Properties

Label 162.4.a.c
Level $162$
Weight $4$
Character orbit 162.a
Self dual yes
Analytic conductor $9.558$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.55830942093\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} - 21 q^{5} + 8 q^{7} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + 4 q^{4} - 21 q^{5} + 8 q^{7} + 8 q^{8} - 42 q^{10} - 36 q^{11} - 49 q^{13} + 16 q^{14} + 16 q^{16} - 21 q^{17} - 112 q^{19} - 84 q^{20} - 72 q^{22} - 180 q^{23} + 316 q^{25} - 98 q^{26} + 32 q^{28} + 135 q^{29} + 308 q^{31} + 32 q^{32} - 42 q^{34} - 168 q^{35} - q^{37} - 224 q^{38} - 168 q^{40} + 42 q^{41} + 20 q^{43} - 144 q^{44} - 360 q^{46} - 84 q^{47} - 279 q^{49} + 632 q^{50} - 196 q^{52} + 174 q^{53} + 756 q^{55} + 64 q^{56} + 270 q^{58} - 504 q^{59} - 385 q^{61} + 616 q^{62} + 64 q^{64} + 1029 q^{65} + 272 q^{67} - 84 q^{68} - 336 q^{70} + 888 q^{71} + 371 q^{73} - 2 q^{74} - 448 q^{76} - 288 q^{77} - 652 q^{79} - 336 q^{80} + 84 q^{82} - 84 q^{83} + 441 q^{85} + 40 q^{86} - 288 q^{88} - 21 q^{89} - 392 q^{91} - 720 q^{92} - 168 q^{94} + 2352 q^{95} - 1246 q^{97} - 558 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 −21.0000 0 8.00000 8.00000 0 −42.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.4.a.c yes 1
3.b odd 2 1 162.4.a.b 1
4.b odd 2 1 1296.4.a.a 1
9.c even 3 2 162.4.c.d 2
9.d odd 6 2 162.4.c.e 2
12.b even 2 1 1296.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.4.a.b 1 3.b odd 2 1
162.4.a.c yes 1 1.a even 1 1 trivial
162.4.c.d 2 9.c even 3 2
162.4.c.e 2 9.d odd 6 2
1296.4.a.a 1 4.b odd 2 1
1296.4.a.h 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 21 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 21 \) Copy content Toggle raw display
$7$ \( T - 8 \) Copy content Toggle raw display
$11$ \( T + 36 \) Copy content Toggle raw display
$13$ \( T + 49 \) Copy content Toggle raw display
$17$ \( T + 21 \) Copy content Toggle raw display
$19$ \( T + 112 \) Copy content Toggle raw display
$23$ \( T + 180 \) Copy content Toggle raw display
$29$ \( T - 135 \) Copy content Toggle raw display
$31$ \( T - 308 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T - 42 \) Copy content Toggle raw display
$43$ \( T - 20 \) Copy content Toggle raw display
$47$ \( T + 84 \) Copy content Toggle raw display
$53$ \( T - 174 \) Copy content Toggle raw display
$59$ \( T + 504 \) Copy content Toggle raw display
$61$ \( T + 385 \) Copy content Toggle raw display
$67$ \( T - 272 \) Copy content Toggle raw display
$71$ \( T - 888 \) Copy content Toggle raw display
$73$ \( T - 371 \) Copy content Toggle raw display
$79$ \( T + 652 \) Copy content Toggle raw display
$83$ \( T + 84 \) Copy content Toggle raw display
$89$ \( T + 21 \) Copy content Toggle raw display
$97$ \( T + 1246 \) Copy content Toggle raw display
show more
show less