Properties

Label 162.4.a.f
Level $162$
Weight $4$
Character orbit 162.a
Self dual yes
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{105}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 3\sqrt{105})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + ( - \beta - 5) q^{5} + ( - \beta + 9) q^{7} - 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 4 q^{4} + ( - \beta - 5) q^{5} + ( - \beta + 9) q^{7} - 8 q^{8} + (2 \beta + 10) q^{10} + (2 \beta - 11) q^{11} + (\beta + 31) q^{13} + (2 \beta - 18) q^{14} + 16 q^{16} + (\beta + 2) q^{17} + ( - 5 \beta + 64) q^{19} + ( - 4 \beta - 20) q^{20} + ( - 4 \beta + 22) q^{22} + (\beta + 35) q^{23} + (9 \beta + 136) q^{25} + ( - 2 \beta - 62) q^{26} + ( - 4 \beta + 36) q^{28} + ( - 7 \beta + 115) q^{29} + (3 \beta + 107) q^{31} - 32 q^{32} + ( - 2 \beta - 4) q^{34} + ( - 5 \beta + 191) q^{35} + (14 \beta + 138) q^{37} + (10 \beta - 128) q^{38} + (8 \beta + 40) q^{40} + (2 \beta + 235) q^{41} + ( - 24 \beta - 55) q^{43} + (8 \beta - 44) q^{44} + ( - 2 \beta - 70) q^{46} + (15 \beta + 249) q^{47} + ( - 19 \beta - 26) q^{49} + ( - 18 \beta - 272) q^{50} + (4 \beta + 124) q^{52} + (14 \beta + 82) q^{53} + (3 \beta - 417) q^{55} + (8 \beta - 72) q^{56} + (14 \beta - 230) q^{58} + ( - 2 \beta + 83) q^{59} + (15 \beta - 517) q^{61} + ( - 6 \beta - 214) q^{62} + 64 q^{64} + ( - 35 \beta - 391) q^{65} + (12 \beta - 577) q^{67} + (4 \beta + 8) q^{68} + (10 \beta - 382) q^{70} + ( - 32 \beta - 172) q^{71} + ( - 21 \beta - 166) q^{73} + ( - 28 \beta - 276) q^{74} + ( - 20 \beta + 256) q^{76} + (31 \beta - 571) q^{77} + (13 \beta + 181) q^{79} + ( - 16 \beta - 80) q^{80} + ( - 4 \beta - 470) q^{82} + (21 \beta + 621) q^{83} + ( - 6 \beta - 246) q^{85} + (48 \beta + 110) q^{86} + ( - 16 \beta + 88) q^{88} + (40 \beta - 226) q^{89} + ( - 21 \beta + 43) q^{91} + (4 \beta + 140) q^{92} + ( - 30 \beta - 498) q^{94} + ( - 44 \beta + 860) q^{95} + (22 \beta - 53) q^{97} + (38 \beta + 52) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 9 q^{5} + 19 q^{7} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 8 q^{4} - 9 q^{5} + 19 q^{7} - 16 q^{8} + 18 q^{10} - 24 q^{11} + 61 q^{13} - 38 q^{14} + 32 q^{16} + 3 q^{17} + 133 q^{19} - 36 q^{20} + 48 q^{22} + 69 q^{23} + 263 q^{25} - 122 q^{26} + 76 q^{28} + 237 q^{29} + 211 q^{31} - 64 q^{32} - 6 q^{34} + 387 q^{35} + 262 q^{37} - 266 q^{38} + 72 q^{40} + 468 q^{41} - 86 q^{43} - 96 q^{44} - 138 q^{46} + 483 q^{47} - 33 q^{49} - 526 q^{50} + 244 q^{52} + 150 q^{53} - 837 q^{55} - 152 q^{56} - 474 q^{58} + 168 q^{59} - 1049 q^{61} - 422 q^{62} + 128 q^{64} - 747 q^{65} - 1166 q^{67} + 12 q^{68} - 774 q^{70} - 312 q^{71} - 311 q^{73} - 524 q^{74} + 532 q^{76} - 1173 q^{77} + 349 q^{79} - 144 q^{80} - 936 q^{82} + 1221 q^{83} - 486 q^{85} + 172 q^{86} + 192 q^{88} - 492 q^{89} + 107 q^{91} + 276 q^{92} - 966 q^{94} + 1764 q^{95} - 128 q^{97} + 66 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.62348
−4.62348
−2.00000 0 4.00000 −19.8704 0 −5.87043 −8.00000 0 39.7409
1.2 −2.00000 0 4.00000 10.8704 0 24.8704 −8.00000 0 −21.7409
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.4.a.f 2
3.b odd 2 1 162.4.a.g 2
4.b odd 2 1 1296.4.a.l 2
9.c even 3 2 18.4.c.b 4
9.d odd 6 2 54.4.c.b 4
12.b even 2 1 1296.4.a.r 2
36.f odd 6 2 144.4.i.b 4
36.h even 6 2 432.4.i.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.4.c.b 4 9.c even 3 2
54.4.c.b 4 9.d odd 6 2
144.4.i.b 4 36.f odd 6 2
162.4.a.f 2 1.a even 1 1 trivial
162.4.a.g 2 3.b odd 2 1
432.4.i.b 4 36.h even 6 2
1296.4.a.l 2 4.b odd 2 1
1296.4.a.r 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 9T_{5} - 216 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 9T - 216 \) Copy content Toggle raw display
$7$ \( T^{2} - 19T - 146 \) Copy content Toggle raw display
$11$ \( T^{2} + 24T - 801 \) Copy content Toggle raw display
$13$ \( T^{2} - 61T + 694 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T - 234 \) Copy content Toggle raw display
$19$ \( T^{2} - 133T - 1484 \) Copy content Toggle raw display
$23$ \( T^{2} - 69T + 954 \) Copy content Toggle raw display
$29$ \( T^{2} - 237T + 2466 \) Copy content Toggle raw display
$31$ \( T^{2} - 211T + 9004 \) Copy content Toggle raw display
$37$ \( T^{2} - 262T - 29144 \) Copy content Toggle raw display
$41$ \( T^{2} - 468T + 53811 \) Copy content Toggle raw display
$43$ \( T^{2} + 86T - 134231 \) Copy content Toggle raw display
$47$ \( T^{2} - 483T + 5166 \) Copy content Toggle raw display
$53$ \( T^{2} - 150T - 40680 \) Copy content Toggle raw display
$59$ \( T^{2} - 168T + 6111 \) Copy content Toggle raw display
$61$ \( T^{2} + 1049 T + 221944 \) Copy content Toggle raw display
$67$ \( T^{2} + 1166 T + 305869 \) Copy content Toggle raw display
$71$ \( T^{2} + 312T - 217584 \) Copy content Toggle raw display
$73$ \( T^{2} + 311T - 80006 \) Copy content Toggle raw display
$79$ \( T^{2} - 349T - 9476 \) Copy content Toggle raw display
$83$ \( T^{2} - 1221 T + 268524 \) Copy content Toggle raw display
$89$ \( T^{2} + 492T - 317484 \) Copy content Toggle raw display
$97$ \( T^{2} + 128T - 110249 \) Copy content Toggle raw display
show more
show less