Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(16.7459340196\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 3^{10} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{24}^{4} \)
|
\(\beta_{2}\) | \(=\) |
\( 9\zeta_{24}^{6} + 9\zeta_{24}^{2} \)
|
\(\beta_{3}\) | \(=\) |
\( -\zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} \)
|
\(\beta_{4}\) | \(=\) |
\( -9\zeta_{24}^{6} + 18\zeta_{24}^{2} \)
|
\(\beta_{5}\) | \(=\) |
\( -\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} \)
|
\(\beta_{6}\) | \(=\) |
\( 5\zeta_{24}^{7} - 5\zeta_{24}^{5} + 4\zeta_{24}^{3} + 9\zeta_{24} \)
|
\(\beta_{7}\) | \(=\) |
\( 9\zeta_{24}^{7} + 5\zeta_{24}^{5} - 4\zeta_{24}^{3} + 4\zeta_{24} \)
|
\(\zeta_{24}\) | \(=\) |
\( ( \beta_{7} + \beta_{6} + 14\beta_{5} + 14\beta_{3} ) / 27 \)
|
\(\zeta_{24}^{2}\) | \(=\) |
\( ( \beta_{4} + \beta_{2} ) / 27 \)
|
\(\zeta_{24}^{3}\) | \(=\) |
\( ( -\beta_{7} + 2\beta_{6} + \beta_{5} - 14\beta_{3} ) / 27 \)
|
\(\zeta_{24}^{4}\) | \(=\) |
\( \beta_1 \)
|
\(\zeta_{24}^{5}\) | \(=\) |
\( ( 2\beta_{7} - \beta_{6} + 13\beta_{5} + \beta_{3} ) / 27 \)
|
\(\zeta_{24}^{6}\) | \(=\) |
\( ( -\beta_{4} + 2\beta_{2} ) / 27 \)
|
\(\zeta_{24}^{7}\) | \(=\) |
\( ( \beta_{7} + \beta_{6} - 13\beta_{5} - 13\beta_{3} ) / 27 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\) | \(83\) |
\(\chi(n)\) | \(1 - \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
−2.44949 | + | 1.41421i | 0 | 4.00000 | − | 6.92820i | −18.7315 | − | 10.8147i | 0 | 14.2942 | + | 24.7583i | 22.6274i | 0 | 61.1769 | ||||||||||||||||||||||||||||||||||
53.2 | −2.44949 | + | 1.41421i | 0 | 4.00000 | − | 6.92820i | 0.360355 | + | 0.208051i | 0 | −1.29423 | − | 2.24167i | 22.6274i | 0 | −1.17691 | |||||||||||||||||||||||||||||||||||
53.3 | 2.44949 | − | 1.41421i | 0 | 4.00000 | − | 6.92820i | −0.360355 | − | 0.208051i | 0 | −1.29423 | − | 2.24167i | − | 22.6274i | 0 | −1.17691 | ||||||||||||||||||||||||||||||||||
53.4 | 2.44949 | − | 1.41421i | 0 | 4.00000 | − | 6.92820i | 18.7315 | + | 10.8147i | 0 | 14.2942 | + | 24.7583i | − | 22.6274i | 0 | 61.1769 | ||||||||||||||||||||||||||||||||||
107.1 | −2.44949 | − | 1.41421i | 0 | 4.00000 | + | 6.92820i | −18.7315 | + | 10.8147i | 0 | 14.2942 | − | 24.7583i | − | 22.6274i | 0 | 61.1769 | ||||||||||||||||||||||||||||||||||
107.2 | −2.44949 | − | 1.41421i | 0 | 4.00000 | + | 6.92820i | 0.360355 | − | 0.208051i | 0 | −1.29423 | + | 2.24167i | − | 22.6274i | 0 | −1.17691 | ||||||||||||||||||||||||||||||||||
107.3 | 2.44949 | + | 1.41421i | 0 | 4.00000 | + | 6.92820i | −0.360355 | + | 0.208051i | 0 | −1.29423 | + | 2.24167i | 22.6274i | 0 | −1.17691 | |||||||||||||||||||||||||||||||||||
107.4 | 2.44949 | + | 1.41421i | 0 | 4.00000 | + | 6.92820i | 18.7315 | − | 10.8147i | 0 | 14.2942 | − | 24.7583i | 22.6274i | 0 | 61.1769 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.5.d.e | 8 | |
3.b | odd | 2 | 1 | inner | 162.5.d.e | 8 | |
9.c | even | 3 | 1 | 162.5.b.b | ✓ | 4 | |
9.c | even | 3 | 1 | inner | 162.5.d.e | 8 | |
9.d | odd | 6 | 1 | 162.5.b.b | ✓ | 4 | |
9.d | odd | 6 | 1 | inner | 162.5.d.e | 8 | |
36.f | odd | 6 | 1 | 1296.5.e.a | 4 | ||
36.h | even | 6 | 1 | 1296.5.e.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
162.5.b.b | ✓ | 4 | 9.c | even | 3 | 1 | |
162.5.b.b | ✓ | 4 | 9.d | odd | 6 | 1 | |
162.5.d.e | 8 | 1.a | even | 1 | 1 | trivial | |
162.5.d.e | 8 | 3.b | odd | 2 | 1 | inner | |
162.5.d.e | 8 | 9.c | even | 3 | 1 | inner | |
162.5.d.e | 8 | 9.d | odd | 6 | 1 | inner | |
1296.5.e.a | 4 | 36.f | odd | 6 | 1 | ||
1296.5.e.a | 4 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} - 468T_{5}^{6} + 218943T_{5}^{4} - 37908T_{5}^{2} + 6561 \)
acting on \(S_{5}^{\mathrm{new}}(162, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - 8 T^{2} + 64)^{2} \)
$3$
\( T^{8} \)
$5$
\( T^{8} - 468 T^{6} + 218943 T^{4} + \cdots + 6561 \)
$7$
\( (T^{4} - 26 T^{3} + 750 T^{2} + 1924 T + 5476)^{2} \)
$11$
\( T^{8} + \cdots + 816800166640656 \)
$13$
\( (T^{4} - 146 T^{3} + 40287 T^{2} + \cdots + 359898841)^{2} \)
$17$
\( (T^{4} + 334188 T^{2} + \cdots + 27414418329)^{2} \)
$19$
\( (T^{2} - 370 T - 199298)^{4} \)
$23$
\( T^{8} - 461700 T^{6} + \cdots + 62\!\cdots\!00 \)
$29$
\( T^{8} - 845964 T^{6} + \cdots + 31\!\cdots\!01 \)
$31$
\( (T^{4} - 2528 T^{3} + \cdots + 2307251633296)^{2} \)
$37$
\( (T^{2} - 2212 T - 450791)^{4} \)
$41$
\( T^{8} - 10348812 T^{6} + \cdots + 69\!\cdots\!96 \)
$43$
\( (T^{4} + 214 T^{3} + \cdots + 23228871893956)^{2} \)
$47$
\( T^{8} - 14236272 T^{6} + \cdots + 16\!\cdots\!16 \)
$53$
\( (T^{4} + 17321292 T^{2} + \cdots + 70220008948644)^{2} \)
$59$
\( T^{8} - 18316368 T^{6} + \cdots + 68\!\cdots\!36 \)
$61$
\( (T^{4} + 2248 T^{3} + \cdots + 55009322747929)^{2} \)
$67$
\( (T^{4} + 8218 T^{3} + \cdots + 164868630253924)^{2} \)
$71$
\( (T^{4} + 6936228 T^{2} + \cdots + 10363776595524)^{2} \)
$73$
\( (T^{2} + 10400 T + 26932837)^{4} \)
$79$
\( (T^{4} - 8366 T^{3} + \cdots + 860466777033796)^{2} \)
$83$
\( T^{8} - 156202704 T^{6} + \cdots + 24\!\cdots\!16 \)
$89$
\( (T^{4} + 34873236 T^{2} + \cdots + 223115671821249)^{2} \)
$97$
\( (T^{4} - 1904 T^{3} + \cdots + 20\!\cdots\!16)^{2} \)
show more
show less