Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(16.7459340196\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{6}\cdot 3^{12} \) |
Twist minimal: | no (minimal twist has level 54) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( 27\zeta_{24}^{2} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{24}^{4} \)
|
\(\beta_{3}\) | \(=\) |
\( 27\zeta_{24}^{6} \)
|
\(\beta_{4}\) | \(=\) |
\( -2\zeta_{24}^{5} - 2\zeta_{24}^{3} + 2\zeta_{24} \)
|
\(\beta_{5}\) | \(=\) |
\( -2\zeta_{24}^{7} + 2\zeta_{24}^{5} + 2\zeta_{24}^{3} \)
|
\(\beta_{6}\) | \(=\) |
\( 54\zeta_{24}^{7} + 54\zeta_{24} \)
|
\(\beta_{7}\) | \(=\) |
\( -54\zeta_{24}^{5} + 54\zeta_{24}^{3} + 54\zeta_{24} \)
|
\(\zeta_{24}\) | \(=\) |
\( ( \beta_{6} + 27\beta_{5} + 27\beta_{4} ) / 108 \)
|
\(\zeta_{24}^{2}\) | \(=\) |
\( ( \beta_1 ) / 27 \)
|
\(\zeta_{24}^{3}\) | \(=\) |
\( ( \beta_{7} - 27\beta_{4} ) / 108 \)
|
\(\zeta_{24}^{4}\) | \(=\) |
\( \beta_{2} \)
|
\(\zeta_{24}^{5}\) | \(=\) |
\( ( -\beta_{7} + \beta_{6} + 27\beta_{5} ) / 108 \)
|
\(\zeta_{24}^{6}\) | \(=\) |
\( ( \beta_{3} ) / 27 \)
|
\(\zeta_{24}^{7}\) | \(=\) |
\( ( \beta_{6} - 27\beta_{5} - 27\beta_{4} ) / 108 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\) | \(83\) |
\(\chi(n)\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
−2.44949 | + | 1.41421i | 0 | 4.00000 | − | 6.92820i | −30.7312 | − | 17.7426i | 0 | −46.6838 | − | 80.8587i | 22.6274i | 0 | 100.368 | ||||||||||||||||||||||||||||||||||
53.2 | −2.44949 | + | 1.41421i | 0 | 4.00000 | − | 6.92820i | 16.0342 | + | 9.25736i | 0 | 29.6838 | + | 51.4138i | 22.6274i | 0 | −52.3675 | |||||||||||||||||||||||||||||||||||
53.3 | 2.44949 | − | 1.41421i | 0 | 4.00000 | − | 6.92820i | −16.0342 | − | 9.25736i | 0 | 29.6838 | + | 51.4138i | − | 22.6274i | 0 | −52.3675 | ||||||||||||||||||||||||||||||||||
53.4 | 2.44949 | − | 1.41421i | 0 | 4.00000 | − | 6.92820i | 30.7312 | + | 17.7426i | 0 | −46.6838 | − | 80.8587i | − | 22.6274i | 0 | 100.368 | ||||||||||||||||||||||||||||||||||
107.1 | −2.44949 | − | 1.41421i | 0 | 4.00000 | + | 6.92820i | −30.7312 | + | 17.7426i | 0 | −46.6838 | + | 80.8587i | − | 22.6274i | 0 | 100.368 | ||||||||||||||||||||||||||||||||||
107.2 | −2.44949 | − | 1.41421i | 0 | 4.00000 | + | 6.92820i | 16.0342 | − | 9.25736i | 0 | 29.6838 | − | 51.4138i | − | 22.6274i | 0 | −52.3675 | ||||||||||||||||||||||||||||||||||
107.3 | 2.44949 | + | 1.41421i | 0 | 4.00000 | + | 6.92820i | −16.0342 | + | 9.25736i | 0 | 29.6838 | − | 51.4138i | 22.6274i | 0 | −52.3675 | |||||||||||||||||||||||||||||||||||
107.4 | 2.44949 | + | 1.41421i | 0 | 4.00000 | + | 6.92820i | 30.7312 | − | 17.7426i | 0 | −46.6838 | + | 80.8587i | 22.6274i | 0 | 100.368 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.5.d.c | 8 | |
3.b | odd | 2 | 1 | inner | 162.5.d.c | 8 | |
9.c | even | 3 | 1 | 54.5.b.b | ✓ | 4 | |
9.c | even | 3 | 1 | inner | 162.5.d.c | 8 | |
9.d | odd | 6 | 1 | 54.5.b.b | ✓ | 4 | |
9.d | odd | 6 | 1 | inner | 162.5.d.c | 8 | |
36.f | odd | 6 | 1 | 432.5.e.h | 4 | ||
36.h | even | 6 | 1 | 432.5.e.h | 4 | ||
45.h | odd | 6 | 1 | 1350.5.d.c | 4 | ||
45.j | even | 6 | 1 | 1350.5.d.c | 4 | ||
45.k | odd | 12 | 1 | 1350.5.b.a | 4 | ||
45.k | odd | 12 | 1 | 1350.5.b.c | 4 | ||
45.l | even | 12 | 1 | 1350.5.b.a | 4 | ||
45.l | even | 12 | 1 | 1350.5.b.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.5.b.b | ✓ | 4 | 9.c | even | 3 | 1 | |
54.5.b.b | ✓ | 4 | 9.d | odd | 6 | 1 | |
162.5.d.c | 8 | 1.a | even | 1 | 1 | trivial | |
162.5.d.c | 8 | 3.b | odd | 2 | 1 | inner | |
162.5.d.c | 8 | 9.c | even | 3 | 1 | inner | |
162.5.d.c | 8 | 9.d | odd | 6 | 1 | inner | |
432.5.e.h | 4 | 36.f | odd | 6 | 1 | ||
432.5.e.h | 4 | 36.h | even | 6 | 1 | ||
1350.5.b.a | 4 | 45.k | odd | 12 | 1 | ||
1350.5.b.a | 4 | 45.l | even | 12 | 1 | ||
1350.5.b.c | 4 | 45.k | odd | 12 | 1 | ||
1350.5.b.c | 4 | 45.l | even | 12 | 1 | ||
1350.5.d.c | 4 | 45.h | odd | 6 | 1 | ||
1350.5.d.c | 4 | 45.j | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} - 1602T_{5}^{6} + 2134755T_{5}^{4} - 691501698T_{5}^{2} + 186320859201 \)
acting on \(S_{5}^{\mathrm{new}}(162, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - 8 T^{2} + 64)^{2} \)
$3$
\( T^{8} \)
$5$
\( T^{8} - 1602 T^{6} + \cdots + 186320859201 \)
$7$
\( (T^{4} + 34 T^{3} + 6699 T^{2} + \cdots + 30724849)^{2} \)
$11$
\( T^{8} - 15858 T^{6} + \cdots + 17\!\cdots\!81 \)
$13$
\( (T^{4} - 260 T^{3} + 74028 T^{2} + \cdots + 41319184)^{2} \)
$17$
\( (T^{4} + 192456 T^{2} + \cdots + 8171436816)^{2} \)
$19$
\( (T^{2} - 544 T + 50656)^{4} \)
$23$
\( T^{8} - 791136 T^{6} + \cdots + 12\!\cdots\!76 \)
$29$
\( T^{8} - 1820808 T^{6} + \cdots + 17\!\cdots\!76 \)
$31$
\( (T^{4} + 406 T^{3} + \cdots + 1615418122081)^{2} \)
$37$
\( (T^{2} + 536 T - 1071248)^{4} \)
$41$
\( T^{8} - 8484192 T^{6} + \cdots + 39\!\cdots\!56 \)
$43$
\( (T^{4} - 3548 T^{3} + \cdots + 8626697391376)^{2} \)
$47$
\( T^{8} - 11654856 T^{6} + \cdots + 41\!\cdots\!56 \)
$53$
\( (T^{4} + 25469154 T^{2} + \cdots + 62602291689921)^{2} \)
$59$
\( T^{8} - 14834376 T^{6} + \cdots + 18\!\cdots\!96 \)
$61$
\( (T^{4} - 6968 T^{3} + \cdots + 77071262392576)^{2} \)
$67$
\( (T^{4} + 1612 T^{3} + \cdots + 193322019856)^{2} \)
$71$
\( (T^{4} + 69476616 T^{2} + \cdots + 848775738667536)^{2} \)
$73$
\( (T^{2} - 4306 T + 2745841)^{4} \)
$79$
\( (T^{4} - 5780 T^{3} + \cdots + 14286978755344)^{2} \)
$83$
\( T^{8} - 47194146 T^{6} + \cdots + 25\!\cdots\!61 \)
$89$
\( (T^{4} + 227863368 T^{2} + \cdots + 191787378007824)^{2} \)
$97$
\( (T^{4} + 790 T^{3} + \cdots + 20\!\cdots\!89)^{2} \)
show more
show less