Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(16.7459340196\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.221456830464.4 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 4x^{7} + 38x^{6} - 100x^{5} + 449x^{4} - 736x^{3} + 1900x^{2} - 1548x + 2307 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{8}\cdot 3^{16} \) |
Twist minimal: | no (minimal twist has level 18) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 4x^{7} + 38x^{6} - 100x^{5} + 449x^{4} - 736x^{3} + 1900x^{2} - 1548x + 2307 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -3\nu^{4} + 6\nu^{3} - 33\nu^{2} + 30\nu + 1 ) / 2 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -38\nu^{7} + 133\nu^{6} - 1025\nu^{5} + 2230\nu^{4} - 6077\nu^{3} + 6952\nu^{2} - 1749\nu - 213 ) / 4230 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 15\nu^{4} - 30\nu^{3} + 273\nu^{2} - 258\nu + 865 ) / 2 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -132\nu^{7} + 462\nu^{6} - 4080\nu^{5} + 9045\nu^{4} - 35358\nu^{3} + 44223\nu^{2} - 85926\nu + 35883 ) / 470 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 27\nu^{6} - 81\nu^{5} + 765\nu^{4} - 1395\nu^{3} + 5877\nu^{2} - 5193\nu + 11260 ) / 2 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 216\nu^{7} - 756\nu^{6} + 7830\nu^{5} - 17685\nu^{4} + 78624\nu^{3} - 100629\nu^{2} + 198288\nu - 82944 ) / 235 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 1994 \nu^{7} + 6979 \nu^{6} - 57125 \nu^{5} + 125365 \nu^{4} - 443111 \nu^{3} + 542791 \nu^{2} - 849837 \nu + 338466 ) / 2115 \)
|
\(\nu\) | \(=\) |
\( ( 3\beta_{7} - \beta_{6} - 12\beta_{4} - 42\beta_{2} + 81 ) / 162 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 3\beta_{7} - \beta_{6} - 12\beta_{4} + 3\beta_{3} - 42\beta_{2} + 15\beta _1 - 1224 ) / 162 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -19\beta_{7} + 4\beta_{6} + 58\beta_{4} + 3\beta_{3} + 590\beta_{2} + 15\beta _1 - 1251 ) / 108 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -60\beta_{7} + 13\beta_{6} + 186\beta_{4} - 24\beta_{3} + 1812\beta_{2} - 228\beta _1 + 10575 ) / 162 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 573\beta_{7} - 34\beta_{6} - 1374\beta_{4} - 135\beta_{3} - 20658\beta_{2} - 1215\beta _1 + 59157 ) / 324 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 337\beta_{7} - 28\beta_{6} + 4\beta_{5} - 844\beta_{4} + 19\beta_{3} - 11846\beta_{2} + 845\beta _1 - 31133 ) / 54 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 2742 \beta_{7} - 169 \beta_{6} + 42 \beta_{5} + 5028 \beta_{4} + 441 \beta_{3} + 95250 \beta_{2} + 11025 \beta _1 - 432624 ) / 162 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\) | \(83\) |
\(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161.1 |
|
− | 2.82843i | 0 | −8.00000 | − | 42.7277i | 0 | 39.6847 | 22.6274i | 0 | −120.852 | ||||||||||||||||||||||||||||||||||||||||
161.2 | − | 2.82843i | 0 | −8.00000 | − | 2.20976i | 0 | 43.9826 | 22.6274i | 0 | −6.25016 | |||||||||||||||||||||||||||||||||||||||||
161.3 | − | 2.82843i | 0 | −8.00000 | 7.40592i | 0 | −60.3765 | 22.6274i | 0 | 20.9471 | ||||||||||||||||||||||||||||||||||||||||||
161.4 | − | 2.82843i | 0 | −8.00000 | 37.5315i | 0 | 2.70916 | 22.6274i | 0 | 106.155 | ||||||||||||||||||||||||||||||||||||||||||
161.5 | 2.82843i | 0 | −8.00000 | − | 37.5315i | 0 | 2.70916 | − | 22.6274i | 0 | 106.155 | |||||||||||||||||||||||||||||||||||||||||
161.6 | 2.82843i | 0 | −8.00000 | − | 7.40592i | 0 | −60.3765 | − | 22.6274i | 0 | 20.9471 | |||||||||||||||||||||||||||||||||||||||||
161.7 | 2.82843i | 0 | −8.00000 | 2.20976i | 0 | 43.9826 | − | 22.6274i | 0 | −6.25016 | ||||||||||||||||||||||||||||||||||||||||||
161.8 | 2.82843i | 0 | −8.00000 | 42.7277i | 0 | 39.6847 | − | 22.6274i | 0 | −120.852 | ||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.5.b.c | 8 | |
3.b | odd | 2 | 1 | inner | 162.5.b.c | 8 | |
4.b | odd | 2 | 1 | 1296.5.e.e | 8 | ||
9.c | even | 3 | 1 | 18.5.d.a | ✓ | 8 | |
9.c | even | 3 | 1 | 54.5.d.a | 8 | ||
9.d | odd | 6 | 1 | 18.5.d.a | ✓ | 8 | |
9.d | odd | 6 | 1 | 54.5.d.a | 8 | ||
12.b | even | 2 | 1 | 1296.5.e.e | 8 | ||
36.f | odd | 6 | 1 | 144.5.q.b | 8 | ||
36.f | odd | 6 | 1 | 432.5.q.b | 8 | ||
36.h | even | 6 | 1 | 144.5.q.b | 8 | ||
36.h | even | 6 | 1 | 432.5.q.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
18.5.d.a | ✓ | 8 | 9.c | even | 3 | 1 | |
18.5.d.a | ✓ | 8 | 9.d | odd | 6 | 1 | |
54.5.d.a | 8 | 9.c | even | 3 | 1 | ||
54.5.d.a | 8 | 9.d | odd | 6 | 1 | ||
144.5.q.b | 8 | 36.f | odd | 6 | 1 | ||
144.5.q.b | 8 | 36.h | even | 6 | 1 | ||
162.5.b.c | 8 | 1.a | even | 1 | 1 | trivial | |
162.5.b.c | 8 | 3.b | odd | 2 | 1 | inner | |
432.5.q.b | 8 | 36.f | odd | 6 | 1 | ||
432.5.q.b | 8 | 36.h | even | 6 | 1 | ||
1296.5.e.e | 8 | 4.b | odd | 2 | 1 | ||
1296.5.e.e | 8 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 3294T_{5}^{6} + 2765097T_{5}^{4} + 154472184T_{5}^{2} + 688747536 \)
acting on \(S_{5}^{\mathrm{new}}(162, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 8)^{4} \)
$3$
\( T^{8} \)
$5$
\( T^{8} + 3294 T^{6} + \cdots + 688747536 \)
$7$
\( (T^{4} - 26 T^{3} - 3243 T^{2} + \cdots - 285500)^{2} \)
$11$
\( T^{8} + 86364 T^{6} + \cdots + 53\!\cdots\!89 \)
$13$
\( (T^{4} + 10 T^{3} - 79599 T^{2} + \cdots + 738398896)^{2} \)
$17$
\( T^{8} + 418950 T^{6} + \cdots + 33\!\cdots\!00 \)
$19$
\( (T^{4} - 50 T^{3} - 295131 T^{2} + \cdots + 8154234820)^{2} \)
$23$
\( T^{8} + 561078 T^{6} + \cdots + 44\!\cdots\!64 \)
$29$
\( T^{8} + 2863422 T^{6} + \cdots + 46\!\cdots\!04 \)
$31$
\( (T^{4} - 1478 T^{3} + \cdots - 727726946432)^{2} \)
$37$
\( (T^{4} + 16 T^{3} + \cdots - 305304165104)^{2} \)
$41$
\( T^{8} + 644652 T^{6} + \cdots + 80\!\cdots\!61 \)
$43$
\( (T^{4} - 68 T^{3} + \cdots + 150128761105)^{2} \)
$47$
\( T^{8} + 11293686 T^{6} + \cdots + 16\!\cdots\!64 \)
$53$
\( T^{8} + 15974784 T^{6} + \cdots + 11\!\cdots\!56 \)
$59$
\( T^{8} + 49032396 T^{6} + \cdots + 62\!\cdots\!25 \)
$61$
\( (T^{4} - 4478 T^{3} + \cdots + 317147769769024)^{2} \)
$67$
\( (T^{4} + 7504 T^{3} + \cdots + 27967816823305)^{2} \)
$71$
\( T^{8} + 78003288 T^{6} + \cdots + 55\!\cdots\!24 \)
$73$
\( (T^{4} - 10358 T^{3} + \cdots - 13267734129308)^{2} \)
$79$
\( (T^{4} - 6050 T^{3} + \cdots - 851414599190300)^{2} \)
$83$
\( T^{8} + 66631158 T^{6} + \cdots + 16\!\cdots\!04 \)
$89$
\( T^{8} + 295741440 T^{6} + \cdots + 74\!\cdots\!00 \)
$97$
\( (T^{4} + 31336 T^{3} + \cdots + 799415366370601)^{2} \)
show more
show less