Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(9.55830942093\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{105}) \) |
Defining polynomial: |
\( x^{2} - x - 26 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 18) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 3\sqrt{105})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.00000 | 0 | 4.00000 | −19.8704 | 0 | −5.87043 | −8.00000 | 0 | 39.7409 | ||||||||||||||||||||||||
1.2 | −2.00000 | 0 | 4.00000 | 10.8704 | 0 | 24.8704 | −8.00000 | 0 | −21.7409 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(3\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.4.a.f | 2 | |
3.b | odd | 2 | 1 | 162.4.a.g | 2 | ||
4.b | odd | 2 | 1 | 1296.4.a.l | 2 | ||
9.c | even | 3 | 2 | 18.4.c.b | ✓ | 4 | |
9.d | odd | 6 | 2 | 54.4.c.b | 4 | ||
12.b | even | 2 | 1 | 1296.4.a.r | 2 | ||
36.f | odd | 6 | 2 | 144.4.i.b | 4 | ||
36.h | even | 6 | 2 | 432.4.i.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
18.4.c.b | ✓ | 4 | 9.c | even | 3 | 2 | |
54.4.c.b | 4 | 9.d | odd | 6 | 2 | ||
144.4.i.b | 4 | 36.f | odd | 6 | 2 | ||
162.4.a.f | 2 | 1.a | even | 1 | 1 | trivial | |
162.4.a.g | 2 | 3.b | odd | 2 | 1 | ||
432.4.i.b | 4 | 36.h | even | 6 | 2 | ||
1296.4.a.l | 2 | 4.b | odd | 2 | 1 | ||
1296.4.a.r | 2 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 9T_{5} - 216 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(162))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 2)^{2} \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 9T - 216 \)
$7$
\( T^{2} - 19T - 146 \)
$11$
\( T^{2} + 24T - 801 \)
$13$
\( T^{2} - 61T + 694 \)
$17$
\( T^{2} - 3T - 234 \)
$19$
\( T^{2} - 133T - 1484 \)
$23$
\( T^{2} - 69T + 954 \)
$29$
\( T^{2} - 237T + 2466 \)
$31$
\( T^{2} - 211T + 9004 \)
$37$
\( T^{2} - 262T - 29144 \)
$41$
\( T^{2} - 468T + 53811 \)
$43$
\( T^{2} + 86T - 134231 \)
$47$
\( T^{2} - 483T + 5166 \)
$53$
\( T^{2} - 150T - 40680 \)
$59$
\( T^{2} - 168T + 6111 \)
$61$
\( T^{2} + 1049 T + 221944 \)
$67$
\( T^{2} + 1166 T + 305869 \)
$71$
\( T^{2} + 312T - 217584 \)
$73$
\( T^{2} + 311T - 80006 \)
$79$
\( T^{2} - 349T - 9476 \)
$83$
\( T^{2} - 1221 T + 268524 \)
$89$
\( T^{2} + 492T - 317484 \)
$97$
\( T^{2} + 128T - 110249 \)
show more
show less