Properties

Label 162.5.d.e.53.3
Level $162$
Weight $5$
Character 162.53
Analytic conductor $16.746$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,5,Mod(53,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.53"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,32,0,0,52,0,0,240] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7459340196\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 162.53
Dual form 162.5.d.e.107.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.44949 - 1.41421i) q^{2} +(4.00000 - 6.92820i) q^{4} +(-0.360355 - 0.208051i) q^{5} +(-1.29423 - 2.24167i) q^{7} -22.6274i q^{8} -1.17691 q^{10} +(47.0443 - 27.1611i) q^{11} +(114.442 - 198.220i) q^{13} +(-6.34040 - 3.66063i) q^{14} +(-32.0000 - 55.4256i) q^{16} -380.263i q^{17} -298.242 q^{19} +(-2.88284 + 1.66441i) q^{20} +(76.8231 - 133.061i) q^{22} +(547.178 + 315.913i) q^{23} +(-312.413 - 541.116i) q^{25} -647.383i q^{26} -20.7077 q^{28} +(-568.722 + 328.352i) q^{29} +(772.296 - 1337.66i) q^{31} +(-156.767 - 90.5097i) q^{32} +(-537.773 - 931.450i) q^{34} +1.07706i q^{35} -187.842 q^{37} +(-730.541 + 421.778i) q^{38} +(-4.70766 + 8.15390i) q^{40} +(1848.89 + 1067.46i) q^{41} +(-1152.49 - 1996.16i) q^{43} -434.577i q^{44} +1787.08 q^{46} +(-1736.82 + 1002.76i) q^{47} +(1197.15 - 2073.52i) q^{49} +(-1530.51 - 883.639i) q^{50} +(-915.538 - 1585.76i) q^{52} +3293.71i q^{53} -22.6036 q^{55} +(-50.7232 + 29.2851i) q^{56} +(-928.719 + 1608.59i) q^{58} +(2780.93 + 1605.57i) q^{59} +(911.109 + 1578.09i) q^{61} -4368.77i q^{62} -512.000 q^{64} +(-82.4797 + 47.6197i) q^{65} +(-1049.04 + 1817.00i) q^{67} +(-2634.54 - 1521.05i) q^{68} +(1.52320 + 2.63825i) q^{70} +2181.30i q^{71} -5527.36 q^{73} +(-460.117 + 265.649i) q^{74} +(-1192.97 + 2066.28i) q^{76} +(-121.772 - 70.3052i) q^{77} +(5513.17 + 9549.08i) q^{79} +26.6305i q^{80} +6038.44 q^{82} +(10443.1 - 6029.35i) q^{83} +(-79.1141 + 137.030i) q^{85} +(-5646.01 - 3259.72i) q^{86} +(-614.585 - 1064.49i) q^{88} +2905.35i q^{89} -592.458 q^{91} +(4377.43 - 2527.31i) q^{92} +(-2836.22 + 4912.48i) q^{94} +(107.473 + 62.0496i) q^{95} +(6446.38 + 11165.5i) q^{97} -6772.10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{4} + 52 q^{7} + 240 q^{10} + 292 q^{13} - 256 q^{16} + 1480 q^{19} + 864 q^{22} - 1564 q^{25} + 832 q^{28} + 5056 q^{31} + 312 q^{34} + 8848 q^{37} + 960 q^{40} - 428 q^{43} + 4320 q^{46} + 7956 q^{49}+ \cdots + 3808 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44949 1.41421i 0.612372 0.353553i
\(3\) 0 0
\(4\) 4.00000 6.92820i 0.250000 0.433013i
\(5\) −0.360355 0.208051i −0.0144142 0.00832204i 0.492776 0.870156i \(-0.335982\pi\)
−0.507190 + 0.861834i \(0.669316\pi\)
\(6\) 0 0
\(7\) −1.29423 2.24167i −0.0264128 0.0457484i 0.852517 0.522700i \(-0.175075\pi\)
−0.878930 + 0.476951i \(0.841742\pi\)
\(8\) 22.6274i 0.353553i
\(9\) 0 0
\(10\) −1.17691 −0.0117691
\(11\) 47.0443 27.1611i 0.388796 0.224472i −0.292842 0.956161i \(-0.594601\pi\)
0.681638 + 0.731689i \(0.261268\pi\)
\(12\) 0 0
\(13\) 114.442 198.220i 0.677173 1.17290i −0.298655 0.954361i \(-0.596538\pi\)
0.975829 0.218537i \(-0.0701286\pi\)
\(14\) −6.34040 3.66063i −0.0323490 0.0186767i
\(15\) 0 0
\(16\) −32.0000 55.4256i −0.125000 0.216506i
\(17\) 380.263i 1.31579i −0.753110 0.657894i \(-0.771447\pi\)
0.753110 0.657894i \(-0.228553\pi\)
\(18\) 0 0
\(19\) −298.242 −0.826156 −0.413078 0.910696i \(-0.635546\pi\)
−0.413078 + 0.910696i \(0.635546\pi\)
\(20\) −2.88284 + 1.66441i −0.00720710 + 0.00416102i
\(21\) 0 0
\(22\) 76.8231 133.061i 0.158725 0.274920i
\(23\) 547.178 + 315.913i 1.03436 + 0.597190i 0.918232 0.396044i \(-0.129617\pi\)
0.116132 + 0.993234i \(0.462951\pi\)
\(24\) 0 0
\(25\) −312.413 541.116i −0.499861 0.865785i
\(26\) 647.383i 0.957668i
\(27\) 0 0
\(28\) −20.7077 −0.0264128
\(29\) −568.722 + 328.352i −0.676245 + 0.390430i −0.798439 0.602076i \(-0.794340\pi\)
0.122194 + 0.992506i \(0.461007\pi\)
\(30\) 0 0
\(31\) 772.296 1337.66i 0.803638 1.39194i −0.113569 0.993530i \(-0.536228\pi\)
0.917207 0.398412i \(-0.130438\pi\)
\(32\) −156.767 90.5097i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −537.773 931.450i −0.465201 0.805753i
\(35\) 1.07706i 0.000879235i
\(36\) 0 0
\(37\) −187.842 −0.137211 −0.0686055 0.997644i \(-0.521855\pi\)
−0.0686055 + 0.997644i \(0.521855\pi\)
\(38\) −730.541 + 421.778i −0.505915 + 0.292090i
\(39\) 0 0
\(40\) −4.70766 + 8.15390i −0.00294229 + 0.00509619i
\(41\) 1848.89 + 1067.46i 1.09987 + 0.635013i 0.936188 0.351500i \(-0.114328\pi\)
0.163686 + 0.986512i \(0.447662\pi\)
\(42\) 0 0
\(43\) −1152.49 1996.16i −0.623302 1.07959i −0.988867 0.148805i \(-0.952457\pi\)
0.365564 0.930786i \(-0.380876\pi\)
\(44\) 434.577i 0.224472i
\(45\) 0 0
\(46\) 1787.08 0.844554
\(47\) −1736.82 + 1002.76i −0.786249 + 0.453941i −0.838641 0.544685i \(-0.816649\pi\)
0.0523911 + 0.998627i \(0.483316\pi\)
\(48\) 0 0
\(49\) 1197.15 2073.52i 0.498605 0.863609i
\(50\) −1530.51 883.639i −0.612203 0.353455i
\(51\) 0 0
\(52\) −915.538 1585.76i −0.338587 0.586449i
\(53\) 3293.71i 1.17256i 0.810110 + 0.586278i \(0.199407\pi\)
−0.810110 + 0.586278i \(0.800593\pi\)
\(54\) 0 0
\(55\) −22.6036 −0.00747225
\(56\) −50.7232 + 29.2851i −0.0161745 + 0.00933835i
\(57\) 0 0
\(58\) −928.719 + 1608.59i −0.276076 + 0.478177i
\(59\) 2780.93 + 1605.57i 0.798888 + 0.461238i 0.843082 0.537785i \(-0.180739\pi\)
−0.0441943 + 0.999023i \(0.514072\pi\)
\(60\) 0 0
\(61\) 911.109 + 1578.09i 0.244856 + 0.424103i 0.962091 0.272728i \(-0.0879260\pi\)
−0.717235 + 0.696831i \(0.754593\pi\)
\(62\) 4368.77i 1.13652i
\(63\) 0 0
\(64\) −512.000 −0.125000
\(65\) −82.4797 + 47.6197i −0.0195218 + 0.0112709i
\(66\) 0 0
\(67\) −1049.04 + 1817.00i −0.233692 + 0.404767i −0.958892 0.283772i \(-0.908414\pi\)
0.725200 + 0.688539i \(0.241747\pi\)
\(68\) −2634.54 1521.05i −0.569753 0.328947i
\(69\) 0 0
\(70\) 1.52320 + 2.63825i 0.000310856 + 0.000538419i
\(71\) 2181.30i 0.432713i 0.976314 + 0.216356i \(0.0694173\pi\)
−0.976314 + 0.216356i \(0.930583\pi\)
\(72\) 0 0
\(73\) −5527.36 −1.03722 −0.518611 0.855010i \(-0.673551\pi\)
−0.518611 + 0.855010i \(0.673551\pi\)
\(74\) −460.117 + 265.649i −0.0840243 + 0.0485114i
\(75\) 0 0
\(76\) −1192.97 + 2066.28i −0.206539 + 0.357736i
\(77\) −121.772 70.3052i −0.0205384 0.0118579i
\(78\) 0 0
\(79\) 5513.17 + 9549.08i 0.883379 + 1.53006i 0.847561 + 0.530698i \(0.178070\pi\)
0.0358180 + 0.999358i \(0.488596\pi\)
\(80\) 26.6305i 0.00416102i
\(81\) 0 0
\(82\) 6038.44 0.898043
\(83\) 10443.1 6029.35i 1.51591 0.875214i 0.516089 0.856535i \(-0.327387\pi\)
0.999826 0.0186785i \(-0.00594589\pi\)
\(84\) 0 0
\(85\) −79.1141 + 137.030i −0.0109500 + 0.0189660i
\(86\) −5646.01 3259.72i −0.763386 0.440741i
\(87\) 0 0
\(88\) −614.585 1064.49i −0.0793627 0.137460i
\(89\) 2905.35i 0.366791i 0.983039 + 0.183395i \(0.0587089\pi\)
−0.983039 + 0.183395i \(0.941291\pi\)
\(90\) 0 0
\(91\) −592.458 −0.0715443
\(92\) 4377.43 2527.31i 0.517182 0.298595i
\(93\) 0 0
\(94\) −2836.22 + 4912.48i −0.320985 + 0.555962i
\(95\) 107.473 + 62.0496i 0.0119084 + 0.00687530i
\(96\) 0 0
\(97\) 6446.38 + 11165.5i 0.685129 + 1.18668i 0.973396 + 0.229128i \(0.0735875\pi\)
−0.288267 + 0.957550i \(0.593079\pi\)
\(98\) 6772.10i 0.705134i
\(99\) 0 0
\(100\) −4998.61 −0.499861
\(101\) 3121.12 1801.98i 0.305962 0.176647i −0.339156 0.940730i \(-0.610141\pi\)
0.645118 + 0.764083i \(0.276808\pi\)
\(102\) 0 0
\(103\) −1607.06 + 2783.51i −0.151481 + 0.262373i −0.931772 0.363044i \(-0.881738\pi\)
0.780291 + 0.625416i \(0.215071\pi\)
\(104\) −4485.20 2589.53i −0.414682 0.239417i
\(105\) 0 0
\(106\) 4658.01 + 8067.91i 0.414561 + 0.718041i
\(107\) 13043.6i 1.13928i 0.821895 + 0.569639i \(0.192917\pi\)
−0.821895 + 0.569639i \(0.807083\pi\)
\(108\) 0 0
\(109\) 3214.31 0.270542 0.135271 0.990809i \(-0.456810\pi\)
0.135271 + 0.990809i \(0.456810\pi\)
\(110\) −55.3672 + 31.9662i −0.00457580 + 0.00264184i
\(111\) 0 0
\(112\) −82.8306 + 143.467i −0.00660321 + 0.0114371i
\(113\) −9741.28 5624.13i −0.762885 0.440452i 0.0674456 0.997723i \(-0.478515\pi\)
−0.830331 + 0.557271i \(0.811848\pi\)
\(114\) 0 0
\(115\) −131.452 227.682i −0.00993968 0.0172160i
\(116\) 5253.63i 0.390430i
\(117\) 0 0
\(118\) 9082.47 0.652289
\(119\) −852.424 + 492.147i −0.0601952 + 0.0347537i
\(120\) 0 0
\(121\) −5845.05 + 10123.9i −0.399225 + 0.691478i
\(122\) 4463.51 + 2577.01i 0.299886 + 0.173139i
\(123\) 0 0
\(124\) −6178.37 10701.2i −0.401819 0.695971i
\(125\) 520.056i 0.0332836i
\(126\) 0 0
\(127\) −1395.11 −0.0864973 −0.0432487 0.999064i \(-0.513771\pi\)
−0.0432487 + 0.999064i \(0.513771\pi\)
\(128\) −1254.14 + 724.077i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −134.689 + 233.288i −0.00796975 + 0.0138040i
\(131\) 14510.4 + 8377.57i 0.845543 + 0.488175i 0.859145 0.511733i \(-0.170996\pi\)
−0.0136013 + 0.999907i \(0.504330\pi\)
\(132\) 0 0
\(133\) 385.994 + 668.560i 0.0218211 + 0.0377953i
\(134\) 5934.29i 0.330491i
\(135\) 0 0
\(136\) −8604.37 −0.465201
\(137\) −15867.6 + 9161.18i −0.845417 + 0.488102i −0.859102 0.511804i \(-0.828977\pi\)
0.0136847 + 0.999906i \(0.495644\pi\)
\(138\) 0 0
\(139\) −4140.02 + 7170.72i −0.214275 + 0.371136i −0.953048 0.302819i \(-0.902072\pi\)
0.738773 + 0.673955i \(0.235406\pi\)
\(140\) 7.46211 + 4.30825i 0.000380720 + 0.000219809i
\(141\) 0 0
\(142\) 3084.83 + 5343.08i 0.152987 + 0.264981i
\(143\) 12433.5i 0.608025i
\(144\) 0 0
\(145\) 273.256 0.0129967
\(146\) −13539.2 + 7816.86i −0.635166 + 0.366713i
\(147\) 0 0
\(148\) −751.368 + 1301.41i −0.0343028 + 0.0594141i
\(149\) −10055.1 5805.30i −0.452911 0.261488i 0.256148 0.966638i \(-0.417547\pi\)
−0.709059 + 0.705149i \(0.750880\pi\)
\(150\) 0 0
\(151\) −21954.7 38026.6i −0.962881 1.66776i −0.715203 0.698916i \(-0.753666\pi\)
−0.247678 0.968843i \(-0.579667\pi\)
\(152\) 6748.45i 0.292090i
\(153\) 0 0
\(154\) −397.707 −0.0167695
\(155\) −556.602 + 321.354i −0.0231676 + 0.0133758i
\(156\) 0 0
\(157\) 18240.8 31594.0i 0.740022 1.28175i −0.212463 0.977169i \(-0.568149\pi\)
0.952485 0.304586i \(-0.0985181\pi\)
\(158\) 27008.9 + 15593.6i 1.08191 + 0.624643i
\(159\) 0 0
\(160\) 37.6613 + 65.2312i 0.00147114 + 0.00254809i
\(161\) 1635.46i 0.0630939i
\(162\) 0 0
\(163\) 34529.1 1.29960 0.649800 0.760105i \(-0.274853\pi\)
0.649800 + 0.760105i \(0.274853\pi\)
\(164\) 14791.1 8539.65i 0.549937 0.317506i
\(165\) 0 0
\(166\) 17053.6 29537.6i 0.618869 1.07191i
\(167\) −2914.01 1682.40i −0.104486 0.0603250i 0.446846 0.894611i \(-0.352547\pi\)
−0.551332 + 0.834286i \(0.685880\pi\)
\(168\) 0 0
\(169\) −11913.6 20634.9i −0.417127 0.722486i
\(170\) 447.537i 0.0154857i
\(171\) 0 0
\(172\) −18439.8 −0.623302
\(173\) −38526.6 + 22243.4i −1.28727 + 0.743204i −0.978166 0.207825i \(-0.933362\pi\)
−0.309102 + 0.951029i \(0.600028\pi\)
\(174\) 0 0
\(175\) −808.669 + 1400.66i −0.0264055 + 0.0457357i
\(176\) −3010.84 1738.31i −0.0971990 0.0561179i
\(177\) 0 0
\(178\) 4108.79 + 7116.63i 0.129680 + 0.224613i
\(179\) 57987.0i 1.80977i −0.425652 0.904887i \(-0.639955\pi\)
0.425652 0.904887i \(-0.360045\pi\)
\(180\) 0 0
\(181\) −33114.4 −1.01079 −0.505393 0.862889i \(-0.668653\pi\)
−0.505393 + 0.862889i \(0.668653\pi\)
\(182\) −1451.22 + 837.862i −0.0438117 + 0.0252947i
\(183\) 0 0
\(184\) 7148.31 12381.2i 0.211139 0.365703i
\(185\) 67.6898 + 39.0807i 0.00197779 + 0.00114188i
\(186\) 0 0
\(187\) −10328.3 17889.2i −0.295357 0.511574i
\(188\) 16044.1i 0.453941i
\(189\) 0 0
\(190\) 351.006 0.00972315
\(191\) 53380.7 30819.4i 1.46325 0.844807i 0.464088 0.885789i \(-0.346382\pi\)
0.999160 + 0.0409825i \(0.0130488\pi\)
\(192\) 0 0
\(193\) 18839.4 32630.8i 0.505769 0.876017i −0.494209 0.869343i \(-0.664542\pi\)
0.999978 0.00667399i \(-0.00212441\pi\)
\(194\) 31580.7 + 18233.1i 0.839108 + 0.484459i
\(195\) 0 0
\(196\) −9577.20 16588.2i −0.249302 0.431804i
\(197\) 53748.5i 1.38495i −0.721442 0.692475i \(-0.756520\pi\)
0.721442 0.692475i \(-0.243480\pi\)
\(198\) 0 0
\(199\) 16462.2 0.415702 0.207851 0.978161i \(-0.433353\pi\)
0.207851 + 0.978161i \(0.433353\pi\)
\(200\) −12244.1 + 7069.11i −0.306101 + 0.176728i
\(201\) 0 0
\(202\) 5096.77 8827.86i 0.124908 0.216348i
\(203\) 1472.11 + 849.924i 0.0357231 + 0.0206247i
\(204\) 0 0
\(205\) −444.171 769.326i −0.0105692 0.0183064i
\(206\) 9090.91i 0.214226i
\(207\) 0 0
\(208\) −14648.6 −0.338587
\(209\) −14030.6 + 8100.57i −0.321206 + 0.185448i
\(210\) 0 0
\(211\) −4283.80 + 7419.76i −0.0962197 + 0.166657i −0.910117 0.414351i \(-0.864008\pi\)
0.813897 + 0.581009i \(0.197342\pi\)
\(212\) 22819.5 + 13174.8i 0.507731 + 0.293139i
\(213\) 0 0
\(214\) 18446.4 + 31950.1i 0.402795 + 0.697662i
\(215\) 959.104i 0.0207486i
\(216\) 0 0
\(217\) −3998.11 −0.0849054
\(218\) 7873.41 4545.72i 0.165672 0.0956510i
\(219\) 0 0
\(220\) −90.4142 + 156.602i −0.00186806 + 0.00323558i
\(221\) −75375.7 43518.2i −1.54329 0.891017i
\(222\) 0 0
\(223\) −4162.64 7209.90i −0.0837065 0.144984i 0.821133 0.570737i \(-0.193342\pi\)
−0.904839 + 0.425753i \(0.860009\pi\)
\(224\) 468.561i 0.00933835i
\(225\) 0 0
\(226\) −31814.9 −0.622893
\(227\) −26569.1 + 15339.7i −0.515615 + 0.297690i −0.735139 0.677917i \(-0.762883\pi\)
0.219524 + 0.975607i \(0.429550\pi\)
\(228\) 0 0
\(229\) −25223.1 + 43687.6i −0.480980 + 0.833081i −0.999762 0.0218252i \(-0.993052\pi\)
0.518782 + 0.854907i \(0.326386\pi\)
\(230\) −643.982 371.803i −0.0121736 0.00702842i
\(231\) 0 0
\(232\) 7429.75 + 12868.7i 0.138038 + 0.239089i
\(233\) 7603.00i 0.140047i −0.997545 0.0700234i \(-0.977693\pi\)
0.997545 0.0700234i \(-0.0223074\pi\)
\(234\) 0 0
\(235\) 834.498 0.0151109
\(236\) 22247.4 12844.6i 0.399444 0.230619i
\(237\) 0 0
\(238\) −1392.00 + 2411.02i −0.0245746 + 0.0425644i
\(239\) 86873.5 + 50156.5i 1.52087 + 0.878074i 0.999697 + 0.0246224i \(0.00783833\pi\)
0.521172 + 0.853452i \(0.325495\pi\)
\(240\) 0 0
\(241\) 18969.7 + 32856.4i 0.326607 + 0.565700i 0.981836 0.189730i \(-0.0607613\pi\)
−0.655229 + 0.755430i \(0.727428\pi\)
\(242\) 33064.6i 0.564589i
\(243\) 0 0
\(244\) 14577.7 0.244856
\(245\) −862.798 + 498.137i −0.0143740 + 0.00829882i
\(246\) 0 0
\(247\) −34131.5 + 59117.5i −0.559451 + 0.968997i
\(248\) −30267.7 17475.1i −0.492126 0.284129i
\(249\) 0 0
\(250\) 735.470 + 1273.87i 0.0117675 + 0.0203819i
\(251\) 58448.0i 0.927732i 0.885905 + 0.463866i \(0.153538\pi\)
−0.885905 + 0.463866i \(0.846462\pi\)
\(252\) 0 0
\(253\) 34322.2 0.536209
\(254\) −3417.32 + 1972.99i −0.0529686 + 0.0305814i
\(255\) 0 0
\(256\) −2048.00 + 3547.24i −0.0312500 + 0.0541266i
\(257\) −102349. 59091.3i −1.54959 0.894658i −0.998172 0.0604307i \(-0.980753\pi\)
−0.551421 0.834227i \(-0.685914\pi\)
\(258\) 0 0
\(259\) 243.110 + 421.080i 0.00362413 + 0.00627718i
\(260\) 761.915i 0.0112709i
\(261\) 0 0
\(262\) 47390.7 0.690383
\(263\) 92101.7 53175.0i 1.33155 0.768769i 0.346010 0.938231i \(-0.387536\pi\)
0.985537 + 0.169462i \(0.0542030\pi\)
\(264\) 0 0
\(265\) 685.260 1186.90i 0.00975806 0.0169015i
\(266\) 1890.97 + 1091.75i 0.0267253 + 0.0154299i
\(267\) 0 0
\(268\) 8392.36 + 14536.0i 0.116846 + 0.202383i
\(269\) 137219.i 1.89631i 0.317813 + 0.948154i \(0.397052\pi\)
−0.317813 + 0.948154i \(0.602948\pi\)
\(270\) 0 0
\(271\) 60463.3 0.823291 0.411646 0.911344i \(-0.364954\pi\)
0.411646 + 0.911344i \(0.364954\pi\)
\(272\) −21076.3 + 12168.4i −0.284877 + 0.164474i
\(273\) 0 0
\(274\) −25911.7 + 44880.5i −0.345140 + 0.597800i
\(275\) −29394.6 16971.0i −0.388688 0.224409i
\(276\) 0 0
\(277\) 59621.4 + 103267.i 0.777039 + 1.34587i 0.933641 + 0.358209i \(0.116612\pi\)
−0.156603 + 0.987662i \(0.550054\pi\)
\(278\) 23419.5i 0.303031i
\(279\) 0 0
\(280\) 24.3711 0.000310856
\(281\) −89797.9 + 51844.8i −1.13724 + 0.656588i −0.945746 0.324906i \(-0.894667\pi\)
−0.191497 + 0.981493i \(0.561334\pi\)
\(282\) 0 0
\(283\) −33820.9 + 58579.5i −0.422291 + 0.731429i −0.996163 0.0875154i \(-0.972107\pi\)
0.573872 + 0.818945i \(0.305441\pi\)
\(284\) 15112.5 + 8725.22i 0.187370 + 0.108178i
\(285\) 0 0
\(286\) −17583.6 30455.7i −0.214969 0.372338i
\(287\) 5526.13i 0.0670899i
\(288\) 0 0
\(289\) −61078.9 −0.731299
\(290\) 669.337 386.442i 0.00795882 0.00459503i
\(291\) 0 0
\(292\) −22109.4 + 38294.7i −0.259306 + 0.449130i
\(293\) 42689.8 + 24647.0i 0.497267 + 0.287097i 0.727584 0.686019i \(-0.240643\pi\)
−0.230317 + 0.973116i \(0.573976\pi\)
\(294\) 0 0
\(295\) −668.081 1157.15i −0.00767689 0.0132968i
\(296\) 4250.38i 0.0485114i
\(297\) 0 0
\(298\) −32839.7 −0.369800
\(299\) 125241. 72307.7i 1.40089 0.808802i
\(300\) 0 0
\(301\) −2983.16 + 5166.99i −0.0329264 + 0.0570301i
\(302\) −107555. 62097.1i −1.17928 0.680860i
\(303\) 0 0
\(304\) 9543.75 + 16530.3i 0.103269 + 0.178868i
\(305\) 758.229i 0.00815081i
\(306\) 0 0
\(307\) 19565.2 0.207591 0.103795 0.994599i \(-0.466901\pi\)
0.103795 + 0.994599i \(0.466901\pi\)
\(308\) −974.178 + 562.442i −0.0102692 + 0.00592893i
\(309\) 0 0
\(310\) −908.927 + 1574.31i −0.00945813 + 0.0163820i
\(311\) 43177.8 + 24928.7i 0.446416 + 0.257738i 0.706315 0.707897i \(-0.250356\pi\)
−0.259900 + 0.965636i \(0.583689\pi\)
\(312\) 0 0
\(313\) 53091.8 + 91957.7i 0.541925 + 0.938641i 0.998794 + 0.0491071i \(0.0156376\pi\)
−0.456869 + 0.889534i \(0.651029\pi\)
\(314\) 103186.i 1.04655i
\(315\) 0 0
\(316\) 88210.7 0.883379
\(317\) −75738.7 + 43727.7i −0.753701 + 0.435149i −0.827030 0.562158i \(-0.809971\pi\)
0.0733287 + 0.997308i \(0.476638\pi\)
\(318\) 0 0
\(319\) −17836.8 + 30894.2i −0.175281 + 0.303596i
\(320\) 184.502 + 106.522i 0.00180178 + 0.00104026i
\(321\) 0 0
\(322\) −2312.89 4006.04i −0.0223071 0.0386370i
\(323\) 113410.i 1.08705i
\(324\) 0 0
\(325\) −143013. −1.35397
\(326\) 84578.6 48831.5i 0.795839 0.459478i
\(327\) 0 0
\(328\) 24153.8 41835.6i 0.224511 0.388864i
\(329\) 4495.70 + 2595.59i 0.0415341 + 0.0239797i
\(330\) 0 0
\(331\) −10937.7 18944.6i −0.0998319 0.172914i 0.811783 0.583959i \(-0.198497\pi\)
−0.911615 + 0.411045i \(0.865164\pi\)
\(332\) 96469.5i 0.875214i
\(333\) 0 0
\(334\) −9517.11 −0.0853124
\(335\) 756.057 436.510i 0.00673697 0.00388959i
\(336\) 0 0
\(337\) 94021.5 162850.i 0.827880 1.43393i −0.0718186 0.997418i \(-0.522880\pi\)
0.899698 0.436512i \(-0.143786\pi\)
\(338\) −58364.4 33696.7i −0.510875 0.294954i
\(339\) 0 0
\(340\) 632.913 + 1096.24i 0.00547502 + 0.00948302i
\(341\) 83905.5i 0.721576i
\(342\) 0 0
\(343\) −12412.4 −0.105504
\(344\) −45168.1 + 26077.8i −0.381693 + 0.220371i
\(345\) 0 0
\(346\) −62913.7 + 108970.i −0.525525 + 0.910236i
\(347\) 162975. + 94093.6i 1.35351 + 0.781450i 0.988739 0.149648i \(-0.0478140\pi\)
0.364771 + 0.931097i \(0.381147\pi\)
\(348\) 0 0
\(349\) −39328.3 68118.6i −0.322890 0.559262i 0.658193 0.752849i \(-0.271321\pi\)
−0.981083 + 0.193587i \(0.937988\pi\)
\(350\) 4574.52i 0.0373430i
\(351\) 0 0
\(352\) −9833.35 −0.0793627
\(353\) 100346. 57934.8i 0.805287 0.464933i −0.0400293 0.999199i \(-0.512745\pi\)
0.845317 + 0.534266i \(0.179412\pi\)
\(354\) 0 0
\(355\) 453.823 786.044i 0.00360105 0.00623721i
\(356\) 20128.9 + 11621.4i 0.158825 + 0.0916977i
\(357\) 0 0
\(358\) −82005.9 142038.i −0.639852 1.10826i
\(359\) 187042.i 1.45128i −0.688075 0.725640i \(-0.741544\pi\)
0.688075 0.725640i \(-0.258456\pi\)
\(360\) 0 0
\(361\) −41372.6 −0.317467
\(362\) −81113.3 + 46830.8i −0.618978 + 0.357367i
\(363\) 0 0
\(364\) −2369.83 + 4104.67i −0.0178861 + 0.0309796i
\(365\) 1991.81 + 1149.97i 0.0149507 + 0.00863181i
\(366\) 0 0
\(367\) 30070.0 + 52082.8i 0.223255 + 0.386689i 0.955795 0.294035i \(-0.0949983\pi\)
−0.732539 + 0.680725i \(0.761665\pi\)
\(368\) 40436.9i 0.298595i
\(369\) 0 0
\(370\) 221.074 0.00161486
\(371\) 7383.41 4262.81i 0.0536425 0.0309705i
\(372\) 0 0
\(373\) 121324. 210138.i 0.872022 1.51039i 0.0121200 0.999927i \(-0.496142\pi\)
0.859902 0.510459i \(-0.170525\pi\)
\(374\) −50598.3 29213.0i −0.361737 0.208849i
\(375\) 0 0
\(376\) 22689.8 + 39299.9i 0.160492 + 0.277981i
\(377\) 150309.i 1.05756i
\(378\) 0 0
\(379\) 339.729 0.00236513 0.00118256 0.999999i \(-0.499624\pi\)
0.00118256 + 0.999999i \(0.499624\pi\)
\(380\) 859.784 496.397i 0.00595419 0.00343765i
\(381\) 0 0
\(382\) 87170.4 150984.i 0.597368 1.03467i
\(383\) 36136.1 + 20863.2i 0.246345 + 0.142227i 0.618090 0.786108i \(-0.287907\pi\)
−0.371744 + 0.928335i \(0.621240\pi\)
\(384\) 0 0
\(385\) 29.2542 + 50.6697i 0.000197363 + 0.000341843i
\(386\) 106572.i 0.715265i
\(387\) 0 0
\(388\) 103142. 0.685129
\(389\) −152182. + 87862.2i −1.00569 + 0.580635i −0.909927 0.414769i \(-0.863862\pi\)
−0.0957624 + 0.995404i \(0.530529\pi\)
\(390\) 0 0
\(391\) 120130. 208072.i 0.785776 1.36100i
\(392\) −46918.5 27088.4i −0.305332 0.176283i
\(393\) 0 0
\(394\) −76011.9 131656.i −0.489654 0.848105i
\(395\) 4588.08i 0.0294061i
\(396\) 0 0
\(397\) −13497.3 −0.0856379 −0.0428190 0.999083i \(-0.513634\pi\)
−0.0428190 + 0.999083i \(0.513634\pi\)
\(398\) 40324.0 23281.1i 0.254564 0.146973i
\(399\) 0 0
\(400\) −19994.5 + 34631.4i −0.124965 + 0.216446i
\(401\) 59305.0 + 34239.8i 0.368810 + 0.212933i 0.672939 0.739698i \(-0.265032\pi\)
−0.304128 + 0.952631i \(0.598365\pi\)
\(402\) 0 0
\(403\) −176767. 306169.i −1.08840 1.88517i
\(404\) 28831.7i 0.176647i
\(405\) 0 0
\(406\) 4807.90 0.0291678
\(407\) −8836.90 + 5101.99i −0.0533471 + 0.0308000i
\(408\) 0 0
\(409\) −89877.3 + 155672.i −0.537283 + 0.930602i 0.461766 + 0.887002i \(0.347216\pi\)
−0.999049 + 0.0436002i \(0.986117\pi\)
\(410\) −2175.98 1256.30i −0.0129446 0.00747356i
\(411\) 0 0
\(412\) 12856.5 + 22268.1i 0.0757405 + 0.131186i
\(413\) 8311.90i 0.0487304i
\(414\) 0 0
\(415\) −5017.65 −0.0291343
\(416\) −35881.6 + 20716.3i −0.207341 + 0.119708i
\(417\) 0 0
\(418\) −22911.9 + 39684.5i −0.131132 + 0.227127i
\(419\) 251540. + 145227.i 1.43278 + 0.827214i 0.997332 0.0730012i \(-0.0232577\pi\)
0.435445 + 0.900215i \(0.356591\pi\)
\(420\) 0 0
\(421\) −19653.9 34041.6i −0.110888 0.192064i 0.805240 0.592948i \(-0.202036\pi\)
−0.916129 + 0.400884i \(0.868703\pi\)
\(422\) 24232.8i 0.136075i
\(423\) 0 0
\(424\) 74528.1 0.414561
\(425\) −205766. + 118799.i −1.13919 + 0.657712i
\(426\) 0 0
\(427\) 2358.37 4084.81i 0.0129347 0.0224035i
\(428\) 90368.6 + 52174.4i 0.493322 + 0.284819i
\(429\) 0 0
\(430\) 1356.38 + 2349.32i 0.00733574 + 0.0127059i
\(431\) 144937.i 0.780235i 0.920765 + 0.390117i \(0.127566\pi\)
−0.920765 + 0.390117i \(0.872434\pi\)
\(432\) 0 0
\(433\) 34162.1 0.182208 0.0911042 0.995841i \(-0.470960\pi\)
0.0911042 + 0.995841i \(0.470960\pi\)
\(434\) −9793.33 + 5654.18i −0.0519937 + 0.0300186i
\(435\) 0 0
\(436\) 12857.2 22269.4i 0.0676355 0.117148i
\(437\) −163192. 94218.7i −0.854545 0.493372i
\(438\) 0 0
\(439\) 10986.2 + 19028.7i 0.0570058 + 0.0987369i 0.893120 0.449818i \(-0.148511\pi\)
−0.836114 + 0.548555i \(0.815178\pi\)
\(440\) 511.460i 0.00264184i
\(441\) 0 0
\(442\) −246176. −1.26009
\(443\) −55479.7 + 32031.2i −0.282701 + 0.163217i −0.634645 0.772803i \(-0.718854\pi\)
0.351945 + 0.936021i \(0.385520\pi\)
\(444\) 0 0
\(445\) 604.461 1046.96i 0.00305245 0.00528700i
\(446\) −20392.7 11773.7i −0.102519 0.0591894i
\(447\) 0 0
\(448\) 662.645 + 1147.73i 0.00330160 + 0.00571855i
\(449\) 162975.i 0.808403i −0.914670 0.404202i \(-0.867549\pi\)
0.914670 0.404202i \(-0.132451\pi\)
\(450\) 0 0
\(451\) 115973. 0.570169
\(452\) −77930.2 + 44993.0i −0.381443 + 0.220226i
\(453\) 0 0
\(454\) −43387.2 + 75148.8i −0.210499 + 0.364595i
\(455\) 213.495 + 123.262i 0.00103125 + 0.000595394i
\(456\) 0 0
\(457\) −74178.2 128480.i −0.355176 0.615183i 0.631972 0.774991i \(-0.282246\pi\)
−0.987148 + 0.159808i \(0.948912\pi\)
\(458\) 142683.i 0.680208i
\(459\) 0 0
\(460\) −2103.24 −0.00993968
\(461\) 51581.1 29780.4i 0.242711 0.140129i −0.373711 0.927545i \(-0.621915\pi\)
0.616422 + 0.787416i \(0.288582\pi\)
\(462\) 0 0
\(463\) −33888.7 + 58696.9i −0.158086 + 0.273812i −0.934178 0.356806i \(-0.883866\pi\)
0.776093 + 0.630619i \(0.217199\pi\)
\(464\) 36398.2 + 21014.5i 0.169061 + 0.0976075i
\(465\) 0 0
\(466\) −10752.3 18623.5i −0.0495140 0.0857607i
\(467\) 57234.8i 0.262438i 0.991353 + 0.131219i \(0.0418891\pi\)
−0.991353 + 0.131219i \(0.958111\pi\)
\(468\) 0 0
\(469\) 5430.81 0.0246899
\(470\) 2044.09 1180.16i 0.00925348 0.00534250i
\(471\) 0 0
\(472\) 36329.9 62925.2i 0.163072 0.282450i
\(473\) −108436. 62605.5i −0.484675 0.279827i
\(474\) 0 0
\(475\) 93174.9 + 161384.i 0.412963 + 0.715274i
\(476\) 7874.35i 0.0347537i
\(477\) 0 0
\(478\) 283728. 1.24178
\(479\) 164946. 95231.6i 0.718903 0.415059i −0.0954455 0.995435i \(-0.530428\pi\)
0.814349 + 0.580376i \(0.197094\pi\)
\(480\) 0 0
\(481\) −21497.1 + 37234.0i −0.0929157 + 0.160935i
\(482\) 92932.0 + 53654.3i 0.400010 + 0.230946i
\(483\) 0 0
\(484\) 46760.4 + 80991.4i 0.199613 + 0.345739i
\(485\) 5364.70i 0.0228067i
\(486\) 0 0
\(487\) −167195. −0.704962 −0.352481 0.935819i \(-0.614662\pi\)
−0.352481 + 0.935819i \(0.614662\pi\)
\(488\) 35708.0 20616.0i 0.149943 0.0865697i
\(489\) 0 0
\(490\) −1408.94 + 2440.36i −0.00586815 + 0.0101639i
\(491\) −214569. 123881.i −0.890028 0.513858i −0.0160763 0.999871i \(-0.505117\pi\)
−0.873952 + 0.486013i \(0.838451\pi\)
\(492\) 0 0
\(493\) 124860. + 216264.i 0.513723 + 0.889795i
\(494\) 193077.i 0.791183i
\(495\) 0 0
\(496\) −98853.9 −0.401819
\(497\) 4889.76 2823.11i 0.0197959 0.0114292i
\(498\) 0 0
\(499\) −205515. + 355963.i −0.825359 + 1.42956i 0.0762861 + 0.997086i \(0.475694\pi\)
−0.901645 + 0.432477i \(0.857640\pi\)
\(500\) 3603.05 + 2080.22i 0.0144122 + 0.00832089i
\(501\) 0 0
\(502\) 82658.0 + 143168.i 0.328003 + 0.568118i
\(503\) 108804.i 0.430039i −0.976610 0.215020i \(-0.931018\pi\)
0.976610 0.215020i \(-0.0689816\pi\)
\(504\) 0 0
\(505\) −1499.61 −0.00588026
\(506\) 84071.8 48538.9i 0.328359 0.189578i
\(507\) 0 0
\(508\) −5580.46 + 9665.64i −0.0216243 + 0.0374544i
\(509\) 68677.5 + 39651.0i 0.265081 + 0.153045i 0.626650 0.779301i \(-0.284425\pi\)
−0.361569 + 0.932345i \(0.617759\pi\)
\(510\) 0 0
\(511\) 7153.66 + 12390.5i 0.0273960 + 0.0474512i
\(512\) 11585.2i 0.0441942i
\(513\) 0 0
\(514\) −334271. −1.26524
\(515\) 1158.23 668.702i 0.00436695 0.00252126i
\(516\) 0 0
\(517\) −54471.9 + 94348.0i −0.203794 + 0.352981i
\(518\) 1190.99 + 687.620i 0.00443864 + 0.00256265i
\(519\) 0 0
\(520\) 1077.51 + 1866.30i 0.00398488 + 0.00690201i
\(521\) 55028.4i 0.202727i 0.994849 + 0.101364i \(0.0323205\pi\)
−0.994849 + 0.101364i \(0.967679\pi\)
\(522\) 0 0
\(523\) 473394. 1.73069 0.865346 0.501176i \(-0.167099\pi\)
0.865346 + 0.501176i \(0.167099\pi\)
\(524\) 116083. 67020.5i 0.422772 0.244087i
\(525\) 0 0
\(526\) 150402. 260503.i 0.543602 0.941546i
\(527\) −508661. 293676.i −1.83150 1.05742i
\(528\) 0 0
\(529\) 59682.2 + 103373.i 0.213272 + 0.369397i
\(530\) 3876.41i 0.0138000i
\(531\) 0 0
\(532\) 6175.90 0.0218211
\(533\) 423182. 244324.i 1.48961 0.860027i
\(534\) 0 0
\(535\) 2713.73 4700.32i 0.00948112 0.0164218i
\(536\) 41114.0 + 23737.2i 0.143107 + 0.0826227i
\(537\) 0 0
\(538\) 194057. + 336116.i 0.670446 + 1.16125i
\(539\) 130063.i 0.447690i
\(540\) 0 0
\(541\) 239116. 0.816984 0.408492 0.912762i \(-0.366055\pi\)
0.408492 + 0.912762i \(0.366055\pi\)
\(542\) 148104. 85508.0i 0.504161 0.291077i
\(543\) 0 0
\(544\) −34417.5 + 59612.8i −0.116300 + 0.201438i
\(545\) −1158.29 668.740i −0.00389964 0.00225146i
\(546\) 0 0
\(547\) 91487.1 + 158460.i 0.305763 + 0.529597i 0.977431 0.211255i \(-0.0677551\pi\)
−0.671668 + 0.740853i \(0.734422\pi\)
\(548\) 146579.i 0.488102i
\(549\) 0 0
\(550\) −96002.3 −0.317363
\(551\) 169617. 97928.3i 0.558683 0.322556i
\(552\) 0 0
\(553\) 14270.6 24717.4i 0.0466651 0.0808263i
\(554\) 292084. + 168635.i 0.951674 + 0.549449i
\(555\) 0 0
\(556\) 33120.1 + 57365.8i 0.107138 + 0.185568i
\(557\) 63739.1i 0.205445i 0.994710 + 0.102722i \(0.0327553\pi\)
−0.994710 + 0.102722i \(0.967245\pi\)
\(558\) 0 0
\(559\) −527573. −1.68834
\(560\) 59.6969 34.4660i 0.000190360 0.000109904i
\(561\) 0 0
\(562\) −146639. + 253987.i −0.464278 + 0.804152i
\(563\) −306343. 176867.i −0.966476 0.557995i −0.0683162 0.997664i \(-0.521763\pi\)
−0.898160 + 0.439668i \(0.855096\pi\)
\(564\) 0 0
\(565\) 2340.21 + 4053.37i 0.00733092 + 0.0126975i
\(566\) 191320.i 0.597210i
\(567\) 0 0
\(568\) 49357.3 0.152987
\(569\) 76108.2 43941.1i 0.235075 0.135721i −0.377836 0.925873i \(-0.623332\pi\)
0.612911 + 0.790152i \(0.289998\pi\)
\(570\) 0 0
\(571\) −100166. + 173493.i −0.307220 + 0.532120i −0.977753 0.209759i \(-0.932732\pi\)
0.670533 + 0.741879i \(0.266065\pi\)
\(572\) −86141.8 49734.0i −0.263282 0.152006i
\(573\) 0 0
\(574\) −7815.13 13536.2i −0.0237199 0.0410840i
\(575\) 394782.i 1.19405i
\(576\) 0 0
\(577\) −3625.36 −0.0108893 −0.00544464 0.999985i \(-0.501733\pi\)
−0.00544464 + 0.999985i \(0.501733\pi\)
\(578\) −149612. + 86378.5i −0.447828 + 0.258553i
\(579\) 0 0
\(580\) 1093.02 1893.17i 0.00324918 0.00562774i
\(581\) −27031.6 15606.7i −0.0800792 0.0462337i
\(582\) 0 0
\(583\) 89460.6 + 154950.i 0.263205 + 0.455885i
\(584\) 125070.i 0.366713i
\(585\) 0 0
\(586\) 139424. 0.406016
\(587\) −439182. + 253562.i −1.27458 + 0.735880i −0.975847 0.218456i \(-0.929898\pi\)
−0.298735 + 0.954336i \(0.596565\pi\)
\(588\) 0 0
\(589\) −230331. + 398945.i −0.663930 + 1.14996i
\(590\) −3272.92 1889.62i −0.00940223 0.00542838i
\(591\) 0 0
\(592\) 6010.94 + 10411.3i 0.0171514 + 0.0297071i
\(593\) 255264.i 0.725906i −0.931807 0.362953i \(-0.881769\pi\)
0.931807 0.362953i \(-0.118231\pi\)
\(594\) 0 0
\(595\) 409.567 0.00115689
\(596\) −80440.6 + 46442.4i −0.226455 + 0.130744i
\(597\) 0 0
\(598\) 204517. 354234.i 0.571910 0.990576i
\(599\) 248668. + 143569.i 0.693053 + 0.400134i 0.804755 0.593608i \(-0.202297\pi\)
−0.111702 + 0.993742i \(0.535630\pi\)
\(600\) 0 0
\(601\) −3352.40 5806.52i −0.00928125 0.0160756i 0.861347 0.508016i \(-0.169621\pi\)
−0.870629 + 0.491941i \(0.836288\pi\)
\(602\) 16875.3i 0.0465649i
\(603\) 0 0
\(604\) −351274. −0.962881
\(605\) 4212.59 2432.14i 0.0115090 0.00664474i
\(606\) 0 0
\(607\) 84488.0 146338.i 0.229307 0.397172i −0.728296 0.685263i \(-0.759687\pi\)
0.957603 + 0.288091i \(0.0930206\pi\)
\(608\) 46754.6 + 26993.8i 0.126479 + 0.0730225i
\(609\) 0 0
\(610\) −1072.30 1857.27i −0.00288175 0.00499133i
\(611\) 459031.i 1.22959i
\(612\) 0 0
\(613\) 110387. 0.293763 0.146882 0.989154i \(-0.453076\pi\)
0.146882 + 0.989154i \(0.453076\pi\)
\(614\) 47924.8 27669.4i 0.127123 0.0733945i
\(615\) 0 0
\(616\) −1590.83 + 2755.39i −0.00419239 + 0.00726143i
\(617\) −116125. 67045.0i −0.305040 0.176115i 0.339665 0.940547i \(-0.389686\pi\)
−0.644705 + 0.764432i \(0.723020\pi\)
\(618\) 0 0
\(619\) −179601. 311077.i −0.468734 0.811871i 0.530627 0.847605i \(-0.321956\pi\)
−0.999361 + 0.0357339i \(0.988623\pi\)
\(620\) 5141.66i 0.0133758i
\(621\) 0 0
\(622\) 141018. 0.364497
\(623\) 6512.84 3760.19i 0.0167801 0.00968799i
\(624\) 0 0
\(625\) −195150. + 338010.i −0.499585 + 0.865306i
\(626\) 260096. + 150166.i 0.663720 + 0.383199i
\(627\) 0 0
\(628\) −145926. 252752.i −0.370011 0.640877i
\(629\) 71429.3i 0.180541i
\(630\) 0 0
\(631\) 431012. 1.08251 0.541253 0.840860i \(-0.317950\pi\)
0.541253 + 0.840860i \(0.317950\pi\)
\(632\) 216071. 124749.i 0.540957 0.312322i
\(633\) 0 0
\(634\) −123681. + 214221.i −0.307697 + 0.532947i
\(635\) 502.737 + 290.255i 0.00124679 + 0.000719834i
\(636\) 0 0
\(637\) −274009. 474598.i −0.675284 1.16963i
\(638\) 100900.i 0.247885i
\(639\) 0 0
\(640\) 602.580 0.00147114
\(641\) 55097.4 31810.5i 0.134096 0.0774203i −0.431451 0.902136i \(-0.641998\pi\)
0.565547 + 0.824716i \(0.308665\pi\)
\(642\) 0 0
\(643\) 398579. 690359.i 0.964034 1.66976i 0.251846 0.967767i \(-0.418962\pi\)
0.712188 0.701989i \(-0.247704\pi\)
\(644\) −11330.8 6541.83i −0.0273205 0.0157735i
\(645\) 0 0
\(646\) 160387. + 277798.i 0.384329 + 0.665677i
\(647\) 185467.i 0.443054i −0.975154 0.221527i \(-0.928896\pi\)
0.975154 0.221527i \(-0.0711042\pi\)
\(648\) 0 0
\(649\) 174436. 0.414139
\(650\) −350309. + 202251.i −0.829135 + 0.478701i
\(651\) 0 0
\(652\) 138116. 239224.i 0.324900 0.562743i
\(653\) 92645.7 + 53489.0i 0.217270 + 0.125441i 0.604685 0.796464i \(-0.293299\pi\)
−0.387416 + 0.921905i \(0.626632\pi\)
\(654\) 0 0
\(655\) −3485.92 6037.80i −0.00812522 0.0140733i
\(656\) 136634.i 0.317506i
\(657\) 0 0
\(658\) 14682.9 0.0339125
\(659\) −659558. + 380796.i −1.51874 + 0.876843i −0.518980 + 0.854786i \(0.673688\pi\)
−0.999757 + 0.0220565i \(0.992979\pi\)
\(660\) 0 0
\(661\) 54379.4 94187.9i 0.124461 0.215572i −0.797061 0.603898i \(-0.793613\pi\)
0.921522 + 0.388326i \(0.126947\pi\)
\(662\) −53583.5 30936.4i −0.122269 0.0705918i
\(663\) 0 0
\(664\) −136429. 236301.i −0.309435 0.535957i
\(665\) 321.225i 0.000726385i
\(666\) 0 0
\(667\) −414923. −0.932644
\(668\) −23312.1 + 13459.2i −0.0522430 + 0.0301625i
\(669\) 0 0
\(670\) 1234.64 2138.45i 0.00275036 0.00476376i
\(671\) 85725.1 + 49493.4i 0.190398 + 0.109926i
\(672\) 0 0
\(673\) −277175. 480081.i −0.611961 1.05995i −0.990910 0.134529i \(-0.957048\pi\)
0.378949 0.925418i \(-0.376286\pi\)
\(674\) 531866.i 1.17080i
\(675\) 0 0
\(676\) −190617. −0.417127
\(677\) −333771. + 192703.i −0.728235 + 0.420446i −0.817776 0.575537i \(-0.804793\pi\)
0.0895414 + 0.995983i \(0.471460\pi\)
\(678\) 0 0
\(679\) 16686.2 28901.3i 0.0361924 0.0626871i
\(680\) 3100.63 + 1790.15i 0.00670551 + 0.00387143i
\(681\) 0 0
\(682\) −118660. 205526.i −0.255115 0.441873i
\(683\) 731269.i 1.56760i 0.621012 + 0.783801i \(0.286722\pi\)
−0.621012 + 0.783801i \(0.713278\pi\)
\(684\) 0 0
\(685\) 7623.98 0.0162480
\(686\) −30404.1 + 17553.8i −0.0646077 + 0.0373013i
\(687\) 0 0
\(688\) −73759.1 + 127755.i −0.155826 + 0.269898i
\(689\) 652878. + 376940.i 1.37529 + 0.794023i
\(690\) 0 0
\(691\) −25691.9 44499.7i −0.0538072 0.0931969i 0.837867 0.545874i \(-0.183802\pi\)
−0.891674 + 0.452677i \(0.850469\pi\)
\(692\) 355894.i 0.743204i
\(693\) 0 0
\(694\) 532274. 1.10514
\(695\) 2983.75 1722.67i 0.00617722 0.00356642i
\(696\) 0 0
\(697\) 405914. 703064.i 0.835542 1.44720i
\(698\) −192669. 111237.i −0.395458 0.228318i
\(699\) 0 0
\(700\) 6469.35 + 11205.2i 0.0132028 + 0.0228678i
\(701\) 538501.i 1.09585i −0.836528 0.547924i \(-0.815418\pi\)
0.836528 0.547924i \(-0.184582\pi\)
\(702\) 0 0
\(703\) 56022.4 0.113358
\(704\) −24086.7 + 13906.5i −0.0485995 + 0.0280589i
\(705\) 0 0
\(706\) 163864. 283821.i 0.328757 0.569424i
\(707\) −8078.88 4664.35i −0.0161626 0.00933151i
\(708\) 0 0
\(709\) −161752. 280163.i −0.321779 0.557337i 0.659077 0.752076i \(-0.270947\pi\)
−0.980855 + 0.194739i \(0.937614\pi\)
\(710\) 2567.21i 0.00509266i
\(711\) 0 0
\(712\) 65740.6 0.129680
\(713\) 845167. 487958.i 1.66251 0.959849i
\(714\) 0 0
\(715\) −2586.80 + 4480.47i −0.00506001 + 0.00876419i
\(716\) −401745. 231948.i −0.783655 0.452443i
\(717\) 0 0
\(718\) −264518. 458158.i −0.513105 0.888724i
\(719\) 759369.i 1.46891i −0.678658 0.734455i \(-0.737438\pi\)
0.678658 0.734455i \(-0.262562\pi\)
\(720\) 0 0
\(721\) 8319.62 0.0160042
\(722\) −101342. + 58509.7i −0.194408 + 0.112242i
\(723\) 0 0
\(724\) −132457. + 229423.i −0.252697 + 0.437683i
\(725\) 355353. + 205163.i 0.676057 + 0.390322i
\(726\) 0 0
\(727\) 243697. + 422096.i 0.461086 + 0.798624i 0.999015 0.0443658i \(-0.0141267\pi\)
−0.537930 + 0.842990i \(0.680793\pi\)
\(728\) 13405.8i 0.0252947i
\(729\) 0 0
\(730\) 6505.23 0.0122072
\(731\) −759067. + 438248.i −1.42051 + 0.820134i
\(732\) 0 0
\(733\) 230033. 398429.i 0.428137 0.741555i −0.568571 0.822634i \(-0.692503\pi\)
0.996708 + 0.0810797i \(0.0258368\pi\)
\(734\) 147312. + 85050.9i 0.273431 + 0.157865i
\(735\) 0 0
\(736\) −57186.5 99049.8i −0.105569 0.182851i
\(737\) 113973.i 0.209829i
\(738\) 0 0
\(739\) −870177. −1.59338 −0.796689 0.604390i \(-0.793417\pi\)
−0.796689 + 0.604390i \(0.793417\pi\)
\(740\) 541.518 312.646i 0.000988894 0.000570938i
\(741\) 0 0
\(742\) 12057.1 20883.4i 0.0218995 0.0379310i
\(743\) −193682. 111822.i −0.350842 0.202559i 0.314214 0.949352i \(-0.398259\pi\)
−0.665056 + 0.746794i \(0.731592\pi\)
\(744\) 0 0
\(745\) 2415.60 + 4183.94i 0.00435223 + 0.00753829i
\(746\) 686309.i 1.23323i
\(747\) 0 0
\(748\) −165253. −0.295357
\(749\) 29239.4 16881.4i 0.0521201 0.0300915i
\(750\) 0 0
\(751\) 358800. 621459.i 0.636169 1.10188i −0.350098 0.936713i \(-0.613852\pi\)
0.986266 0.165163i \(-0.0528151\pi\)
\(752\) 111157. + 64176.4i 0.196562 + 0.113485i
\(753\) 0 0
\(754\) 212569. + 368181.i 0.373902 + 0.647618i
\(755\) 18270.8i 0.0320525i
\(756\) 0 0
\(757\) 248013. 0.432795 0.216398 0.976305i \(-0.430569\pi\)
0.216398 + 0.976305i \(0.430569\pi\)
\(758\) 832.163 480.450i 0.00144834 0.000836199i
\(759\) 0 0
\(760\) 1404.02 2431.84i 0.00243079 0.00421025i
\(761\) 752960. + 434722.i 1.30018 + 0.750658i 0.980434 0.196846i \(-0.0630700\pi\)
0.319743 + 0.947504i \(0.396403\pi\)
\(762\) 0 0
\(763\) −4160.05 7205.42i −0.00714578 0.0123768i
\(764\) 493110.i 0.844807i
\(765\) 0 0
\(766\) 118020. 0.201140
\(767\) 636512. 367490.i 1.08197 0.624676i
\(768\) 0 0
\(769\) −474853. + 822469.i −0.802983 + 1.39081i 0.114662 + 0.993405i \(0.463421\pi\)
−0.917645 + 0.397402i \(0.869912\pi\)
\(770\) 143.316 + 82.7433i 0.000241720 + 0.000139557i
\(771\) 0 0
\(772\) −150715. 261046.i −0.252884 0.438009i
\(773\) 608953.i 1.01912i 0.860435 + 0.509560i \(0.170192\pi\)
−0.860435 + 0.509560i \(0.829808\pi\)
\(774\) 0 0
\(775\) −965103. −1.60683
\(776\) 252645. 145865.i 0.419554 0.242230i
\(777\) 0 0
\(778\) −248512. + 430435.i −0.410571 + 0.711129i
\(779\) −551417. 318360.i −0.908667 0.524619i
\(780\) 0 0
\(781\) 59246.6 + 102618.i 0.0971317 + 0.168237i
\(782\) 679559.i 1.11125i
\(783\) 0 0
\(784\) −153235. −0.249302
\(785\) −13146.3 + 7590.03i −0.0213336 + 0.0123170i
\(786\) 0 0
\(787\) −75627.2 + 130990.i −0.122104 + 0.211490i −0.920597 0.390514i \(-0.872297\pi\)
0.798493 + 0.602004i \(0.205631\pi\)
\(788\) −372381. 214994.i −0.599701 0.346238i
\(789\) 0 0
\(790\) −6488.53 11238.5i −0.0103966 0.0180075i
\(791\) 29115.6i 0.0465343i
\(792\) 0 0
\(793\) 417078. 0.663240
\(794\) −33061.5 + 19088.1i −0.0524423 + 0.0302776i
\(795\) 0 0
\(796\) 65848.8 114054.i 0.103925 0.180004i
\(797\) 774339. + 447065.i 1.21903 + 0.703807i 0.964711 0.263313i \(-0.0848151\pi\)
0.254320 + 0.967120i \(0.418148\pi\)
\(798\) 0 0
\(799\) 381311. + 660450.i 0.597291 + 1.03454i
\(800\) 113106.i 0.176728i
\(801\) 0 0
\(802\) 193689. 0.301132
\(803\) −260031. + 150129.i −0.403268 + 0.232827i
\(804\) 0 0
\(805\) −340.259 + 589.345i −0.000525070 + 0.000909448i
\(806\) −865976. 499972.i −1.33302 0.769618i
\(807\) 0 0
\(808\) −40774.1 70622.9i −0.0624542 0.108174i
\(809\) 61045.4i 0.0932730i −0.998912 0.0466365i \(-0.985150\pi\)
0.998912 0.0466365i \(-0.0148502\pi\)
\(810\) 0 0
\(811\) 716958. 1.09006 0.545032 0.838415i \(-0.316517\pi\)
0.545032 + 0.838415i \(0.316517\pi\)
\(812\) 11776.9 6799.40i 0.0178615 0.0103124i
\(813\) 0 0
\(814\) −14430.6 + 24994.5i −0.0217789 + 0.0377221i
\(815\) −12442.7 7183.81i −0.0187327 0.0108153i
\(816\) 0 0
\(817\) 343720. + 595341.i 0.514945 + 0.891911i
\(818\) 508423.i 0.759834i
\(819\) 0 0
\(820\) −7106.73 −0.0105692
\(821\) 858337. 495561.i 1.27342 0.735209i 0.297789 0.954632i \(-0.403751\pi\)
0.975630 + 0.219423i \(0.0704174\pi\)
\(822\) 0 0
\(823\) 488314. 845785.i 0.720941 1.24871i −0.239682 0.970852i \(-0.577043\pi\)
0.960623 0.277855i \(-0.0896236\pi\)
\(824\) 62983.7 + 36363.7i 0.0927628 + 0.0535566i
\(825\) 0 0
\(826\) −11754.8 20359.9i −0.0172288 0.0298412i
\(827\) 997499.i 1.45848i 0.684256 + 0.729242i \(0.260127\pi\)
−0.684256 + 0.729242i \(0.739873\pi\)
\(828\) 0 0
\(829\) −1.02815e6 −1.49606 −0.748029 0.663666i \(-0.768999\pi\)
−0.748029 + 0.663666i \(0.768999\pi\)
\(830\) −12290.7 + 7096.03i −0.0178410 + 0.0103005i
\(831\) 0 0
\(832\) −58594.5 + 101489.i −0.0846467 + 0.146612i
\(833\) −788484. 455232.i −1.13633 0.656058i
\(834\) 0 0
\(835\) 700.052 + 1212.53i 0.00100405 + 0.00173907i
\(836\) 129609.i 0.185448i
\(837\) 0 0
\(838\) 821525. 1.16986
\(839\) −369159. + 213134.i −0.524432 + 0.302781i −0.738746 0.673984i \(-0.764582\pi\)
0.214314 + 0.976765i \(0.431248\pi\)
\(840\) 0 0
\(841\) −138011. + 239042.i −0.195129 + 0.337973i
\(842\) −96284.2 55589.7i −0.135810 0.0784098i
\(843\) 0 0
\(844\) 34270.4 + 59358.1i 0.0481099 + 0.0833287i
\(845\) 9914.53i 0.0138854i
\(846\) 0 0
\(847\) 30259.3 0.0421786
\(848\) 182556. 105399.i 0.253866 0.146569i
\(849\) 0 0
\(850\) −336015. + 581995.i −0.465073 + 0.805529i
\(851\) −102783. 59341.8i −0.141926 0.0819411i
\(852\) 0 0
\(853\) 254338. + 440527.i 0.349553 + 0.605444i 0.986170 0.165736i \(-0.0530000\pi\)
−0.636617 + 0.771180i \(0.719667\pi\)
\(854\) 13340.9i 0.0182924i
\(855\) 0 0
\(856\) 295143. 0.402795
\(857\) 402015. 232103.i 0.547369 0.316024i −0.200691 0.979655i \(-0.564319\pi\)
0.748060 + 0.663631i \(0.230985\pi\)
\(858\) 0 0
\(859\) −537730. + 931376.i −0.728749 + 1.26223i 0.228663 + 0.973506i \(0.426564\pi\)
−0.957412 + 0.288725i \(0.906769\pi\)
\(860\) 6644.87 + 3836.42i 0.00898441 + 0.00518715i
\(861\) 0 0
\(862\) 204972. + 355022.i 0.275855 + 0.477794i
\(863\) 353636.i 0.474827i −0.971409 0.237413i \(-0.923700\pi\)
0.971409 0.237413i \(-0.0762996\pi\)
\(864\) 0 0
\(865\) 18511.0 0.0247399
\(866\) 83679.6 48312.4i 0.111579 0.0644204i
\(867\) 0 0
\(868\) −15992.4 + 27699.7i −0.0212264 + 0.0367651i
\(869\) 518727. + 299487.i 0.686909 + 0.396587i
\(870\) 0 0
\(871\) 240110. + 415883.i 0.316500 + 0.548195i
\(872\) 72731.5i 0.0956510i
\(873\) 0 0
\(874\) −532982. −0.697733
\(875\) 1165.79 673.071i 0.00152267 0.000879113i
\(876\) 0 0
\(877\) −593602. + 1.02815e6i −0.771785 + 1.33677i 0.164799 + 0.986327i \(0.447303\pi\)
−0.936584 + 0.350444i \(0.886031\pi\)
\(878\) 53821.2 + 31073.7i 0.0698175 + 0.0403092i
\(879\) 0 0
\(880\) 723.314 + 1252.82i 0.000934031 + 0.00161779i
\(881\) 1.51991e6i 1.95824i 0.203294 + 0.979118i \(0.434835\pi\)
−0.203294 + 0.979118i \(0.565165\pi\)
\(882\) 0 0
\(883\) 794738. 1.01930 0.509650 0.860382i \(-0.329775\pi\)
0.509650 + 0.860382i \(0.329775\pi\)
\(884\) −603005. + 348145.i −0.771643 + 0.445508i
\(885\) 0 0
\(886\) −90598.0 + 156920.i −0.115412 + 0.199900i
\(887\) −709913. 409868.i −0.902314 0.520951i −0.0243637 0.999703i \(-0.507756\pi\)
−0.877950 + 0.478752i \(0.841089\pi\)
\(888\) 0 0
\(889\) 1805.60 + 3127.39i 0.00228464 + 0.00395711i
\(890\) 3419.35i 0.00431682i
\(891\) 0 0
\(892\) −66602.2 −0.0837065
\(893\) 517994. 299064.i 0.649564 0.375026i
\(894\) 0 0
\(895\) −12064.2 + 20895.9i −0.0150610 + 0.0260864i
\(896\) 3246.28 + 1874.24i 0.00404362 + 0.00233459i
\(897\) 0 0
\(898\) −230481. 399205.i −0.285814 0.495044i
\(899\) 1.01434e6i 1.25506i
\(900\) 0 0
\(901\) 1.25248e6 1.54284
\(902\) 284075. 164011.i 0.349156 0.201585i
\(903\) 0 0
\(904\) −127260. + 220420.i −0.155723 + 0.269721i
\(905\) 11932.9 + 6889.48i 0.0145697 + 0.00841181i
\(906\) 0 0
\(907\) −149614. 259140.i −0.181869 0.315007i 0.760648 0.649165i \(-0.224881\pi\)
−0.942517 + 0.334158i \(0.891548\pi\)
\(908\) 245435.i 0.297690i
\(909\) 0 0
\(910\) 697.272 0.000842015
\(911\) −249530. + 144066.i −0.300667 + 0.173590i −0.642743 0.766082i \(-0.722204\pi\)
0.342075 + 0.939673i \(0.388870\pi\)
\(912\) 0 0
\(913\) 327527. 567293.i 0.392921 0.680559i
\(914\) −363397. 209808.i −0.435000 0.251147i
\(915\) 0 0
\(916\) 201784. + 349501.i 0.240490 + 0.416541i
\(917\) 43369.9i 0.0515763i
\(918\) 0 0
\(919\) −1.26206e6 −1.49434 −0.747172 0.664631i \(-0.768589\pi\)
−0.747172 + 0.664631i \(0.768589\pi\)
\(920\) −5151.86 + 2974.43i −0.00608679 + 0.00351421i
\(921\) 0 0
\(922\) 84231.7 145893.i 0.0990863 0.171622i
\(923\) 432378. + 249633.i 0.507528 + 0.293021i
\(924\) 0 0
\(925\) 58684.3 + 101644.i 0.0685865 + 0.118795i
\(926\) 191703.i 0.223567i
\(927\) 0 0
\(928\) 118876. 0.138038
\(929\) −643193. + 371348.i −0.745263 + 0.430278i −0.823980 0.566619i \(-0.808251\pi\)
0.0787166 + 0.996897i \(0.474918\pi\)
\(930\) 0 0
\(931\) −357041. + 618412.i −0.411925 + 0.713475i
\(932\) −52675.1 30412.0i −0.0606420 0.0350117i
\(933\) 0 0
\(934\) 80942.3 + 140196.i 0.0927858 + 0.160710i
\(935\) 8595.29i 0.00983190i
\(936\) 0 0
\(937\) 359577. 0.409555 0.204778 0.978809i \(-0.434353\pi\)
0.204778 + 0.978809i \(0.434353\pi\)
\(938\) 13302.7 7680.33i 0.0151194 0.00872920i
\(939\) 0 0
\(940\) 3337.99 5781.57i 0.00377772 0.00654320i
\(941\) −1.06711e6 616095.i −1.20512 0.695774i −0.243428 0.969919i \(-0.578272\pi\)
−0.961688 + 0.274145i \(0.911605\pi\)
\(942\) 0 0
\(943\) 674448. + 1.16818e6i 0.758446 + 1.31367i
\(944\) 205513.i 0.230619i
\(945\) 0 0
\(946\) −354150. −0.395736
\(947\) −773051. + 446321.i −0.862002 + 0.497677i −0.864682 0.502319i \(-0.832480\pi\)
0.00268003 + 0.999996i \(0.499147\pi\)
\(948\) 0 0
\(949\) −632563. + 1.09563e6i −0.702379 + 1.21656i
\(950\) 456462. + 263538.i 0.505775 + 0.292009i
\(951\) 0 0
\(952\) 11136.0 + 19288.1i 0.0122873 + 0.0212822i
\(953\) 737750.i 0.812313i −0.913803 0.406157i \(-0.866869\pi\)
0.913803 0.406157i \(-0.133131\pi\)
\(954\) 0 0
\(955\) −25648.0 −0.0281221
\(956\) 694988. 401252.i 0.760434 0.439037i
\(957\) 0 0
\(958\) 269356. 466538.i 0.293491 0.508342i
\(959\) 41072.7 + 23713.3i 0.0446597 + 0.0257843i
\(960\) 0 0
\(961\) −731122. 1.26634e6i −0.791668 1.37121i
\(962\) 121606.i 0.131403i
\(963\) 0 0
\(964\) 303515. 0.326607
\(965\) −13577.7 + 7839.11i −0.0145805 + 0.00841806i
\(966\) 0 0
\(967\) −24080.7 + 41708.9i −0.0257523 + 0.0446042i −0.878614 0.477532i \(-0.841531\pi\)
0.852862 + 0.522136i \(0.174865\pi\)
\(968\) 229078. + 132258.i 0.244474 + 0.141147i
\(969\) 0 0
\(970\) −7586.84 13140.8i −0.00806338 0.0139662i
\(971\) 80929.3i 0.0858356i −0.999079 0.0429178i \(-0.986335\pi\)
0.999079 0.0429178i \(-0.0136654\pi\)
\(972\) 0 0
\(973\) 21432.5 0.0226385
\(974\) −409543. + 236450.i −0.431699 + 0.249242i
\(975\) 0 0
\(976\) 58311.0 100998.i 0.0612140 0.106026i
\(977\) 525681. + 303502.i 0.550723 + 0.317960i 0.749414 0.662102i \(-0.230335\pi\)
−0.198690 + 0.980062i \(0.563669\pi\)
\(978\) 0 0
\(979\) 78912.4 + 136680.i 0.0823341 + 0.142607i
\(980\) 7970.19i 0.00829882i
\(981\) 0 0
\(982\) −700779. −0.726705
\(983\) 1.31392e6 758595.i 1.35976 0.785060i 0.370172 0.928963i \(-0.379299\pi\)
0.989592 + 0.143904i \(0.0459655\pi\)
\(984\) 0 0
\(985\) −11182.4 + 19368.6i −0.0115256 + 0.0199630i
\(986\) 611686. + 353157.i 0.629180 + 0.363257i
\(987\) 0 0
\(988\) 273052. + 472940.i 0.279725 + 0.484498i
\(989\) 1.45634e6i 1.48892i
\(990\) 0 0
\(991\) −1.27300e6 −1.29623 −0.648116 0.761542i \(-0.724443\pi\)
−0.648116 + 0.761542i \(0.724443\pi\)
\(992\) −242142. + 139801.i −0.246063 + 0.142064i
\(993\) 0 0
\(994\) 7984.95 13830.3i 0.00808164 0.0139978i
\(995\) −5932.24 3424.98i −0.00599201 0.00345949i
\(996\) 0 0
\(997\) −596309. 1.03284e6i −0.599903 1.03906i −0.992835 0.119494i \(-0.961873\pi\)
0.392932 0.919567i \(-0.371461\pi\)
\(998\) 1.16257e6i 1.16723i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.5.d.e.53.3 8
3.2 odd 2 inner 162.5.d.e.53.2 8
9.2 odd 6 inner 162.5.d.e.107.3 8
9.4 even 3 162.5.b.b.161.4 yes 4
9.5 odd 6 162.5.b.b.161.1 4
9.7 even 3 inner 162.5.d.e.107.2 8
36.23 even 6 1296.5.e.a.161.2 4
36.31 odd 6 1296.5.e.a.161.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.5.b.b.161.1 4 9.5 odd 6
162.5.b.b.161.4 yes 4 9.4 even 3
162.5.d.e.53.2 8 3.2 odd 2 inner
162.5.d.e.53.3 8 1.1 even 1 trivial
162.5.d.e.107.2 8 9.7 even 3 inner
162.5.d.e.107.3 8 9.2 odd 6 inner
1296.5.e.a.161.2 4 36.23 even 6
1296.5.e.a.161.3 4 36.31 odd 6