Properties

Label 162.6.a.i
Level $162$
Weight $6$
Character orbit 162.a
Self dual yes
Analytic conductor $25.982$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,6,Mod(1,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-12,0,48,-54,0,132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.125628.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 63x + 159 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + (\beta_1 - 18) q^{5} + ( - \beta_{2} + 44) q^{7} - 64 q^{8} + ( - 4 \beta_1 + 72) q^{10} + ( - \beta_{2} + 5 \beta_1 - 105) q^{11} + (2 \beta_{2} + 11 \beta_1 + 248) q^{13} + (4 \beta_{2} - 176) q^{14}+ \cdots + ( - 16 \beta_{2} + 1004 \beta_1 - 70476) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} + 48 q^{4} - 54 q^{5} + 132 q^{7} - 192 q^{8} + 216 q^{10} - 315 q^{11} + 744 q^{13} - 528 q^{14} + 768 q^{16} - 1449 q^{17} + 1131 q^{19} - 864 q^{20} + 1260 q^{22} - 3168 q^{23} + 2883 q^{25}+ \cdots - 211428 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 63x + 159 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{2} + 24\nu - 135 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -15\nu^{2} - 12\nu + 639 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 5\beta _1 + 18 ) / 54 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -4\beta_{2} - 2\beta _1 + 1143 ) / 27 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.54724
2.72791
6.81933
−4.00000 0 16.0000 −78.4839 0 221.131 −64.0000 0 313.936
1.2 −4.00000 0 16.0000 −41.6029 0 −203.321 −64.0000 0 166.412
1.3 −4.00000 0 16.0000 66.0868 0 114.190 −64.0000 0 −264.347
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.6.a.i 3
3.b odd 2 1 162.6.a.j 3
9.c even 3 2 54.6.c.b 6
9.d odd 6 2 18.6.c.b 6
36.f odd 6 2 432.6.i.b 6
36.h even 6 2 144.6.i.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.6.c.b 6 9.d odd 6 2
54.6.c.b 6 9.c even 3 2
144.6.i.b 6 36.h even 6 2
162.6.a.i 3 1.a even 1 1 trivial
162.6.a.j 3 3.b odd 2 1
432.6.i.b 6 36.f odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + 54T_{5}^{2} - 4671T_{5} - 215784 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 54 T^{2} + \cdots - 215784 \) Copy content Toggle raw display
$7$ \( T^{3} - 132 T^{2} + \cdots + 5134078 \) Copy content Toggle raw display
$11$ \( T^{3} + 315 T^{2} + \cdots - 41768163 \) Copy content Toggle raw display
$13$ \( T^{3} - 744 T^{2} + \cdots + 384824422 \) Copy content Toggle raw display
$17$ \( T^{3} + 1449 T^{2} + \cdots - 930192444 \) Copy content Toggle raw display
$19$ \( T^{3} - 1131 T^{2} + \cdots - 352455920 \) Copy content Toggle raw display
$23$ \( T^{3} + 3168 T^{2} + \cdots + 425600514 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 6505725654 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 59316561604 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 188019064016 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 2157363401913 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 513661035961 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 84596352750 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 1764512817552 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 5778215946243 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 5359653497960 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 3034793402875 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 139951336896 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 14322358753732 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 115303078320596 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 103421607911604 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 9104584153608 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 292114819729997 \) Copy content Toggle raw display
show more
show less