Properties

Label 162.6.a.a.1.1
Level $162$
Weight $6$
Character 162.1
Self dual yes
Analytic conductor $25.982$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,6,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9821788097\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -21.0000 q^{5} +74.0000 q^{7} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} -21.0000 q^{5} +74.0000 q^{7} -64.0000 q^{8} +84.0000 q^{10} -270.000 q^{11} -115.000 q^{13} -296.000 q^{14} +256.000 q^{16} +861.000 q^{17} +1850.00 q^{19} -336.000 q^{20} +1080.00 q^{22} -3618.00 q^{23} -2684.00 q^{25} +460.000 q^{26} +1184.00 q^{28} -1125.00 q^{29} +5228.00 q^{31} -1024.00 q^{32} -3444.00 q^{34} -1554.00 q^{35} +9917.00 q^{37} -7400.00 q^{38} +1344.00 q^{40} -10758.0 q^{41} -19714.0 q^{43} -4320.00 q^{44} +14472.0 q^{46} -9984.00 q^{47} -11331.0 q^{49} +10736.0 q^{50} -1840.00 q^{52} -36726.0 q^{53} +5670.00 q^{55} -4736.00 q^{56} +4500.00 q^{58} -26460.0 q^{59} -53779.0 q^{61} -20912.0 q^{62} +4096.00 q^{64} +2415.00 q^{65} -12934.0 q^{67} +13776.0 q^{68} +6216.00 q^{70} +4254.00 q^{71} -17521.0 q^{73} -39668.0 q^{74} +29600.0 q^{76} -19980.0 q^{77} -36946.0 q^{79} -5376.00 q^{80} +43032.0 q^{82} +76416.0 q^{83} -18081.0 q^{85} +78856.0 q^{86} +17280.0 q^{88} +45357.0 q^{89} -8510.00 q^{91} -57888.0 q^{92} +39936.0 q^{94} -38850.0 q^{95} +127574. q^{97} +45324.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −21.0000 −0.375659 −0.187830 0.982202i \(-0.560145\pi\)
−0.187830 + 0.982202i \(0.560145\pi\)
\(6\) 0 0
\(7\) 74.0000 0.570803 0.285402 0.958408i \(-0.407873\pi\)
0.285402 + 0.958408i \(0.407873\pi\)
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 84.0000 0.265631
\(11\) −270.000 −0.672794 −0.336397 0.941720i \(-0.609208\pi\)
−0.336397 + 0.941720i \(0.609208\pi\)
\(12\) 0 0
\(13\) −115.000 −0.188729 −0.0943647 0.995538i \(-0.530082\pi\)
−0.0943647 + 0.995538i \(0.530082\pi\)
\(14\) −296.000 −0.403619
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 861.000 0.722572 0.361286 0.932455i \(-0.382338\pi\)
0.361286 + 0.932455i \(0.382338\pi\)
\(18\) 0 0
\(19\) 1850.00 1.17568 0.587838 0.808979i \(-0.299979\pi\)
0.587838 + 0.808979i \(0.299979\pi\)
\(20\) −336.000 −0.187830
\(21\) 0 0
\(22\) 1080.00 0.475737
\(23\) −3618.00 −1.42610 −0.713048 0.701115i \(-0.752686\pi\)
−0.713048 + 0.701115i \(0.752686\pi\)
\(24\) 0 0
\(25\) −2684.00 −0.858880
\(26\) 460.000 0.133452
\(27\) 0 0
\(28\) 1184.00 0.285402
\(29\) −1125.00 −0.248403 −0.124202 0.992257i \(-0.539637\pi\)
−0.124202 + 0.992257i \(0.539637\pi\)
\(30\) 0 0
\(31\) 5228.00 0.977083 0.488541 0.872541i \(-0.337529\pi\)
0.488541 + 0.872541i \(0.337529\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −3444.00 −0.510935
\(35\) −1554.00 −0.214428
\(36\) 0 0
\(37\) 9917.00 1.19090 0.595451 0.803392i \(-0.296973\pi\)
0.595451 + 0.803392i \(0.296973\pi\)
\(38\) −7400.00 −0.831329
\(39\) 0 0
\(40\) 1344.00 0.132816
\(41\) −10758.0 −0.999475 −0.499737 0.866177i \(-0.666570\pi\)
−0.499737 + 0.866177i \(0.666570\pi\)
\(42\) 0 0
\(43\) −19714.0 −1.62594 −0.812968 0.582308i \(-0.802150\pi\)
−0.812968 + 0.582308i \(0.802150\pi\)
\(44\) −4320.00 −0.336397
\(45\) 0 0
\(46\) 14472.0 1.00840
\(47\) −9984.00 −0.659265 −0.329632 0.944109i \(-0.606925\pi\)
−0.329632 + 0.944109i \(0.606925\pi\)
\(48\) 0 0
\(49\) −11331.0 −0.674183
\(50\) 10736.0 0.607320
\(51\) 0 0
\(52\) −1840.00 −0.0943647
\(53\) −36726.0 −1.79591 −0.897954 0.440090i \(-0.854947\pi\)
−0.897954 + 0.440090i \(0.854947\pi\)
\(54\) 0 0
\(55\) 5670.00 0.252741
\(56\) −4736.00 −0.201810
\(57\) 0 0
\(58\) 4500.00 0.175648
\(59\) −26460.0 −0.989600 −0.494800 0.869007i \(-0.664759\pi\)
−0.494800 + 0.869007i \(0.664759\pi\)
\(60\) 0 0
\(61\) −53779.0 −1.85050 −0.925248 0.379363i \(-0.876143\pi\)
−0.925248 + 0.379363i \(0.876143\pi\)
\(62\) −20912.0 −0.690902
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 2415.00 0.0708980
\(66\) 0 0
\(67\) −12934.0 −0.352003 −0.176001 0.984390i \(-0.556316\pi\)
−0.176001 + 0.984390i \(0.556316\pi\)
\(68\) 13776.0 0.361286
\(69\) 0 0
\(70\) 6216.00 0.151623
\(71\) 4254.00 0.100150 0.0500751 0.998745i \(-0.484054\pi\)
0.0500751 + 0.998745i \(0.484054\pi\)
\(72\) 0 0
\(73\) −17521.0 −0.384815 −0.192407 0.981315i \(-0.561630\pi\)
−0.192407 + 0.981315i \(0.561630\pi\)
\(74\) −39668.0 −0.842095
\(75\) 0 0
\(76\) 29600.0 0.587838
\(77\) −19980.0 −0.384033
\(78\) 0 0
\(79\) −36946.0 −0.666039 −0.333020 0.942920i \(-0.608068\pi\)
−0.333020 + 0.942920i \(0.608068\pi\)
\(80\) −5376.00 −0.0939149
\(81\) 0 0
\(82\) 43032.0 0.706735
\(83\) 76416.0 1.21756 0.608778 0.793340i \(-0.291660\pi\)
0.608778 + 0.793340i \(0.291660\pi\)
\(84\) 0 0
\(85\) −18081.0 −0.271441
\(86\) 78856.0 1.14971
\(87\) 0 0
\(88\) 17280.0 0.237869
\(89\) 45357.0 0.606973 0.303486 0.952836i \(-0.401849\pi\)
0.303486 + 0.952836i \(0.401849\pi\)
\(90\) 0 0
\(91\) −8510.00 −0.107727
\(92\) −57888.0 −0.713048
\(93\) 0 0
\(94\) 39936.0 0.466171
\(95\) −38850.0 −0.441654
\(96\) 0 0
\(97\) 127574. 1.37668 0.688340 0.725388i \(-0.258340\pi\)
0.688340 + 0.725388i \(0.258340\pi\)
\(98\) 45324.0 0.476720
\(99\) 0 0
\(100\) −42944.0 −0.429440
\(101\) 78870.0 0.769322 0.384661 0.923058i \(-0.374318\pi\)
0.384661 + 0.923058i \(0.374318\pi\)
\(102\) 0 0
\(103\) −17488.0 −0.162423 −0.0812114 0.996697i \(-0.525879\pi\)
−0.0812114 + 0.996697i \(0.525879\pi\)
\(104\) 7360.00 0.0667259
\(105\) 0 0
\(106\) 146904. 1.26990
\(107\) 134364. 1.13455 0.567275 0.823529i \(-0.307998\pi\)
0.567275 + 0.823529i \(0.307998\pi\)
\(108\) 0 0
\(109\) −123487. −0.995531 −0.497766 0.867312i \(-0.665846\pi\)
−0.497766 + 0.867312i \(0.665846\pi\)
\(110\) −22680.0 −0.178715
\(111\) 0 0
\(112\) 18944.0 0.142701
\(113\) −174039. −1.28218 −0.641092 0.767464i \(-0.721518\pi\)
−0.641092 + 0.767464i \(0.721518\pi\)
\(114\) 0 0
\(115\) 75978.0 0.535727
\(116\) −18000.0 −0.124202
\(117\) 0 0
\(118\) 105840. 0.699753
\(119\) 63714.0 0.412446
\(120\) 0 0
\(121\) −88151.0 −0.547348
\(122\) 215116. 1.30850
\(123\) 0 0
\(124\) 83648.0 0.488541
\(125\) 121989. 0.698306
\(126\) 0 0
\(127\) −312982. −1.72191 −0.860954 0.508682i \(-0.830133\pi\)
−0.860954 + 0.508682i \(0.830133\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −9660.00 −0.0501324
\(131\) 105810. 0.538702 0.269351 0.963042i \(-0.413191\pi\)
0.269351 + 0.963042i \(0.413191\pi\)
\(132\) 0 0
\(133\) 136900. 0.671080
\(134\) 51736.0 0.248903
\(135\) 0 0
\(136\) −55104.0 −0.255468
\(137\) 284481. 1.29495 0.647473 0.762088i \(-0.275826\pi\)
0.647473 + 0.762088i \(0.275826\pi\)
\(138\) 0 0
\(139\) −162328. −0.712617 −0.356309 0.934368i \(-0.615965\pi\)
−0.356309 + 0.934368i \(0.615965\pi\)
\(140\) −24864.0 −0.107214
\(141\) 0 0
\(142\) −17016.0 −0.0708169
\(143\) 31050.0 0.126976
\(144\) 0 0
\(145\) 23625.0 0.0933151
\(146\) 70084.0 0.272105
\(147\) 0 0
\(148\) 158672. 0.595451
\(149\) 270711. 0.998942 0.499471 0.866331i \(-0.333528\pi\)
0.499471 + 0.866331i \(0.333528\pi\)
\(150\) 0 0
\(151\) −16852.0 −0.0601463 −0.0300732 0.999548i \(-0.509574\pi\)
−0.0300732 + 0.999548i \(0.509574\pi\)
\(152\) −118400. −0.415664
\(153\) 0 0
\(154\) 79920.0 0.271552
\(155\) −109788. −0.367050
\(156\) 0 0
\(157\) 247373. 0.800946 0.400473 0.916309i \(-0.368846\pi\)
0.400473 + 0.916309i \(0.368846\pi\)
\(158\) 147784. 0.470961
\(159\) 0 0
\(160\) 21504.0 0.0664078
\(161\) −267732. −0.814021
\(162\) 0 0
\(163\) −200116. −0.589947 −0.294973 0.955505i \(-0.595311\pi\)
−0.294973 + 0.955505i \(0.595311\pi\)
\(164\) −172128. −0.499737
\(165\) 0 0
\(166\) −305664. −0.860942
\(167\) −14118.0 −0.0391726 −0.0195863 0.999808i \(-0.506235\pi\)
−0.0195863 + 0.999808i \(0.506235\pi\)
\(168\) 0 0
\(169\) −358068. −0.964381
\(170\) 72324.0 0.191938
\(171\) 0 0
\(172\) −315424. −0.812968
\(173\) 48399.0 0.122948 0.0614740 0.998109i \(-0.480420\pi\)
0.0614740 + 0.998109i \(0.480420\pi\)
\(174\) 0 0
\(175\) −198616. −0.490252
\(176\) −69120.0 −0.168198
\(177\) 0 0
\(178\) −181428. −0.429195
\(179\) −375396. −0.875703 −0.437852 0.899047i \(-0.644261\pi\)
−0.437852 + 0.899047i \(0.644261\pi\)
\(180\) 0 0
\(181\) 440702. 0.999882 0.499941 0.866060i \(-0.333355\pi\)
0.499941 + 0.866060i \(0.333355\pi\)
\(182\) 34040.0 0.0761748
\(183\) 0 0
\(184\) 231552. 0.504201
\(185\) −208257. −0.447374
\(186\) 0 0
\(187\) −232470. −0.486142
\(188\) −159744. −0.329632
\(189\) 0 0
\(190\) 155400. 0.312296
\(191\) −486978. −0.965886 −0.482943 0.875652i \(-0.660432\pi\)
−0.482943 + 0.875652i \(0.660432\pi\)
\(192\) 0 0
\(193\) −104185. −0.201332 −0.100666 0.994920i \(-0.532097\pi\)
−0.100666 + 0.994920i \(0.532097\pi\)
\(194\) −510296. −0.973459
\(195\) 0 0
\(196\) −181296. −0.337092
\(197\) −39369.0 −0.0722751 −0.0361376 0.999347i \(-0.511505\pi\)
−0.0361376 + 0.999347i \(0.511505\pi\)
\(198\) 0 0
\(199\) 952484. 1.70500 0.852501 0.522725i \(-0.175085\pi\)
0.852501 + 0.522725i \(0.175085\pi\)
\(200\) 171776. 0.303660
\(201\) 0 0
\(202\) −315480. −0.543993
\(203\) −83250.0 −0.141790
\(204\) 0 0
\(205\) 225918. 0.375462
\(206\) 69952.0 0.114850
\(207\) 0 0
\(208\) −29440.0 −0.0471823
\(209\) −499500. −0.790988
\(210\) 0 0
\(211\) 441110. 0.682089 0.341044 0.940047i \(-0.389219\pi\)
0.341044 + 0.940047i \(0.389219\pi\)
\(212\) −587616. −0.897954
\(213\) 0 0
\(214\) −537456. −0.802248
\(215\) 413994. 0.610798
\(216\) 0 0
\(217\) 386872. 0.557722
\(218\) 493948. 0.703947
\(219\) 0 0
\(220\) 90720.0 0.126371
\(221\) −99015.0 −0.136370
\(222\) 0 0
\(223\) −825106. −1.11109 −0.555543 0.831488i \(-0.687490\pi\)
−0.555543 + 0.831488i \(0.687490\pi\)
\(224\) −75776.0 −0.100905
\(225\) 0 0
\(226\) 696156. 0.906641
\(227\) −1.15570e6 −1.48861 −0.744305 0.667839i \(-0.767219\pi\)
−0.744305 + 0.667839i \(0.767219\pi\)
\(228\) 0 0
\(229\) 1.34336e6 1.69279 0.846394 0.532557i \(-0.178769\pi\)
0.846394 + 0.532557i \(0.178769\pi\)
\(230\) −303912. −0.378816
\(231\) 0 0
\(232\) 72000.0 0.0878239
\(233\) −1.07555e6 −1.29790 −0.648950 0.760831i \(-0.724792\pi\)
−0.648950 + 0.760831i \(0.724792\pi\)
\(234\) 0 0
\(235\) 209664. 0.247659
\(236\) −423360. −0.494800
\(237\) 0 0
\(238\) −254856. −0.291644
\(239\) −36096.0 −0.0408756 −0.0204378 0.999791i \(-0.506506\pi\)
−0.0204378 + 0.999791i \(0.506506\pi\)
\(240\) 0 0
\(241\) 72875.0 0.0808232 0.0404116 0.999183i \(-0.487133\pi\)
0.0404116 + 0.999183i \(0.487133\pi\)
\(242\) 352604. 0.387034
\(243\) 0 0
\(244\) −860464. −0.925248
\(245\) 237951. 0.253263
\(246\) 0 0
\(247\) −212750. −0.221885
\(248\) −334592. −0.345451
\(249\) 0 0
\(250\) −487956. −0.493777
\(251\) 1.65869e6 1.66181 0.830906 0.556413i \(-0.187823\pi\)
0.830906 + 0.556413i \(0.187823\pi\)
\(252\) 0 0
\(253\) 976860. 0.959469
\(254\) 1.25193e6 1.21757
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 794181. 0.750044 0.375022 0.927016i \(-0.377635\pi\)
0.375022 + 0.927016i \(0.377635\pi\)
\(258\) 0 0
\(259\) 733858. 0.679771
\(260\) 38640.0 0.0354490
\(261\) 0 0
\(262\) −423240. −0.380920
\(263\) −1.59079e6 −1.41816 −0.709078 0.705130i \(-0.750889\pi\)
−0.709078 + 0.705130i \(0.750889\pi\)
\(264\) 0 0
\(265\) 771246. 0.674650
\(266\) −547600. −0.474525
\(267\) 0 0
\(268\) −206944. −0.176001
\(269\) −1.57975e6 −1.33109 −0.665545 0.746358i \(-0.731801\pi\)
−0.665545 + 0.746358i \(0.731801\pi\)
\(270\) 0 0
\(271\) −415762. −0.343892 −0.171946 0.985106i \(-0.555005\pi\)
−0.171946 + 0.985106i \(0.555005\pi\)
\(272\) 220416. 0.180643
\(273\) 0 0
\(274\) −1.13792e6 −0.915665
\(275\) 724680. 0.577849
\(276\) 0 0
\(277\) 562406. 0.440403 0.220202 0.975454i \(-0.429328\pi\)
0.220202 + 0.975454i \(0.429328\pi\)
\(278\) 649312. 0.503897
\(279\) 0 0
\(280\) 99456.0 0.0758116
\(281\) 2.42663e6 1.83331 0.916657 0.399675i \(-0.130877\pi\)
0.916657 + 0.399675i \(0.130877\pi\)
\(282\) 0 0
\(283\) −1.20293e6 −0.892843 −0.446421 0.894823i \(-0.647302\pi\)
−0.446421 + 0.894823i \(0.647302\pi\)
\(284\) 68064.0 0.0500751
\(285\) 0 0
\(286\) −124200. −0.0897856
\(287\) −796092. −0.570504
\(288\) 0 0
\(289\) −678536. −0.477890
\(290\) −94500.0 −0.0659837
\(291\) 0 0
\(292\) −280336. −0.192407
\(293\) 672471. 0.457619 0.228810 0.973471i \(-0.426517\pi\)
0.228810 + 0.973471i \(0.426517\pi\)
\(294\) 0 0
\(295\) 555660. 0.371753
\(296\) −634688. −0.421047
\(297\) 0 0
\(298\) −1.08284e6 −0.706359
\(299\) 416070. 0.269146
\(300\) 0 0
\(301\) −1.45884e6 −0.928090
\(302\) 67408.0 0.0425299
\(303\) 0 0
\(304\) 473600. 0.293919
\(305\) 1.12936e6 0.695156
\(306\) 0 0
\(307\) −2.79488e6 −1.69245 −0.846226 0.532823i \(-0.821131\pi\)
−0.846226 + 0.532823i \(0.821131\pi\)
\(308\) −319680. −0.192017
\(309\) 0 0
\(310\) 439152. 0.259544
\(311\) 3.05959e6 1.79375 0.896876 0.442281i \(-0.145831\pi\)
0.896876 + 0.442281i \(0.145831\pi\)
\(312\) 0 0
\(313\) 2.63474e6 1.52012 0.760059 0.649854i \(-0.225170\pi\)
0.760059 + 0.649854i \(0.225170\pi\)
\(314\) −989492. −0.566354
\(315\) 0 0
\(316\) −591136. −0.333020
\(317\) −808377. −0.451820 −0.225910 0.974148i \(-0.572536\pi\)
−0.225910 + 0.974148i \(0.572536\pi\)
\(318\) 0 0
\(319\) 303750. 0.167124
\(320\) −86016.0 −0.0469574
\(321\) 0 0
\(322\) 1.07093e6 0.575600
\(323\) 1.59285e6 0.849510
\(324\) 0 0
\(325\) 308660. 0.162096
\(326\) 800464. 0.417155
\(327\) 0 0
\(328\) 688512. 0.353368
\(329\) −738816. −0.376311
\(330\) 0 0
\(331\) −853678. −0.428276 −0.214138 0.976803i \(-0.568694\pi\)
−0.214138 + 0.976803i \(0.568694\pi\)
\(332\) 1.22266e6 0.608778
\(333\) 0 0
\(334\) 56472.0 0.0276992
\(335\) 271614. 0.132233
\(336\) 0 0
\(337\) 297878. 0.142877 0.0714387 0.997445i \(-0.477241\pi\)
0.0714387 + 0.997445i \(0.477241\pi\)
\(338\) 1.43227e6 0.681921
\(339\) 0 0
\(340\) −289296. −0.135720
\(341\) −1.41156e6 −0.657375
\(342\) 0 0
\(343\) −2.08221e6 −0.955630
\(344\) 1.26170e6 0.574855
\(345\) 0 0
\(346\) −193596. −0.0869373
\(347\) −88746.0 −0.0395663 −0.0197831 0.999804i \(-0.506298\pi\)
−0.0197831 + 0.999804i \(0.506298\pi\)
\(348\) 0 0
\(349\) 2.36175e6 1.03793 0.518967 0.854794i \(-0.326317\pi\)
0.518967 + 0.854794i \(0.326317\pi\)
\(350\) 794464. 0.346660
\(351\) 0 0
\(352\) 276480. 0.118934
\(353\) 3.86077e6 1.64906 0.824530 0.565818i \(-0.191439\pi\)
0.824530 + 0.565818i \(0.191439\pi\)
\(354\) 0 0
\(355\) −89334.0 −0.0376223
\(356\) 725712. 0.303486
\(357\) 0 0
\(358\) 1.50158e6 0.619216
\(359\) 3.74852e6 1.53505 0.767527 0.641017i \(-0.221487\pi\)
0.767527 + 0.641017i \(0.221487\pi\)
\(360\) 0 0
\(361\) 946401. 0.382215
\(362\) −1.76281e6 −0.707023
\(363\) 0 0
\(364\) −136160. −0.0538637
\(365\) 367941. 0.144559
\(366\) 0 0
\(367\) −2.66339e6 −1.03221 −0.516107 0.856524i \(-0.672619\pi\)
−0.516107 + 0.856524i \(0.672619\pi\)
\(368\) −926208. −0.356524
\(369\) 0 0
\(370\) 833028. 0.316341
\(371\) −2.71772e6 −1.02511
\(372\) 0 0
\(373\) 959870. 0.357224 0.178612 0.983920i \(-0.442839\pi\)
0.178612 + 0.983920i \(0.442839\pi\)
\(374\) 929880. 0.343754
\(375\) 0 0
\(376\) 638976. 0.233085
\(377\) 129375. 0.0468810
\(378\) 0 0
\(379\) −193780. −0.0692964 −0.0346482 0.999400i \(-0.511031\pi\)
−0.0346482 + 0.999400i \(0.511031\pi\)
\(380\) −621600. −0.220827
\(381\) 0 0
\(382\) 1.94791e6 0.682985
\(383\) −5.55393e6 −1.93465 −0.967327 0.253531i \(-0.918408\pi\)
−0.967327 + 0.253531i \(0.918408\pi\)
\(384\) 0 0
\(385\) 419580. 0.144266
\(386\) 416740. 0.142363
\(387\) 0 0
\(388\) 2.04118e6 0.688340
\(389\) 4.82795e6 1.61767 0.808833 0.588038i \(-0.200099\pi\)
0.808833 + 0.588038i \(0.200099\pi\)
\(390\) 0 0
\(391\) −3.11510e6 −1.03046
\(392\) 725184. 0.238360
\(393\) 0 0
\(394\) 157476. 0.0511062
\(395\) 775866. 0.250204
\(396\) 0 0
\(397\) 313409. 0.0998011 0.0499005 0.998754i \(-0.484110\pi\)
0.0499005 + 0.998754i \(0.484110\pi\)
\(398\) −3.80994e6 −1.20562
\(399\) 0 0
\(400\) −687104. −0.214720
\(401\) −5.28290e6 −1.64063 −0.820316 0.571911i \(-0.806202\pi\)
−0.820316 + 0.571911i \(0.806202\pi\)
\(402\) 0 0
\(403\) −601220. −0.184404
\(404\) 1.26192e6 0.384661
\(405\) 0 0
\(406\) 333000. 0.100260
\(407\) −2.67759e6 −0.801232
\(408\) 0 0
\(409\) 4.58812e6 1.35621 0.678104 0.734966i \(-0.262802\pi\)
0.678104 + 0.734966i \(0.262802\pi\)
\(410\) −903672. −0.265492
\(411\) 0 0
\(412\) −279808. −0.0812114
\(413\) −1.95804e6 −0.564867
\(414\) 0 0
\(415\) −1.60474e6 −0.457387
\(416\) 117760. 0.0333630
\(417\) 0 0
\(418\) 1.99800e6 0.559313
\(419\) 2.36698e6 0.658656 0.329328 0.944216i \(-0.393178\pi\)
0.329328 + 0.944216i \(0.393178\pi\)
\(420\) 0 0
\(421\) −454795. −0.125058 −0.0625289 0.998043i \(-0.519917\pi\)
−0.0625289 + 0.998043i \(0.519917\pi\)
\(422\) −1.76444e6 −0.482309
\(423\) 0 0
\(424\) 2.35046e6 0.634949
\(425\) −2.31092e6 −0.620602
\(426\) 0 0
\(427\) −3.97965e6 −1.05627
\(428\) 2.14982e6 0.567275
\(429\) 0 0
\(430\) −1.65598e6 −0.431900
\(431\) −1.26286e6 −0.327462 −0.163731 0.986505i \(-0.552353\pi\)
−0.163731 + 0.986505i \(0.552353\pi\)
\(432\) 0 0
\(433\) 5.48900e6 1.40693 0.703467 0.710728i \(-0.251634\pi\)
0.703467 + 0.710728i \(0.251634\pi\)
\(434\) −1.54749e6 −0.394369
\(435\) 0 0
\(436\) −1.97579e6 −0.497766
\(437\) −6.69330e6 −1.67663
\(438\) 0 0
\(439\) −6.11644e6 −1.51474 −0.757369 0.652987i \(-0.773515\pi\)
−0.757369 + 0.652987i \(0.773515\pi\)
\(440\) −362880. −0.0893576
\(441\) 0 0
\(442\) 396060. 0.0964285
\(443\) −739200. −0.178959 −0.0894793 0.995989i \(-0.528520\pi\)
−0.0894793 + 0.995989i \(0.528520\pi\)
\(444\) 0 0
\(445\) −952497. −0.228015
\(446\) 3.30042e6 0.785656
\(447\) 0 0
\(448\) 303104. 0.0713504
\(449\) −7.31432e6 −1.71221 −0.856107 0.516799i \(-0.827124\pi\)
−0.856107 + 0.516799i \(0.827124\pi\)
\(450\) 0 0
\(451\) 2.90466e6 0.672441
\(452\) −2.78462e6 −0.641092
\(453\) 0 0
\(454\) 4.62281e6 1.05261
\(455\) 178710. 0.0404688
\(456\) 0 0
\(457\) −7.68904e6 −1.72219 −0.861096 0.508443i \(-0.830221\pi\)
−0.861096 + 0.508443i \(0.830221\pi\)
\(458\) −5.37343e6 −1.19698
\(459\) 0 0
\(460\) 1.21565e6 0.267863
\(461\) 5.93937e6 1.30163 0.650816 0.759236i \(-0.274427\pi\)
0.650816 + 0.759236i \(0.274427\pi\)
\(462\) 0 0
\(463\) −455956. −0.0988486 −0.0494243 0.998778i \(-0.515739\pi\)
−0.0494243 + 0.998778i \(0.515739\pi\)
\(464\) −288000. −0.0621008
\(465\) 0 0
\(466\) 4.30220e6 0.917754
\(467\) 5.97097e6 1.26693 0.633465 0.773771i \(-0.281632\pi\)
0.633465 + 0.773771i \(0.281632\pi\)
\(468\) 0 0
\(469\) −957116. −0.200924
\(470\) −838656. −0.175121
\(471\) 0 0
\(472\) 1.69344e6 0.349877
\(473\) 5.32278e6 1.09392
\(474\) 0 0
\(475\) −4.96540e6 −1.00976
\(476\) 1.01942e6 0.206223
\(477\) 0 0
\(478\) 144384. 0.0289034
\(479\) −4.24839e6 −0.846030 −0.423015 0.906123i \(-0.639028\pi\)
−0.423015 + 0.906123i \(0.639028\pi\)
\(480\) 0 0
\(481\) −1.14046e6 −0.224758
\(482\) −291500. −0.0571506
\(483\) 0 0
\(484\) −1.41042e6 −0.273674
\(485\) −2.67905e6 −0.517163
\(486\) 0 0
\(487\) −1.04048e6 −0.198797 −0.0993985 0.995048i \(-0.531692\pi\)
−0.0993985 + 0.995048i \(0.531692\pi\)
\(488\) 3.44186e6 0.654249
\(489\) 0 0
\(490\) −951804. −0.179084
\(491\) −5.55698e6 −1.04024 −0.520122 0.854092i \(-0.674113\pi\)
−0.520122 + 0.854092i \(0.674113\pi\)
\(492\) 0 0
\(493\) −968625. −0.179489
\(494\) 851000. 0.156896
\(495\) 0 0
\(496\) 1.33837e6 0.244271
\(497\) 314796. 0.0571661
\(498\) 0 0
\(499\) −353278. −0.0635134 −0.0317567 0.999496i \(-0.510110\pi\)
−0.0317567 + 0.999496i \(0.510110\pi\)
\(500\) 1.95182e6 0.349153
\(501\) 0 0
\(502\) −6.63478e6 −1.17508
\(503\) −4.21978e6 −0.743651 −0.371826 0.928303i \(-0.621268\pi\)
−0.371826 + 0.928303i \(0.621268\pi\)
\(504\) 0 0
\(505\) −1.65627e6 −0.289003
\(506\) −3.90744e6 −0.678447
\(507\) 0 0
\(508\) −5.00771e6 −0.860954
\(509\) −346134. −0.0592175 −0.0296087 0.999562i \(-0.509426\pi\)
−0.0296087 + 0.999562i \(0.509426\pi\)
\(510\) 0 0
\(511\) −1.29655e6 −0.219654
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −3.17672e6 −0.530361
\(515\) 367248. 0.0610157
\(516\) 0 0
\(517\) 2.69568e6 0.443549
\(518\) −2.93543e6 −0.480671
\(519\) 0 0
\(520\) −154560. −0.0250662
\(521\) −1.90025e6 −0.306703 −0.153351 0.988172i \(-0.549007\pi\)
−0.153351 + 0.988172i \(0.549007\pi\)
\(522\) 0 0
\(523\) −5.16589e6 −0.825831 −0.412915 0.910769i \(-0.635489\pi\)
−0.412915 + 0.910769i \(0.635489\pi\)
\(524\) 1.69296e6 0.269351
\(525\) 0 0
\(526\) 6.36317e6 1.00279
\(527\) 4.50131e6 0.706012
\(528\) 0 0
\(529\) 6.65358e6 1.03375
\(530\) −3.08498e6 −0.477049
\(531\) 0 0
\(532\) 2.19040e6 0.335540
\(533\) 1.23717e6 0.188630
\(534\) 0 0
\(535\) −2.82164e6 −0.426204
\(536\) 827776. 0.124452
\(537\) 0 0
\(538\) 6.31900e6 0.941223
\(539\) 3.05937e6 0.453586
\(540\) 0 0
\(541\) 4.15125e6 0.609797 0.304899 0.952385i \(-0.401377\pi\)
0.304899 + 0.952385i \(0.401377\pi\)
\(542\) 1.66305e6 0.243168
\(543\) 0 0
\(544\) −881664. −0.127734
\(545\) 2.59323e6 0.373981
\(546\) 0 0
\(547\) 9.12524e6 1.30400 0.651998 0.758221i \(-0.273931\pi\)
0.651998 + 0.758221i \(0.273931\pi\)
\(548\) 4.55170e6 0.647473
\(549\) 0 0
\(550\) −2.89872e6 −0.408601
\(551\) −2.08125e6 −0.292042
\(552\) 0 0
\(553\) −2.73400e6 −0.380177
\(554\) −2.24962e6 −0.311412
\(555\) 0 0
\(556\) −2.59725e6 −0.356309
\(557\) 3.78858e6 0.517415 0.258707 0.965956i \(-0.416703\pi\)
0.258707 + 0.965956i \(0.416703\pi\)
\(558\) 0 0
\(559\) 2.26711e6 0.306862
\(560\) −397824. −0.0536069
\(561\) 0 0
\(562\) −9.70650e6 −1.29635
\(563\) −5.68666e6 −0.756112 −0.378056 0.925783i \(-0.623407\pi\)
−0.378056 + 0.925783i \(0.623407\pi\)
\(564\) 0 0
\(565\) 3.65482e6 0.481665
\(566\) 4.81173e6 0.631335
\(567\) 0 0
\(568\) −272256. −0.0354084
\(569\) 1.05039e7 1.36010 0.680048 0.733168i \(-0.261959\pi\)
0.680048 + 0.733168i \(0.261959\pi\)
\(570\) 0 0
\(571\) 7.00992e6 0.899751 0.449876 0.893091i \(-0.351468\pi\)
0.449876 + 0.893091i \(0.351468\pi\)
\(572\) 496800. 0.0634880
\(573\) 0 0
\(574\) 3.18437e6 0.403407
\(575\) 9.71071e6 1.22485
\(576\) 0 0
\(577\) −3.54196e6 −0.442898 −0.221449 0.975172i \(-0.571079\pi\)
−0.221449 + 0.975172i \(0.571079\pi\)
\(578\) 2.71414e6 0.337920
\(579\) 0 0
\(580\) 378000. 0.0466575
\(581\) 5.65478e6 0.694985
\(582\) 0 0
\(583\) 9.91602e6 1.20828
\(584\) 1.12134e6 0.136053
\(585\) 0 0
\(586\) −2.68988e6 −0.323586
\(587\) −1.52778e7 −1.83006 −0.915032 0.403381i \(-0.867835\pi\)
−0.915032 + 0.403381i \(0.867835\pi\)
\(588\) 0 0
\(589\) 9.67180e6 1.14873
\(590\) −2.22264e6 −0.262869
\(591\) 0 0
\(592\) 2.53875e6 0.297725
\(593\) 278457. 0.0325178 0.0162589 0.999868i \(-0.494824\pi\)
0.0162589 + 0.999868i \(0.494824\pi\)
\(594\) 0 0
\(595\) −1.33799e6 −0.154939
\(596\) 4.33138e6 0.499471
\(597\) 0 0
\(598\) −1.66428e6 −0.190315
\(599\) 1.00636e7 1.14601 0.573003 0.819553i \(-0.305778\pi\)
0.573003 + 0.819553i \(0.305778\pi\)
\(600\) 0 0
\(601\) 1.36578e7 1.54239 0.771194 0.636600i \(-0.219660\pi\)
0.771194 + 0.636600i \(0.219660\pi\)
\(602\) 5.83534e6 0.656259
\(603\) 0 0
\(604\) −269632. −0.0300732
\(605\) 1.85117e6 0.205617
\(606\) 0 0
\(607\) −8.95938e6 −0.986975 −0.493487 0.869753i \(-0.664278\pi\)
−0.493487 + 0.869753i \(0.664278\pi\)
\(608\) −1.89440e6 −0.207832
\(609\) 0 0
\(610\) −4.51744e6 −0.491550
\(611\) 1.14816e6 0.124423
\(612\) 0 0
\(613\) 529958. 0.0569627 0.0284813 0.999594i \(-0.490933\pi\)
0.0284813 + 0.999594i \(0.490933\pi\)
\(614\) 1.11795e7 1.19674
\(615\) 0 0
\(616\) 1.27872e6 0.135776
\(617\) 5.97027e6 0.631366 0.315683 0.948865i \(-0.397766\pi\)
0.315683 + 0.948865i \(0.397766\pi\)
\(618\) 0 0
\(619\) −1.17134e6 −0.122873 −0.0614363 0.998111i \(-0.519568\pi\)
−0.0614363 + 0.998111i \(0.519568\pi\)
\(620\) −1.75661e6 −0.183525
\(621\) 0 0
\(622\) −1.22384e7 −1.26837
\(623\) 3.35642e6 0.346462
\(624\) 0 0
\(625\) 5.82573e6 0.596555
\(626\) −1.05390e7 −1.07489
\(627\) 0 0
\(628\) 3.95797e6 0.400473
\(629\) 8.53854e6 0.860512
\(630\) 0 0
\(631\) −1.49126e7 −1.49101 −0.745504 0.666501i \(-0.767791\pi\)
−0.745504 + 0.666501i \(0.767791\pi\)
\(632\) 2.36454e6 0.235480
\(633\) 0 0
\(634\) 3.23351e6 0.319485
\(635\) 6.57262e6 0.646851
\(636\) 0 0
\(637\) 1.30306e6 0.127238
\(638\) −1.21500e6 −0.118175
\(639\) 0 0
\(640\) 344064. 0.0332039
\(641\) −7.88504e6 −0.757981 −0.378991 0.925400i \(-0.623729\pi\)
−0.378991 + 0.925400i \(0.623729\pi\)
\(642\) 0 0
\(643\) 1.85804e6 0.177226 0.0886130 0.996066i \(-0.471757\pi\)
0.0886130 + 0.996066i \(0.471757\pi\)
\(644\) −4.28371e6 −0.407010
\(645\) 0 0
\(646\) −6.37140e6 −0.600694
\(647\) 1.54147e6 0.144768 0.0723841 0.997377i \(-0.476939\pi\)
0.0723841 + 0.997377i \(0.476939\pi\)
\(648\) 0 0
\(649\) 7.14420e6 0.665797
\(650\) −1.23464e6 −0.114619
\(651\) 0 0
\(652\) −3.20186e6 −0.294973
\(653\) −4.13336e6 −0.379333 −0.189666 0.981849i \(-0.560741\pi\)
−0.189666 + 0.981849i \(0.560741\pi\)
\(654\) 0 0
\(655\) −2.22201e6 −0.202368
\(656\) −2.75405e6 −0.249869
\(657\) 0 0
\(658\) 2.95526e6 0.266092
\(659\) 1.70820e7 1.53224 0.766118 0.642699i \(-0.222186\pi\)
0.766118 + 0.642699i \(0.222186\pi\)
\(660\) 0 0
\(661\) −6.14644e6 −0.547167 −0.273584 0.961848i \(-0.588209\pi\)
−0.273584 + 0.961848i \(0.588209\pi\)
\(662\) 3.41471e6 0.302837
\(663\) 0 0
\(664\) −4.89062e6 −0.430471
\(665\) −2.87490e6 −0.252098
\(666\) 0 0
\(667\) 4.07025e6 0.354247
\(668\) −225888. −0.0195863
\(669\) 0 0
\(670\) −1.08646e6 −0.0935029
\(671\) 1.45203e7 1.24500
\(672\) 0 0
\(673\) 8.72496e6 0.742550 0.371275 0.928523i \(-0.378921\pi\)
0.371275 + 0.928523i \(0.378921\pi\)
\(674\) −1.19151e6 −0.101030
\(675\) 0 0
\(676\) −5.72909e6 −0.482191
\(677\) −1.18449e7 −0.993250 −0.496625 0.867965i \(-0.665428\pi\)
−0.496625 + 0.867965i \(0.665428\pi\)
\(678\) 0 0
\(679\) 9.44048e6 0.785813
\(680\) 1.15718e6 0.0959688
\(681\) 0 0
\(682\) 5.64624e6 0.464835
\(683\) −4.03085e6 −0.330632 −0.165316 0.986241i \(-0.552864\pi\)
−0.165316 + 0.986241i \(0.552864\pi\)
\(684\) 0 0
\(685\) −5.97410e6 −0.486459
\(686\) 8.32885e6 0.675732
\(687\) 0 0
\(688\) −5.04678e6 −0.406484
\(689\) 4.22349e6 0.338940
\(690\) 0 0
\(691\) 3.22921e6 0.257277 0.128639 0.991692i \(-0.458939\pi\)
0.128639 + 0.991692i \(0.458939\pi\)
\(692\) 774384. 0.0614740
\(693\) 0 0
\(694\) 354984. 0.0279776
\(695\) 3.40889e6 0.267701
\(696\) 0 0
\(697\) −9.26264e6 −0.722192
\(698\) −9.44698e6 −0.733930
\(699\) 0 0
\(700\) −3.17786e6 −0.245126
\(701\) −1.34398e7 −1.03300 −0.516499 0.856288i \(-0.672765\pi\)
−0.516499 + 0.856288i \(0.672765\pi\)
\(702\) 0 0
\(703\) 1.83464e7 1.40012
\(704\) −1.10592e6 −0.0840992
\(705\) 0 0
\(706\) −1.54431e7 −1.16606
\(707\) 5.83638e6 0.439132
\(708\) 0 0
\(709\) −2.08300e7 −1.55623 −0.778114 0.628123i \(-0.783823\pi\)
−0.778114 + 0.628123i \(0.783823\pi\)
\(710\) 357336. 0.0266030
\(711\) 0 0
\(712\) −2.90285e6 −0.214597
\(713\) −1.89149e7 −1.39341
\(714\) 0 0
\(715\) −652050. −0.0476997
\(716\) −6.00634e6 −0.437852
\(717\) 0 0
\(718\) −1.49941e7 −1.08545
\(719\) −2.57779e7 −1.85963 −0.929813 0.368032i \(-0.880032\pi\)
−0.929813 + 0.368032i \(0.880032\pi\)
\(720\) 0 0
\(721\) −1.29411e6 −0.0927115
\(722\) −3.78560e6 −0.270266
\(723\) 0 0
\(724\) 7.05123e6 0.499941
\(725\) 3.01950e6 0.213349
\(726\) 0 0
\(727\) −7.24491e6 −0.508390 −0.254195 0.967153i \(-0.581811\pi\)
−0.254195 + 0.967153i \(0.581811\pi\)
\(728\) 544640. 0.0380874
\(729\) 0 0
\(730\) −1.47176e6 −0.102219
\(731\) −1.69738e7 −1.17486
\(732\) 0 0
\(733\) −5.64272e6 −0.387908 −0.193954 0.981011i \(-0.562131\pi\)
−0.193954 + 0.981011i \(0.562131\pi\)
\(734\) 1.06536e7 0.729886
\(735\) 0 0
\(736\) 3.70483e6 0.252101
\(737\) 3.49218e6 0.236825
\(738\) 0 0
\(739\) 1.72501e7 1.16193 0.580967 0.813927i \(-0.302674\pi\)
0.580967 + 0.813927i \(0.302674\pi\)
\(740\) −3.33211e6 −0.223687
\(741\) 0 0
\(742\) 1.08709e7 0.724862
\(743\) −1.29346e7 −0.859572 −0.429786 0.902931i \(-0.641411\pi\)
−0.429786 + 0.902931i \(0.641411\pi\)
\(744\) 0 0
\(745\) −5.68493e6 −0.375262
\(746\) −3.83948e6 −0.252595
\(747\) 0 0
\(748\) −3.71952e6 −0.243071
\(749\) 9.94294e6 0.647605
\(750\) 0 0
\(751\) 5.69809e6 0.368663 0.184332 0.982864i \(-0.440988\pi\)
0.184332 + 0.982864i \(0.440988\pi\)
\(752\) −2.55590e6 −0.164816
\(753\) 0 0
\(754\) −517500. −0.0331499
\(755\) 353892. 0.0225945
\(756\) 0 0
\(757\) 3.72388e6 0.236187 0.118093 0.993002i \(-0.462322\pi\)
0.118093 + 0.993002i \(0.462322\pi\)
\(758\) 775120. 0.0490000
\(759\) 0 0
\(760\) 2.48640e6 0.156148
\(761\) −1.76947e7 −1.10759 −0.553797 0.832652i \(-0.686822\pi\)
−0.553797 + 0.832652i \(0.686822\pi\)
\(762\) 0 0
\(763\) −9.13804e6 −0.568253
\(764\) −7.79165e6 −0.482943
\(765\) 0 0
\(766\) 2.22157e7 1.36801
\(767\) 3.04290e6 0.186767
\(768\) 0 0
\(769\) 1.66580e7 1.01580 0.507900 0.861416i \(-0.330422\pi\)
0.507900 + 0.861416i \(0.330422\pi\)
\(770\) −1.67832e6 −0.102011
\(771\) 0 0
\(772\) −1.66696e6 −0.100666
\(773\) −2.04852e6 −0.123308 −0.0616539 0.998098i \(-0.519638\pi\)
−0.0616539 + 0.998098i \(0.519638\pi\)
\(774\) 0 0
\(775\) −1.40320e7 −0.839197
\(776\) −8.16474e6 −0.486730
\(777\) 0 0
\(778\) −1.93118e7 −1.14386
\(779\) −1.99023e7 −1.17506
\(780\) 0 0
\(781\) −1.14858e6 −0.0673804
\(782\) 1.24604e7 0.728643
\(783\) 0 0
\(784\) −2.90074e6 −0.168546
\(785\) −5.19483e6 −0.300883
\(786\) 0 0
\(787\) 7.56597e6 0.435439 0.217720 0.976011i \(-0.430138\pi\)
0.217720 + 0.976011i \(0.430138\pi\)
\(788\) −629904. −0.0361376
\(789\) 0 0
\(790\) −3.10346e6 −0.176921
\(791\) −1.28789e7 −0.731875
\(792\) 0 0
\(793\) 6.18458e6 0.349243
\(794\) −1.25364e6 −0.0705700
\(795\) 0 0
\(796\) 1.52397e7 0.852501
\(797\) −1.00735e6 −0.0561738 −0.0280869 0.999605i \(-0.508942\pi\)
−0.0280869 + 0.999605i \(0.508942\pi\)
\(798\) 0 0
\(799\) −8.59622e6 −0.476366
\(800\) 2.74842e6 0.151830
\(801\) 0 0
\(802\) 2.11316e7 1.16010
\(803\) 4.73067e6 0.258901
\(804\) 0 0
\(805\) 5.62237e6 0.305795
\(806\) 2.40488e6 0.130393
\(807\) 0 0
\(808\) −5.04768e6 −0.271997
\(809\) 2.37253e7 1.27450 0.637251 0.770657i \(-0.280072\pi\)
0.637251 + 0.770657i \(0.280072\pi\)
\(810\) 0 0
\(811\) 2.09278e7 1.11730 0.558652 0.829402i \(-0.311319\pi\)
0.558652 + 0.829402i \(0.311319\pi\)
\(812\) −1.33200e6 −0.0708948
\(813\) 0 0
\(814\) 1.07104e7 0.566556
\(815\) 4.20244e6 0.221619
\(816\) 0 0
\(817\) −3.64709e7 −1.91157
\(818\) −1.83525e7 −0.958983
\(819\) 0 0
\(820\) 3.61469e6 0.187731
\(821\) −1.39287e7 −0.721194 −0.360597 0.932722i \(-0.617427\pi\)
−0.360597 + 0.932722i \(0.617427\pi\)
\(822\) 0 0
\(823\) −1.99553e7 −1.02697 −0.513486 0.858098i \(-0.671646\pi\)
−0.513486 + 0.858098i \(0.671646\pi\)
\(824\) 1.11923e6 0.0574251
\(825\) 0 0
\(826\) 7.83216e6 0.399421
\(827\) 2.48097e7 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(828\) 0 0
\(829\) 1.22092e6 0.0617021 0.0308511 0.999524i \(-0.490178\pi\)
0.0308511 + 0.999524i \(0.490178\pi\)
\(830\) 6.41894e6 0.323421
\(831\) 0 0
\(832\) −471040. −0.0235912
\(833\) −9.75599e6 −0.487146
\(834\) 0 0
\(835\) 296478. 0.0147155
\(836\) −7.99200e6 −0.395494
\(837\) 0 0
\(838\) −9.46790e6 −0.465740
\(839\) 1.76184e7 0.864095 0.432048 0.901851i \(-0.357791\pi\)
0.432048 + 0.901851i \(0.357791\pi\)
\(840\) 0 0
\(841\) −1.92455e7 −0.938296
\(842\) 1.81918e6 0.0884291
\(843\) 0 0
\(844\) 7.05776e6 0.341044
\(845\) 7.51943e6 0.362279
\(846\) 0 0
\(847\) −6.52317e6 −0.312428
\(848\) −9.40186e6 −0.448977
\(849\) 0 0
\(850\) 9.24370e6 0.438832
\(851\) −3.58797e7 −1.69834
\(852\) 0 0
\(853\) 3.43560e7 1.61670 0.808350 0.588702i \(-0.200361\pi\)
0.808350 + 0.588702i \(0.200361\pi\)
\(854\) 1.59186e7 0.746895
\(855\) 0 0
\(856\) −8.59930e6 −0.401124
\(857\) 987261. 0.0459177 0.0229588 0.999736i \(-0.492691\pi\)
0.0229588 + 0.999736i \(0.492691\pi\)
\(858\) 0 0
\(859\) 4.11853e7 1.90440 0.952202 0.305471i \(-0.0988138\pi\)
0.952202 + 0.305471i \(0.0988138\pi\)
\(860\) 6.62390e6 0.305399
\(861\) 0 0
\(862\) 5.05142e6 0.231550
\(863\) −2.07182e7 −0.946946 −0.473473 0.880808i \(-0.657000\pi\)
−0.473473 + 0.880808i \(0.657000\pi\)
\(864\) 0 0
\(865\) −1.01638e6 −0.0461865
\(866\) −2.19560e7 −0.994853
\(867\) 0 0
\(868\) 6.18995e6 0.278861
\(869\) 9.97542e6 0.448107
\(870\) 0 0
\(871\) 1.48741e6 0.0664332
\(872\) 7.90317e6 0.351974
\(873\) 0 0
\(874\) 2.67732e7 1.18555
\(875\) 9.02719e6 0.398595
\(876\) 0 0
\(877\) −3.70347e7 −1.62596 −0.812979 0.582293i \(-0.802156\pi\)
−0.812979 + 0.582293i \(0.802156\pi\)
\(878\) 2.44658e7 1.07108
\(879\) 0 0
\(880\) 1.45152e6 0.0631853
\(881\) 7.00502e6 0.304067 0.152034 0.988375i \(-0.451418\pi\)
0.152034 + 0.988375i \(0.451418\pi\)
\(882\) 0 0
\(883\) 5.47102e6 0.236139 0.118069 0.993005i \(-0.462330\pi\)
0.118069 + 0.993005i \(0.462330\pi\)
\(884\) −1.58424e6 −0.0681852
\(885\) 0 0
\(886\) 2.95680e6 0.126543
\(887\) −2.18980e6 −0.0934535 −0.0467268 0.998908i \(-0.514879\pi\)
−0.0467268 + 0.998908i \(0.514879\pi\)
\(888\) 0 0
\(889\) −2.31607e7 −0.982871
\(890\) 3.80999e6 0.161231
\(891\) 0 0
\(892\) −1.32017e7 −0.555543
\(893\) −1.84704e7 −0.775082
\(894\) 0 0
\(895\) 7.88332e6 0.328966
\(896\) −1.21242e6 −0.0504524
\(897\) 0 0
\(898\) 2.92573e7 1.21072
\(899\) −5.88150e6 −0.242711
\(900\) 0 0
\(901\) −3.16211e7 −1.29767
\(902\) −1.16186e7 −0.475487
\(903\) 0 0
\(904\) 1.11385e7 0.453321
\(905\) −9.25474e6 −0.375615
\(906\) 0 0
\(907\) 4.86544e7 1.96383 0.981916 0.189318i \(-0.0606277\pi\)
0.981916 + 0.189318i \(0.0606277\pi\)
\(908\) −1.84912e7 −0.744305
\(909\) 0 0
\(910\) −714840. −0.0286158
\(911\) 4.70792e7 1.87946 0.939730 0.341918i \(-0.111076\pi\)
0.939730 + 0.341918i \(0.111076\pi\)
\(912\) 0 0
\(913\) −2.06323e7 −0.819164
\(914\) 3.07561e7 1.21777
\(915\) 0 0
\(916\) 2.14937e7 0.846394
\(917\) 7.82994e6 0.307493
\(918\) 0 0
\(919\) −2.23428e7 −0.872667 −0.436333 0.899785i \(-0.643723\pi\)
−0.436333 + 0.899785i \(0.643723\pi\)
\(920\) −4.86259e6 −0.189408
\(921\) 0 0
\(922\) −2.37575e7 −0.920392
\(923\) −489210. −0.0189013
\(924\) 0 0
\(925\) −2.66172e7 −1.02284
\(926\) 1.82382e6 0.0698965
\(927\) 0 0
\(928\) 1.15200e6 0.0439119
\(929\) 2.02185e7 0.768618 0.384309 0.923205i \(-0.374440\pi\)
0.384309 + 0.923205i \(0.374440\pi\)
\(930\) 0 0
\(931\) −2.09624e7 −0.792621
\(932\) −1.72088e7 −0.648950
\(933\) 0 0
\(934\) −2.38839e7 −0.895855
\(935\) 4.88187e6 0.182624
\(936\) 0 0
\(937\) −3.88053e7 −1.44392 −0.721959 0.691936i \(-0.756758\pi\)
−0.721959 + 0.691936i \(0.756758\pi\)
\(938\) 3.82846e6 0.142075
\(939\) 0 0
\(940\) 3.35462e6 0.123830
\(941\) 2.78114e7 1.02388 0.511940 0.859021i \(-0.328927\pi\)
0.511940 + 0.859021i \(0.328927\pi\)
\(942\) 0 0
\(943\) 3.89224e7 1.42535
\(944\) −6.77376e6 −0.247400
\(945\) 0 0
\(946\) −2.12911e7 −0.773518
\(947\) 3.82392e7 1.38559 0.692794 0.721135i \(-0.256379\pi\)
0.692794 + 0.721135i \(0.256379\pi\)
\(948\) 0 0
\(949\) 2.01491e6 0.0726258
\(950\) 1.98616e7 0.714012
\(951\) 0 0
\(952\) −4.07770e6 −0.145822
\(953\) −1.01512e7 −0.362065 −0.181033 0.983477i \(-0.557944\pi\)
−0.181033 + 0.983477i \(0.557944\pi\)
\(954\) 0 0
\(955\) 1.02265e7 0.362844
\(956\) −577536. −0.0204378
\(957\) 0 0
\(958\) 1.69936e7 0.598233
\(959\) 2.10516e7 0.739160
\(960\) 0 0
\(961\) −1.29717e6 −0.0453093
\(962\) 4.56182e6 0.158928
\(963\) 0 0
\(964\) 1.16600e6 0.0404116
\(965\) 2.18788e6 0.0756321
\(966\) 0 0
\(967\) −1.41574e7 −0.486876 −0.243438 0.969916i \(-0.578275\pi\)
−0.243438 + 0.969916i \(0.578275\pi\)
\(968\) 5.64166e6 0.193517
\(969\) 0 0
\(970\) 1.07162e7 0.365689
\(971\) −1.50291e6 −0.0511546 −0.0255773 0.999673i \(-0.508142\pi\)
−0.0255773 + 0.999673i \(0.508142\pi\)
\(972\) 0 0
\(973\) −1.20123e7 −0.406765
\(974\) 4.16190e6 0.140571
\(975\) 0 0
\(976\) −1.37674e7 −0.462624
\(977\) 2.88920e7 0.968371 0.484185 0.874965i \(-0.339116\pi\)
0.484185 + 0.874965i \(0.339116\pi\)
\(978\) 0 0
\(979\) −1.22464e7 −0.408368
\(980\) 3.80722e6 0.126632
\(981\) 0 0
\(982\) 2.22279e7 0.735563
\(983\) −7.71598e6 −0.254687 −0.127344 0.991859i \(-0.540645\pi\)
−0.127344 + 0.991859i \(0.540645\pi\)
\(984\) 0 0
\(985\) 826749. 0.0271508
\(986\) 3.87450e6 0.126918
\(987\) 0 0
\(988\) −3.40400e6 −0.110942
\(989\) 7.13253e7 2.31874
\(990\) 0 0
\(991\) −1.87209e7 −0.605538 −0.302769 0.953064i \(-0.597911\pi\)
−0.302769 + 0.953064i \(0.597911\pi\)
\(992\) −5.35347e6 −0.172725
\(993\) 0 0
\(994\) −1.25918e6 −0.0404225
\(995\) −2.00022e7 −0.640500
\(996\) 0 0
\(997\) 5.37876e6 0.171374 0.0856869 0.996322i \(-0.472692\pi\)
0.0856869 + 0.996322i \(0.472692\pi\)
\(998\) 1.41311e6 0.0449107
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.6.a.a.1.1 1
3.2 odd 2 162.6.a.b.1.1 yes 1
9.2 odd 6 162.6.c.d.109.1 2
9.4 even 3 162.6.c.i.55.1 2
9.5 odd 6 162.6.c.d.55.1 2
9.7 even 3 162.6.c.i.109.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.6.a.a.1.1 1 1.1 even 1 trivial
162.6.a.b.1.1 yes 1 3.2 odd 2
162.6.c.d.55.1 2 9.5 odd 6
162.6.c.d.109.1 2 9.2 odd 6
162.6.c.i.55.1 2 9.4 even 3
162.6.c.i.109.1 2 9.7 even 3