0.911225i \(0.635138\pi\)
\(384\) 0 0
\(385\) 2.91011e6 1.00059
\(386\) 69757.3 0.0238299
\(387\) 0 0
\(388\) −701662. −0.236618
\(389\) 1.74338e6 0.584143 0.292071 0.956397i \(-0.405656\pi\)
0.292071 + 0.956397i \(0.405656\pi\)
\(390\) 0 0
\(391\) 2.20901e6 0.730729
\(392\) 241124. 0.0792546
\(393\) 0 0
\(394\) 1.36292e6 0.442312
\(395\) 2.12785e6 0.686195
\(396\) 0 0
\(397\) 4.81109e6 1.53203 0.766015 0.642823i \(-0.222237\pi\)
0.766015 + 0.642823i \(0.222237\pi\)
\(398\) −56958.9 −0.0180241
\(399\) 0 0
\(400\) 318072. 0.0993976
\(401\) 4.55407e6 1.41429 0.707145 0.707068i \(-0.249983\pi\)
0.707145 + 0.707068i \(0.249983\pi\)
\(402\) 0 0
\(403\) 8.01593e6 2.45862
\(404\) −385813. −0.117604
\(405\) 0 0
\(406\) 3.24221e6 0.976173
\(407\) 3.59308e6 1.07518
\(408\) 0 0
\(409\) 1.91283e6 0.565416 0.282708 0.959206i \(-0.408767\pi\)
0.282708 + 0.959206i \(0.408767\pi\)
\(410\) −3.52197e6 −1.03473
\(411\) 0 0
\(412\) −2.19553e6 −0.637231
\(413\) −621271. −0.179228
\(414\) 0 0
\(415\) 2.38528e6 0.679860
\(416\) −1.05736e6 −0.299563
\(417\) 0 0
\(418\) 716608. 0.200605
\(419\) −4.41395e6 −1.22826 −0.614132 0.789203i \(-0.710494\pi\)
−0.614132 + 0.789203i \(0.710494\pi\)
\(420\) 0 0
\(421\) −1.74451e6 −0.479697 −0.239848 0.970810i \(-0.577098\pi\)
−0.239848 + 0.970810i \(0.577098\pi\)
\(422\) 192393. 0.0525907
\(423\) 0 0
\(424\) −642829. −0.173652
\(425\) −1.19155e6 −0.319993
\(426\) 0 0
\(427\) 3.90403e6 1.03620
\(428\) 2.68766e6 0.709195
\(429\) 0 0
\(430\) 558456. 0.145652
\(431\) 2.21740e6 0.574976 0.287488 0.957784i \(-0.407180\pi\)
0.287488 + 0.957784i \(0.407180\pi\)
\(432\) 0 0
\(433\) −3.63511e6 −0.931746 −0.465873 0.884851i \(-0.654260\pi\)
−0.465873 + 0.884851i \(0.654260\pi\)
\(434\) −3.54587e6 −0.903645
\(435\) 0 0
\(436\) −339584. −0.0855521
\(437\) 1.07011e6 0.268055
\(438\) 0 0
\(439\) −3.08827e6 −0.764810 −0.382405 0.923995i \(-0.624904\pi\)
−0.382405 + 0.923995i \(0.624904\pi\)
\(440\) −1.63102e6 −0.401632
\(441\) 0 0
\(442\) 3.96104e6 0.964391
\(443\) 7.00097e6 1.69492 0.847459 0.530861i \(-0.178131\pi\)
0.847459 + 0.530861i \(0.178131\pi\)
\(444\) 0 0
\(445\) −2.81677e6 −0.674296
\(446\) −3.13591e6 −0.746493
\(447\) 0 0
\(448\) 467724. 0.110102
\(449\) 5.00196e6 1.17091 0.585456 0.810704i \(-0.300916\pi\)
0.585456 + 0.810704i \(0.300916\pi\)
\(450\) 0 0
\(451\) 5.13778e6 1.18942
\(452\) 461465. 0.106241
\(453\) 0 0
\(454\) −2.22319e6 −0.506216
\(455\) 7.79230e6 1.76456
\(456\) 0 0
\(457\) 3.57162e6 0.799971 0.399985 0.916521i \(-0.369015\pi\)
0.399985 + 0.916521i \(0.369015\pi\)
\(458\) −458770. −0.102195
\(459\) 0 0
\(460\) −2.43560e6 −0.536674
\(461\) −5.50122e6 −1.20561 −0.602805 0.797888i \(-0.705950\pi\)
−0.602805 + 0.797888i \(0.705950\pi\)
\(462\) 0 0
\(463\) −2.85416e6 −0.618765 −0.309382 0.950938i \(-0.600122\pi\)
−0.309382 + 0.950938i \(0.600122\pi\)
\(464\) −1.81716e6 −0.391830
\(465\) 0 0
\(466\) −444709. −0.0948662
\(467\) 7.16552e6 1.52039 0.760196 0.649694i \(-0.225103\pi\)
0.760196 + 0.649694i \(0.225103\pi\)
\(468\) 0 0
\(469\) 6.11892e6 1.28452
\(470\) 659494. 0.137710
\(471\) 0 0
\(472\) 348202. 0.0719410
\(473\) −814664. −0.167427
\(474\) 0 0
\(475\) −577222. −0.117384
\(476\) −1.75217e6 −0.354454
\(477\) 0 0
\(478\) −2.95619e6 −0.591782
\(479\) −3.28370e6 −0.653921 −0.326961 0.945038i \(-0.606024\pi\)
−0.326961 + 0.945038i \(0.606024\pi\)
\(480\) 0 0
\(481\) 9.62108e6 1.89610
\(482\) 5.16144e6 1.01194
\(483\) 0 0
\(484\) −197515. −0.0383255
\(485\) −2.89816e6 −0.559459
\(486\) 0 0
\(487\) 2.18097e6 0.416704 0.208352 0.978054i \(-0.433190\pi\)
0.208352 + 0.978054i \(0.433190\pi\)
\(488\) −2.18808e6 −0.415925
\(489\) 0 0
\(490\) 995944. 0.187389
\(491\) 9.93949e6 1.86063 0.930315 0.366760i \(-0.119533\pi\)
0.930315 + 0.366760i \(0.119533\pi\)
\(492\) 0 0
\(493\) 6.80738e6 1.26143
\(494\) 1.91884e6 0.353770
\(495\) 0 0
\(496\) 1.98734e6 0.362718
\(497\) 110766. 0.0201148
\(498\) 0 0
\(499\) −4.52772e6 −0.814007 −0.407004 0.913427i \(-0.633426\pi\)
−0.407004 + 0.913427i \(0.633426\pi\)
\(500\) −1.99057e6 −0.356084
\(501\) 0 0
\(502\) 5.17530e6 0.916593
\(503\) 4.40282e6 0.775909 0.387955 0.921679i \(-0.373182\pi\)
0.387955 + 0.921679i \(0.373182\pi\)
\(504\) 0 0
\(505\) −1.59357e6 −0.278063
\(506\) 3.55300e6 0.616906
\(507\) 0 0
\(508\) −3.44099e6 −0.591594
\(509\) −5.82125e6 −0.995915 −0.497957 0.867202i \(-0.665916\pi\)
−0.497957 + 0.867202i \(0.665916\pi\)
\(510\) 0 0
\(511\) −8.26742e6 −1.40061
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 2.49745e6 0.416954
\(515\) −9.06849e6 −1.50667
\(516\) 0 0
\(517\) −962057. −0.158298
\(518\) −4.25591e6 −0.696896
\(519\) 0 0
\(520\) −4.36733e6 −0.708285
\(521\) −1.09649e7 −1.76975 −0.884875 0.465829i \(-0.845756\pi\)
−0.884875 + 0.465829i \(0.845756\pi\)
\(522\) 0 0
\(523\) −3.83705e6 −0.613399 −0.306700 0.951806i \(-0.599225\pi\)
−0.306700 + 0.951806i \(0.599225\pi\)
\(524\) 3.02895e6 0.481908
\(525\) 0 0
\(526\) −4.65996e6 −0.734374
\(527\) −7.44493e6 −1.16771
\(528\) 0 0
\(529\) −1.13066e6 −0.175669
\(530\) −2.65516e6 −0.410583
\(531\) 0 0
\(532\) −848803. −0.130025
\(533\) 1.37573e7 2.09756
\(534\) 0 0
\(535\) 1.11012e7 1.67682
\(536\) −3.42945e6 −0.515600
\(537\) 0 0
\(538\) 6.35805e6 0.947040
\(539\) −1.45286e6 −0.215403
\(540\) 0 0
\(541\) −4.88767e6 −0.717974 −0.358987 0.933343i \(-0.616878\pi\)
−0.358987 + 0.933343i \(0.616878\pi\)
\(542\) 3.91151e6 0.571934
\(543\) 0 0
\(544\) 982036. 0.142276
\(545\) −1.40263e6 −0.202279
\(546\) 0 0
\(547\) −6.93344e6 −0.990788 −0.495394 0.868668i \(-0.664976\pi\)
−0.495394 + 0.868668i \(0.664976\pi\)
\(548\) 57913.0 0.00823805
\(549\) 0 0
\(550\) −1.91651e6 −0.270149
\(551\) 3.29769e6 0.462733
\(552\) 0 0
\(553\) 3.67667e6 0.511260
\(554\) 5.16195e6 0.714561
\(555\) 0 0
\(556\) 1.93408e6 0.265331
\(557\) 9.83771e6 1.34356 0.671778 0.740752i \(-0.265531\pi\)
0.671778 + 0.740752i \(0.265531\pi\)
\(558\) 0 0
\(559\) −2.18140e6 −0.295261
\(560\) 1.93190e6 0.260324
\(561\) 0 0
\(562\) 6.66930e6 0.890716
\(563\) −2.73217e6 −0.363277 −0.181638 0.983365i \(-0.558140\pi\)
−0.181638 + 0.983365i \(0.558140\pi\)
\(564\) 0 0
\(565\) 1.90605e6 0.251196
\(566\) −4.51654e6 −0.592605
\(567\) 0 0
\(568\) −62080.7 −0.00807394
\(569\) −9.43997e6 −1.22233 −0.611167 0.791502i \(-0.709300\pi\)
−0.611167 + 0.791502i \(0.709300\pi\)
\(570\) 0 0
\(571\) −1.26790e7 −1.62740 −0.813698 0.581288i \(-0.802549\pi\)
−0.813698 + 0.581288i \(0.802549\pi\)
\(572\) 6.37098e6 0.814172
\(573\) 0 0
\(574\) −6.08556e6 −0.770940
\(575\) −2.86191e6 −0.360983
\(576\) 0 0
\(577\) −1.51657e7 −1.89637 −0.948187 0.317712i \(-0.897086\pi\)
−0.948187 + 0.317712i \(0.897086\pi\)
\(578\) 2.00055e6 0.249075
\(579\) 0 0
\(580\) −7.50563e6 −0.926440
\(581\) 4.12149e6 0.506540
\(582\) 0 0
\(583\) 3.87329e6 0.471964
\(584\) 4.63362e6 0.562197
\(585\) 0 0
\(586\) 8.22522e6 0.989472
\(587\) −1.82340e6 −0.218417 −0.109209 0.994019i \(-0.534832\pi\)
−0.109209 + 0.994019i \(0.534832\pi\)
\(588\) 0 0
\(589\) −3.60653e6 −0.428353
\(590\) 1.43822e6 0.170097
\(591\) 0 0
\(592\) 2.38530e6 0.279730
\(593\) −1.27957e7 −1.49427 −0.747133 0.664674i \(-0.768570\pi\)
−0.747133 + 0.664674i \(0.768570\pi\)
\(594\) 0 0
\(595\) −7.23723e6 −0.838069
\(596\) −1.19706e6 −0.138039
\(597\) 0 0
\(598\) 9.51375e6 1.08792
\(599\) −8.76425e6 −0.998039 −0.499020 0.866591i \(-0.666306\pi\)
−0.499020 + 0.866591i \(0.666306\pi\)
\(600\) 0 0
\(601\) 1.66959e6 0.188548 0.0942741 0.995546i \(-0.469947\pi\)
0.0942741 + 0.995546i \(0.469947\pi\)
\(602\) 964947. 0.108521
\(603\) 0 0
\(604\) −5.75924e6 −0.642352
\(605\) −815822. −0.0906165
\(606\) 0 0
\(607\) −1.01707e7 −1.12042 −0.560208 0.828352i \(-0.689279\pi\)
−0.560208 + 0.828352i \(0.689279\pi\)
\(608\) 475726. 0.0521913
\(609\) 0 0
\(610\) −9.03772e6 −0.983410
\(611\) −2.57607e6 −0.279161
\(612\) 0 0
\(613\) 1.37829e7 1.48146 0.740730 0.671803i \(-0.234480\pi\)
0.740730 + 0.671803i \(0.234480\pi\)
\(614\) −6.08595e6 −0.651490
\(615\) 0 0
\(616\) −2.81822e6 −0.299242
\(617\) 1.21082e7 1.28046 0.640230 0.768184i \(-0.278839\pi\)
0.640230 + 0.768184i \(0.278839\pi\)
\(618\) 0 0
\(619\) −1.69733e7 −1.78049 −0.890245 0.455481i \(-0.849467\pi\)
−0.890245 + 0.455481i \(0.849467\pi\)
\(620\) 8.20857e6 0.857607
\(621\) 0 0
\(622\) −1.08336e7 −1.12278
\(623\) −4.86704e6 −0.502395
\(624\) 0 0
\(625\) −1.21046e7 −1.23951
\(626\) 2.60466e6 0.265654
\(627\) 0 0
\(628\) 767466. 0.0776533
\(629\) −8.93574e6 −0.900541
\(630\) 0 0
\(631\) 7.90092e6 0.789958 0.394979 0.918690i \(-0.370752\pi\)
0.394979 + 0.918690i \(0.370752\pi\)
\(632\) −2.06065e6 −0.205217
\(633\) 0 0
\(634\) −464443. −0.0458890
\(635\) −1.42127e7 −1.39876
\(636\) 0 0
\(637\) −3.89028e6 −0.379868
\(638\) 1.09491e7 1.06494
\(639\) 0 0
\(640\) −1.08277e6 −0.104492
\(641\) −1.06761e7 −1.02629 −0.513144 0.858302i \(-0.671519\pi\)
−0.513144 + 0.858302i \(0.671519\pi\)
\(642\) 0 0
\(643\) 9.37769e6 0.894476 0.447238 0.894415i \(-0.352408\pi\)
0.447238 + 0.894415i \(0.352408\pi\)
\(644\) −4.20843e6 −0.399858
\(645\) 0 0
\(646\) −1.78215e6 −0.168021
\(647\) 9.44013e6 0.886579 0.443289 0.896379i \(-0.353811\pi\)
0.443289 + 0.896379i \(0.353811\pi\)
\(648\) 0 0
\(649\) −2.09805e6 −0.195526
\(650\) −5.13177e6 −0.476413
\(651\) 0 0
\(652\) 5.77701e6 0.532212
\(653\) −1.48891e7 −1.36642 −0.683212 0.730220i \(-0.739418\pi\)
−0.683212 + 0.730220i \(0.739418\pi\)
\(654\) 0 0
\(655\) 1.25109e7 1.13942
\(656\) 3.41076e6 0.309451
\(657\) 0 0
\(658\) 1.13953e6 0.102603
\(659\) 7.64781e6 0.685999 0.343000 0.939336i \(-0.388557\pi\)
0.343000 + 0.939336i \(0.388557\pi\)
\(660\) 0 0
\(661\) −5.00539e6 −0.445588 −0.222794 0.974866i \(-0.571518\pi\)
−0.222794 + 0.974866i \(0.571518\pi\)
\(662\) −1.27063e6 −0.112687
\(663\) 0 0
\(664\) −2.30996e6 −0.203322
\(665\) −3.50592e6 −0.307431
\(666\) 0 0
\(667\) 1.63502e7 1.42301
\(668\) −1.86346e6 −0.161577
\(669\) 0 0
\(670\) −1.41651e7 −1.21908
\(671\) 1.31840e7 1.13043
\(672\) 0 0
\(673\) 2.14440e6 0.182502 0.0912511 0.995828i \(-0.470913\pi\)
0.0912511 + 0.995828i \(0.470913\pi\)
\(674\) −1.72220e6 −0.146027
\(675\) 0 0
\(676\) 1.11187e7 0.935807
\(677\) 9.50926e6 0.797398 0.398699 0.917082i \(-0.369462\pi\)
0.398699 + 0.917082i \(0.369462\pi\)
\(678\) 0 0
\(679\) −5.00769e6 −0.416834
\(680\) 4.05623e6 0.336396
\(681\) 0 0
\(682\) −1.19745e7 −0.985817
\(683\) 5.47266e6 0.448897 0.224449 0.974486i \(-0.427942\pi\)
0.224449 + 0.974486i \(0.427942\pi\)
\(684\) 0 0
\(685\) 239205. 0.0194780
\(686\) 9.39767e6 0.762447
\(687\) 0 0
\(688\) −540822. −0.0435595
\(689\) 1.03714e7 0.832317
\(690\) 0 0
\(691\) 6.88167e6 0.548276 0.274138 0.961690i \(-0.411608\pi\)
0.274138 + 0.961690i \(0.411608\pi\)
\(692\) −1.65641e6 −0.131493
\(693\) 0 0
\(694\) −1.65616e7 −1.30528
\(695\) 7.98859e6 0.627348
\(696\) 0 0
\(697\) −1.27773e7 −0.996223
\(698\) 1.38438e7 1.07552
\(699\) 0 0
\(700\) 2.27005e6 0.175102
\(701\) −5.19615e6 −0.399380 −0.199690 0.979859i \(-0.563994\pi\)
−0.199690 + 0.979859i \(0.563994\pi\)
\(702\) 0 0
\(703\) −4.32872e6 −0.330348
\(704\) 1.57952e6 0.120114
\(705\) 0 0
\(706\) 1.05783e7 0.798737
\(707\) −2.75351e6 −0.207175
\(708\) 0 0
\(709\) 574821. 0.0429454 0.0214727 0.999769i \(-0.493164\pi\)
0.0214727 + 0.999769i \(0.493164\pi\)
\(710\) −256420. −0.0190900
\(711\) 0 0
\(712\) 2.72782e6 0.201658
\(713\) −1.78815e7 −1.31728
\(714\) 0 0
\(715\) 2.63149e7 1.92502
\(716\) 1.26306e6 0.0920748
\(717\) 0 0
\(718\) 8.52494e6 0.617135
\(719\) 400906. 0.0289215 0.0144607 0.999895i \(-0.495397\pi\)
0.0144607 + 0.999895i \(0.495397\pi\)
\(720\) 0 0
\(721\) −1.56693e7 −1.12256
\(722\) 9.04107e6 0.645471
\(723\) 0 0
\(724\) 9.37772e6 0.664892
\(725\) −8.81938e6 −0.623151
\(726\) 0 0
\(727\) 1.05431e7 0.739830 0.369915 0.929066i \(-0.379387\pi\)
0.369915 + 0.929066i \(0.379387\pi\)
\(728\) −7.54624e6 −0.527719
\(729\) 0 0
\(730\) 1.91388e7 1.32925
\(731\) 2.02601e6 0.140232
\(732\) 0 0
\(733\) 1.39374e7 0.958122 0.479061 0.877782i \(-0.340977\pi\)
0.479061 + 0.877782i \(0.340977\pi\)
\(734\) 5.12028e6 0.350795
\(735\) 0 0
\(736\) 2.35869e6 0.160500
\(737\) 2.06638e7 1.40133
\(738\) 0 0
\(739\) −9.88034e6 −0.665519 −0.332760 0.943012i \(-0.607980\pi\)
−0.332760 + 0.943012i \(0.607980\pi\)
\(740\) 9.85230e6 0.661391
\(741\) 0 0
\(742\) −4.58781e6 −0.305911
\(743\) 9.33390e6 0.620285 0.310142 0.950690i \(-0.399623\pi\)
0.310142 + 0.950690i \(0.399623\pi\)
\(744\) 0 0
\(745\) −4.94438e6 −0.326378
\(746\) 1.55787e7 1.02490
\(747\) 0 0
\(748\) −5.91715e6 −0.386686
\(749\) 1.91816e7 1.24934
\(750\) 0 0
\(751\) 2.87522e7 1.86025 0.930124 0.367245i \(-0.119699\pi\)
0.930124 + 0.367245i \(0.119699\pi\)
\(752\) −638669. −0.0411843
\(753\) 0 0
\(754\) 2.93179e7 1.87804
\(755\) −2.37881e7 −1.51877
\(756\) 0 0
\(757\) −4.94587e6 −0.313691 −0.156846 0.987623i \(-0.550133\pi\)
−0.156846 + 0.987623i \(0.550133\pi\)
\(758\) 1.13334e7 0.716453
\(759\) 0 0
\(760\) 1.96495e6 0.123401
\(761\) −9.13658e6 −0.571902 −0.285951 0.958244i \(-0.592310\pi\)
−0.285951 + 0.958244i \(0.592310\pi\)
\(762\) 0 0
\(763\) −2.42358e6 −0.150711
\(764\) −1.23528e7 −0.765656
\(765\) 0 0
\(766\) 9.45995e6 0.582528
\(767\) −5.61789e6 −0.344814
\(768\) 0 0
\(769\) 1.65244e7 1.00765 0.503826 0.863805i \(-0.331925\pi\)
0.503826 + 0.863805i \(0.331925\pi\)
\(770\) −1.16404e7 −0.707526
\(771\) 0 0
\(772\) −279029. −0.0168503
\(773\) −1.01763e7 −0.612550 −0.306275 0.951943i \(-0.599083\pi\)
−0.306275 + 0.951943i \(0.599083\pi\)
\(774\) 0 0
\(775\) 9.64536e6 0.576852
\(776\) 2.80665e6 0.167315
\(777\) 0 0
\(778\) −6.97353e6 −0.413051
\(779\) −6.18968e6 −0.365447
\(780\) 0 0
\(781\) 374060. 0.0219439
\(782\) −8.83605e6 −0.516703
\(783\) 0 0
\(784\) −964495. −0.0560415
\(785\) 3.16996e6 0.183603
\(786\) 0 0
\(787\) −1.87635e7 −1.07988 −0.539941 0.841703i \(-0.681553\pi\)
−0.539941 + 0.841703i \(0.681553\pi\)
\(788\) −5.45167e6 −0.312762
\(789\) 0 0
\(790\) −8.51138e6 −0.485213
\(791\) 3.29343e6 0.187158
\(792\) 0 0
\(793\) 3.53025e7 1.99353
\(794\) −1.92444e7 −1.08331
\(795\) 0 0
\(796\) 227835. 0.0127450
\(797\) 2.47965e6 0.138275 0.0691376 0.997607i \(-0.477975\pi\)
0.0691376 + 0.997607i \(0.477975\pi\)
\(798\) 0 0
\(799\) 2.39257e6 0.132586
\(800\) −1.27229e6 −0.0702847
\(801\) 0 0
\(802\) −1.82163e7 −1.00005
\(803\) −2.79193e7 −1.52797
\(804\) 0 0
\(805\) −1.73826e7 −0.945421
\(806\) −3.20637e7 −1.73851
\(807\) 0 0
\(808\) 1.54325e6 0.0831589
\(809\) 2.50880e7 1.34770 0.673852 0.738867i \(-0.264639\pi\)
0.673852 + 0.738867i \(0.264639\pi\)
\(810\) 0 0
\(811\) −4.28465e6 −0.228751 −0.114376 0.993438i \(-0.536487\pi\)
−0.114376 + 0.993438i \(0.536487\pi\)
\(812\) −1.29689e7 −0.690258
\(813\) 0 0
\(814\) −1.43723e7 −0.760267
\(815\) 2.38615e7 1.25836
\(816\) 0 0
\(817\) 981457. 0.0514418
\(818\) −7.65132e6 −0.399809
\(819\) 0 0
\(820\) 1.40879e7 0.731663
\(821\) −2.03127e7 −1.05174 −0.525871 0.850564i \(-0.676261\pi\)
−0.525871 + 0.850564i \(0.676261\pi\)
\(822\) 0 0
\(823\) −1.31663e7 −0.677583 −0.338792 0.940861i \(-0.610018\pi\)
−0.338792 + 0.940861i \(0.610018\pi\)
\(824\) 8.78213e6 0.450590
\(825\) 0 0
\(826\) 2.48508e6 0.126733
\(827\) −2.82859e7 −1.43816 −0.719079 0.694928i \(-0.755436\pi\)
−0.719079 + 0.694928i \(0.755436\pi\)
\(828\) 0 0
\(829\) 1.36608e7 0.690381 0.345190 0.938533i \(-0.387814\pi\)
0.345190 + 0.938533i \(0.387814\pi\)
\(830\) −9.54113e6 −0.480734
\(831\) 0 0
\(832\) 4.22942e6 0.211823
\(833\) 3.61316e6 0.180416
\(834\) 0 0
\(835\) −7.69690e6 −0.382032
\(836\) −2.86643e6 −0.141849
\(837\) 0 0
\(838\) 1.76558e7 0.868514
\(839\) 151283. 0.00741969 0.00370984 0.999993i \(-0.498819\pi\)
0.00370984 + 0.999993i \(0.498819\pi\)
\(840\) 0 0
\(841\) 2.98742e7 1.45649
\(842\) 6.97802e6 0.339197
\(843\) 0 0
\(844\) −769574. −0.0371873
\(845\) 4.59249e7 2.21262
\(846\) 0 0
\(847\) −1.40965e6 −0.0675152
\(848\) 2.57132e6 0.122791
\(849\) 0 0
\(850\) 4.76621e6 0.226270
\(851\) −2.14621e7 −1.01590
\(852\) 0 0
\(853\) −2.77662e7 −1.30660 −0.653301 0.757098i \(-0.726616\pi\)
−0.653301 + 0.757098i \(0.726616\pi\)
\(854\) −1.56161e7 −0.732705
\(855\) 0 0
\(856\) −1.07507e7 −0.501477
\(857\) 3.52272e7 1.63842 0.819212 0.573491i \(-0.194411\pi\)
0.819212 + 0.573491i \(0.194411\pi\)
\(858\) 0 0
\(859\) −4.04681e7 −1.87124 −0.935622 0.353005i \(-0.885160\pi\)
−0.935622 + 0.353005i \(0.885160\pi\)
\(860\) −2.23382e6 −0.102992
\(861\) 0 0
\(862\) −8.86958e6 −0.406570
\(863\) 1.96865e7 0.899789 0.449895 0.893082i \(-0.351462\pi\)
0.449895 + 0.893082i \(0.351462\pi\)
\(864\) 0 0
\(865\) −6.84170e6 −0.310902
\(866\) 1.45404e7 0.658844
\(867\) 0 0
\(868\) 1.41835e7 0.638974
\(869\) 1.24162e7 0.557751
\(870\) 0 0
\(871\) 5.53307e7 2.47127
\(872\) 1.35834e6 0.0604945
\(873\) 0 0
\(874\) −4.28043e6 −0.189544
\(875\) −1.42065e7 −0.627287
\(876\) 0 0
\(877\) 2.62442e7 1.15222 0.576109 0.817373i \(-0.304570\pi\)
0.576109 + 0.817373i \(0.304570\pi\)
\(878\) 1.23531e7 0.540802
\(879\) 0 0
\(880\) 6.52408e6 0.283996
\(881\) 1.29423e7 0.561786 0.280893 0.959739i \(-0.409369\pi\)
0.280893 + 0.959739i \(0.409369\pi\)
\(882\) 0 0
\(883\) 3.39097e6 0.146360 0.0731800 0.997319i \(-0.476685\pi\)
0.0731800 + 0.997319i \(0.476685\pi\)
\(884\) −1.58442e7 −0.681928
\(885\) 0 0
\(886\) −2.80039e7 −1.19849
\(887\) −7.67591e6 −0.327583 −0.163791 0.986495i \(-0.552372\pi\)
−0.163791 + 0.986495i \(0.552372\pi\)
\(888\) 0 0
\(889\) −2.45580e7 −1.04217
\(890\) 1.12671e7 0.476799
\(891\) 0 0
\(892\) 1.25436e7 0.527851
\(893\) 1.15903e6 0.0486368
\(894\) 0 0
\(895\) 5.21697e6 0.217701
\(896\) −1.87090e6 −0.0778537
\(897\) 0 0
\(898\) −2.00078e7 −0.827959
\(899\) −5.51042e7 −2.27398
\(900\) 0 0
\(901\) −9.63260e6 −0.395304
\(902\) −2.05511e7 −0.841045
\(903\) 0 0
\(904\) −1.84586e6 −0.0751239
\(905\) 3.87340e7 1.57207
\(906\) 0 0
\(907\) 1.08887e7 0.439499 0.219750 0.975556i \(-0.429476\pi\)
0.219750 + 0.975556i \(0.429476\pi\)
\(908\) 8.89274e6 0.357949
\(909\) 0 0
\(910\) −3.11692e7 −1.24773
\(911\) 180478. 0.00720492 0.00360246 0.999994i \(-0.498853\pi\)
0.00360246 + 0.999994i \(0.498853\pi\)
\(912\) 0 0
\(913\) 1.39184e7 0.552602
\(914\) −1.42865e7 −0.565665
\(915\) 0 0
\(916\) 1.83508e6 0.0722630
\(917\) 2.16173e7 0.848942
\(918\) 0 0
\(919\) −2.24831e7 −0.878148 −0.439074 0.898451i \(-0.644693\pi\)
−0.439074 + 0.898451i \(0.644693\pi\)
\(920\) 9.74239e6 0.379486
\(921\) 0 0
\(922\) 2.20049e7 0.852495
\(923\) 1.00161e6 0.0386984
\(924\) 0 0
\(925\) 1.15768e7 0.444871
\(926\) 1.14166e7 0.437533
\(927\) 0 0
\(928\) 7.26862e6 0.277065
\(929\) 4.13240e7 1.57095 0.785477 0.618891i \(-0.212418\pi\)
0.785477 + 0.618891i \(0.212418\pi\)
\(930\) 0 0
\(931\) 1.75032e6 0.0661824
\(932\) 1.77884e6 0.0670805
\(933\) 0 0
\(934\) −2.86621e7 −1.07508
\(935\) −2.44403e7 −0.914278
\(936\) 0 0
\(937\) 2.56470e7 0.954305 0.477153 0.878820i \(-0.341669\pi\)
0.477153 + 0.878820i \(0.341669\pi\)
\(938\) −2.44757e7 −0.908296
\(939\) 0 0
\(940\) −2.63798e6 −0.0973759
\(941\) −1.79976e7 −0.662583 −0.331292 0.943528i \(-0.607484\pi\)
−0.331292 + 0.943528i \(0.607484\pi\)
\(942\) 0 0
\(943\) −3.06889e7 −1.12383
\(944\) −1.39281e6 −0.0508700
\(945\) 0 0
\(946\) 3.25866e6 0.118389
\(947\) 4.50796e7 1.63345 0.816723 0.577030i \(-0.195789\pi\)
0.816723 + 0.577030i \(0.195789\pi\)
\(948\) 0 0
\(949\) −7.47587e7 −2.69461
\(950\) 2.30889e6 0.0830030
\(951\) 0 0
\(952\) 7.00869e6 0.250637
\(953\) −2.21374e7 −0.789577 −0.394788 0.918772i \(-0.629182\pi\)
−0.394788 + 0.918772i \(0.629182\pi\)
\(954\) 0 0
\(955\) −5.10225e7 −1.81031
\(956\) 1.18247e7 0.418453
\(957\) 0 0
\(958\) 1.31348e7 0.462392
\(959\) 413319. 0.0145124
\(960\) 0 0
\(961\) 3.16359e7 1.10502
\(962\) −3.84843e7 −1.34075
\(963\) 0 0
\(964\) −2.06458e7 −0.715547
\(965\) −1.15251e6 −0.0398407
\(966\) 0 0
\(967\) −1.96323e7 −0.675156 −0.337578 0.941297i \(-0.609608\pi\)
−0.337578 + 0.941297i \(0.609608\pi\)
\(968\) 790061. 0.0271002
\(969\) 0 0
\(970\) 1.15927e7 0.395598
\(971\) 3.46539e7 1.17952 0.589758 0.807580i \(-0.299223\pi\)
0.589758 + 0.807580i \(0.299223\pi\)
\(972\) 0 0
\(973\) 1.38034e7 0.467415
\(974\) −8.72389e6 −0.294654
\(975\) 0 0
\(976\) 8.75234e6 0.294103
\(977\) −2.68013e7 −0.898296 −0.449148 0.893457i \(-0.648272\pi\)
−0.449148 + 0.893457i \(0.648272\pi\)
\(978\) 0 0
\(979\) −1.64362e7 −0.548080
\(980\) −3.98377e6 −0.132504
\(981\) 0 0
\(982\) −3.97579e7 −1.31566
\(983\) 2.38080e7 0.785849 0.392924 0.919571i \(-0.371463\pi\)
0.392924 + 0.919571i \(0.371463\pi\)
\(984\) 0 0
\(985\) −2.25177e7 −0.739492
\(986\) −2.72295e7 −0.891965
\(987\) 0 0
\(988\) −7.67536e6 −0.250153
\(989\) 4.86614e6 0.158195
\(990\) 0 0
\(991\) −2.37156e7 −0.767096 −0.383548 0.923521i \(-0.625298\pi\)
−0.383548 + 0.923521i \(0.625298\pi\)
\(992\) −7.94937e6 −0.256480
\(993\) 0 0
\(994\) −443063. −0.0142233
\(995\) 941058. 0.0301341
\(996\) 0 0
\(997\) −4.08340e7 −1.30102 −0.650511 0.759497i \(-0.725445\pi\)
−0.650511 + 0.759497i \(0.725445\pi\)
\(998\) 1.81109e7 0.575590
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.6.a.i.1.3 3
3.2 odd 2 162.6.a.j.1.1 3
9.2 odd 6 18.6.c.b.13.3 yes 6
9.4 even 3 54.6.c.b.19.1 6
9.5 odd 6 18.6.c.b.7.3 6
9.7 even 3 54.6.c.b.37.1 6
36.7 odd 6 432.6.i.b.145.1 6
36.11 even 6 144.6.i.b.49.1 6
36.23 even 6 144.6.i.b.97.1 6
36.31 odd 6 432.6.i.b.289.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.6.c.b.7.3 6 9.5 odd 6
18.6.c.b.13.3 yes 6 9.2 odd 6
54.6.c.b.19.1 6 9.4 even 3
54.6.c.b.37.1 6 9.7 even 3
144.6.i.b.49.1 6 36.11 even 6
144.6.i.b.97.1 6 36.23 even 6
162.6.a.i.1.3 3 1.1 even 1 trivial
162.6.a.j.1.1 3 3.2 odd 2
432.6.i.b.145.1 6 36.7 odd 6
432.6.i.b.289.1 6 36.31 odd 6