Properties

Label 162.4.a.a.1.1
Level $162$
Weight $4$
Character 162.1
Self dual yes
Analytic conductor $9.558$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.55830942093\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +9.00000 q^{5} -31.0000 q^{7} -8.00000 q^{8} +O(q^{10})\) \(q-2.00000 q^{2} +4.00000 q^{4} +9.00000 q^{5} -31.0000 q^{7} -8.00000 q^{8} -18.0000 q^{10} +15.0000 q^{11} -37.0000 q^{13} +62.0000 q^{14} +16.0000 q^{16} +42.0000 q^{17} -28.0000 q^{19} +36.0000 q^{20} -30.0000 q^{22} -195.000 q^{23} -44.0000 q^{25} +74.0000 q^{26} -124.000 q^{28} -111.000 q^{29} -205.000 q^{31} -32.0000 q^{32} -84.0000 q^{34} -279.000 q^{35} -166.000 q^{37} +56.0000 q^{38} -72.0000 q^{40} +261.000 q^{41} -43.0000 q^{43} +60.0000 q^{44} +390.000 q^{46} -177.000 q^{47} +618.000 q^{49} +88.0000 q^{50} -148.000 q^{52} -114.000 q^{53} +135.000 q^{55} +248.000 q^{56} +222.000 q^{58} -159.000 q^{59} +191.000 q^{61} +410.000 q^{62} +64.0000 q^{64} -333.000 q^{65} -421.000 q^{67} +168.000 q^{68} +558.000 q^{70} -156.000 q^{71} +182.000 q^{73} +332.000 q^{74} -112.000 q^{76} -465.000 q^{77} +1133.00 q^{79} +144.000 q^{80} -522.000 q^{82} +1083.00 q^{83} +378.000 q^{85} +86.0000 q^{86} -120.000 q^{88} +1050.00 q^{89} +1147.00 q^{91} -780.000 q^{92} +354.000 q^{94} -252.000 q^{95} -901.000 q^{97} -1236.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 9.00000 0.804984 0.402492 0.915423i \(-0.368144\pi\)
0.402492 + 0.915423i \(0.368144\pi\)
\(6\) 0 0
\(7\) −31.0000 −1.67384 −0.836921 0.547323i \(-0.815647\pi\)
−0.836921 + 0.547323i \(0.815647\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −18.0000 −0.569210
\(11\) 15.0000 0.411152 0.205576 0.978641i \(-0.434093\pi\)
0.205576 + 0.978641i \(0.434093\pi\)
\(12\) 0 0
\(13\) −37.0000 −0.789381 −0.394691 0.918814i \(-0.629148\pi\)
−0.394691 + 0.918814i \(0.629148\pi\)
\(14\) 62.0000 1.18359
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 42.0000 0.599206 0.299603 0.954064i \(-0.403146\pi\)
0.299603 + 0.954064i \(0.403146\pi\)
\(18\) 0 0
\(19\) −28.0000 −0.338086 −0.169043 0.985609i \(-0.554068\pi\)
−0.169043 + 0.985609i \(0.554068\pi\)
\(20\) 36.0000 0.402492
\(21\) 0 0
\(22\) −30.0000 −0.290728
\(23\) −195.000 −1.76784 −0.883920 0.467639i \(-0.845105\pi\)
−0.883920 + 0.467639i \(0.845105\pi\)
\(24\) 0 0
\(25\) −44.0000 −0.352000
\(26\) 74.0000 0.558177
\(27\) 0 0
\(28\) −124.000 −0.836921
\(29\) −111.000 −0.710765 −0.355382 0.934721i \(-0.615649\pi\)
−0.355382 + 0.934721i \(0.615649\pi\)
\(30\) 0 0
\(31\) −205.000 −1.18771 −0.593856 0.804571i \(-0.702395\pi\)
−0.593856 + 0.804571i \(0.702395\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −84.0000 −0.423702
\(35\) −279.000 −1.34742
\(36\) 0 0
\(37\) −166.000 −0.737574 −0.368787 0.929514i \(-0.620227\pi\)
−0.368787 + 0.929514i \(0.620227\pi\)
\(38\) 56.0000 0.239063
\(39\) 0 0
\(40\) −72.0000 −0.284605
\(41\) 261.000 0.994179 0.497090 0.867699i \(-0.334402\pi\)
0.497090 + 0.867699i \(0.334402\pi\)
\(42\) 0 0
\(43\) −43.0000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 60.0000 0.205576
\(45\) 0 0
\(46\) 390.000 1.25005
\(47\) −177.000 −0.549321 −0.274661 0.961541i \(-0.588566\pi\)
−0.274661 + 0.961541i \(0.588566\pi\)
\(48\) 0 0
\(49\) 618.000 1.80175
\(50\) 88.0000 0.248902
\(51\) 0 0
\(52\) −148.000 −0.394691
\(53\) −114.000 −0.295455 −0.147727 0.989028i \(-0.547196\pi\)
−0.147727 + 0.989028i \(0.547196\pi\)
\(54\) 0 0
\(55\) 135.000 0.330971
\(56\) 248.000 0.591793
\(57\) 0 0
\(58\) 222.000 0.502587
\(59\) −159.000 −0.350848 −0.175424 0.984493i \(-0.556130\pi\)
−0.175424 + 0.984493i \(0.556130\pi\)
\(60\) 0 0
\(61\) 191.000 0.400902 0.200451 0.979704i \(-0.435759\pi\)
0.200451 + 0.979704i \(0.435759\pi\)
\(62\) 410.000 0.839840
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −333.000 −0.635439
\(66\) 0 0
\(67\) −421.000 −0.767662 −0.383831 0.923403i \(-0.625395\pi\)
−0.383831 + 0.923403i \(0.625395\pi\)
\(68\) 168.000 0.299603
\(69\) 0 0
\(70\) 558.000 0.952768
\(71\) −156.000 −0.260758 −0.130379 0.991464i \(-0.541619\pi\)
−0.130379 + 0.991464i \(0.541619\pi\)
\(72\) 0 0
\(73\) 182.000 0.291801 0.145901 0.989299i \(-0.453392\pi\)
0.145901 + 0.989299i \(0.453392\pi\)
\(74\) 332.000 0.521543
\(75\) 0 0
\(76\) −112.000 −0.169043
\(77\) −465.000 −0.688203
\(78\) 0 0
\(79\) 1133.00 1.61358 0.806788 0.590841i \(-0.201204\pi\)
0.806788 + 0.590841i \(0.201204\pi\)
\(80\) 144.000 0.201246
\(81\) 0 0
\(82\) −522.000 −0.702991
\(83\) 1083.00 1.43223 0.716113 0.697985i \(-0.245920\pi\)
0.716113 + 0.697985i \(0.245920\pi\)
\(84\) 0 0
\(85\) 378.000 0.482351
\(86\) 86.0000 0.107833
\(87\) 0 0
\(88\) −120.000 −0.145364
\(89\) 1050.00 1.25056 0.625280 0.780401i \(-0.284985\pi\)
0.625280 + 0.780401i \(0.284985\pi\)
\(90\) 0 0
\(91\) 1147.00 1.32130
\(92\) −780.000 −0.883920
\(93\) 0 0
\(94\) 354.000 0.388429
\(95\) −252.000 −0.272154
\(96\) 0 0
\(97\) −901.000 −0.943121 −0.471560 0.881834i \(-0.656309\pi\)
−0.471560 + 0.881834i \(0.656309\pi\)
\(98\) −1236.00 −1.27403
\(99\) 0 0
\(100\) −176.000 −0.176000
\(101\) −387.000 −0.381267 −0.190633 0.981661i \(-0.561054\pi\)
−0.190633 + 0.981661i \(0.561054\pi\)
\(102\) 0 0
\(103\) 551.000 0.527103 0.263552 0.964645i \(-0.415106\pi\)
0.263552 + 0.964645i \(0.415106\pi\)
\(104\) 296.000 0.279088
\(105\) 0 0
\(106\) 228.000 0.208918
\(107\) 12.0000 0.0108419 0.00542095 0.999985i \(-0.498274\pi\)
0.00542095 + 0.999985i \(0.498274\pi\)
\(108\) 0 0
\(109\) −502.000 −0.441127 −0.220564 0.975373i \(-0.570790\pi\)
−0.220564 + 0.975373i \(0.570790\pi\)
\(110\) −270.000 −0.234032
\(111\) 0 0
\(112\) −496.000 −0.418461
\(113\) 1401.00 1.16633 0.583164 0.812355i \(-0.301815\pi\)
0.583164 + 0.812355i \(0.301815\pi\)
\(114\) 0 0
\(115\) −1755.00 −1.42308
\(116\) −444.000 −0.355382
\(117\) 0 0
\(118\) 318.000 0.248087
\(119\) −1302.00 −1.00298
\(120\) 0 0
\(121\) −1106.00 −0.830954
\(122\) −382.000 −0.283481
\(123\) 0 0
\(124\) −820.000 −0.593856
\(125\) −1521.00 −1.08834
\(126\) 0 0
\(127\) −880.000 −0.614861 −0.307431 0.951571i \(-0.599469\pi\)
−0.307431 + 0.951571i \(0.599469\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 666.000 0.449324
\(131\) −1503.00 −1.00243 −0.501213 0.865324i \(-0.667113\pi\)
−0.501213 + 0.865324i \(0.667113\pi\)
\(132\) 0 0
\(133\) 868.000 0.565903
\(134\) 842.000 0.542819
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) 2661.00 1.65945 0.829725 0.558173i \(-0.188497\pi\)
0.829725 + 0.558173i \(0.188497\pi\)
\(138\) 0 0
\(139\) −121.000 −0.0738352 −0.0369176 0.999318i \(-0.511754\pi\)
−0.0369176 + 0.999318i \(0.511754\pi\)
\(140\) −1116.00 −0.673709
\(141\) 0 0
\(142\) 312.000 0.184384
\(143\) −555.000 −0.324555
\(144\) 0 0
\(145\) −999.000 −0.572155
\(146\) −364.000 −0.206335
\(147\) 0 0
\(148\) −664.000 −0.368787
\(149\) 2829.00 1.55544 0.777721 0.628610i \(-0.216376\pi\)
0.777721 + 0.628610i \(0.216376\pi\)
\(150\) 0 0
\(151\) 461.000 0.248448 0.124224 0.992254i \(-0.460356\pi\)
0.124224 + 0.992254i \(0.460356\pi\)
\(152\) 224.000 0.119532
\(153\) 0 0
\(154\) 930.000 0.486633
\(155\) −1845.00 −0.956090
\(156\) 0 0
\(157\) −2977.00 −1.51332 −0.756658 0.653811i \(-0.773169\pi\)
−0.756658 + 0.653811i \(0.773169\pi\)
\(158\) −2266.00 −1.14097
\(159\) 0 0
\(160\) −288.000 −0.142302
\(161\) 6045.00 2.95909
\(162\) 0 0
\(163\) −3316.00 −1.59343 −0.796715 0.604355i \(-0.793431\pi\)
−0.796715 + 0.604355i \(0.793431\pi\)
\(164\) 1044.00 0.497090
\(165\) 0 0
\(166\) −2166.00 −1.01274
\(167\) 681.000 0.315553 0.157777 0.987475i \(-0.449567\pi\)
0.157777 + 0.987475i \(0.449567\pi\)
\(168\) 0 0
\(169\) −828.000 −0.376878
\(170\) −756.000 −0.341074
\(171\) 0 0
\(172\) −172.000 −0.0762493
\(173\) 3981.00 1.74954 0.874768 0.484541i \(-0.161014\pi\)
0.874768 + 0.484541i \(0.161014\pi\)
\(174\) 0 0
\(175\) 1364.00 0.589193
\(176\) 240.000 0.102788
\(177\) 0 0
\(178\) −2100.00 −0.884279
\(179\) −2004.00 −0.836793 −0.418397 0.908264i \(-0.637408\pi\)
−0.418397 + 0.908264i \(0.637408\pi\)
\(180\) 0 0
\(181\) 1274.00 0.523181 0.261590 0.965179i \(-0.415753\pi\)
0.261590 + 0.965179i \(0.415753\pi\)
\(182\) −2294.00 −0.934300
\(183\) 0 0
\(184\) 1560.00 0.625026
\(185\) −1494.00 −0.593735
\(186\) 0 0
\(187\) 630.000 0.246365
\(188\) −708.000 −0.274661
\(189\) 0 0
\(190\) 504.000 0.192442
\(191\) −1161.00 −0.439827 −0.219914 0.975519i \(-0.570578\pi\)
−0.219914 + 0.975519i \(0.570578\pi\)
\(192\) 0 0
\(193\) 3611.00 1.34676 0.673382 0.739295i \(-0.264841\pi\)
0.673382 + 0.739295i \(0.264841\pi\)
\(194\) 1802.00 0.666887
\(195\) 0 0
\(196\) 2472.00 0.900875
\(197\) −2046.00 −0.739957 −0.369978 0.929040i \(-0.620635\pi\)
−0.369978 + 0.929040i \(0.620635\pi\)
\(198\) 0 0
\(199\) 2996.00 1.06724 0.533620 0.845724i \(-0.320831\pi\)
0.533620 + 0.845724i \(0.320831\pi\)
\(200\) 352.000 0.124451
\(201\) 0 0
\(202\) 774.000 0.269596
\(203\) 3441.00 1.18971
\(204\) 0 0
\(205\) 2349.00 0.800299
\(206\) −1102.00 −0.372718
\(207\) 0 0
\(208\) −592.000 −0.197345
\(209\) −420.000 −0.139005
\(210\) 0 0
\(211\) 755.000 0.246333 0.123167 0.992386i \(-0.460695\pi\)
0.123167 + 0.992386i \(0.460695\pi\)
\(212\) −456.000 −0.147727
\(213\) 0 0
\(214\) −24.0000 −0.00766638
\(215\) −387.000 −0.122759
\(216\) 0 0
\(217\) 6355.00 1.98804
\(218\) 1004.00 0.311924
\(219\) 0 0
\(220\) 540.000 0.165485
\(221\) −1554.00 −0.473002
\(222\) 0 0
\(223\) −3463.00 −1.03991 −0.519954 0.854194i \(-0.674051\pi\)
−0.519954 + 0.854194i \(0.674051\pi\)
\(224\) 992.000 0.295896
\(225\) 0 0
\(226\) −2802.00 −0.824718
\(227\) −6225.00 −1.82012 −0.910061 0.414474i \(-0.863966\pi\)
−0.910061 + 0.414474i \(0.863966\pi\)
\(228\) 0 0
\(229\) −1465.00 −0.422751 −0.211375 0.977405i \(-0.567794\pi\)
−0.211375 + 0.977405i \(0.567794\pi\)
\(230\) 3510.00 1.00627
\(231\) 0 0
\(232\) 888.000 0.251293
\(233\) −2634.00 −0.740597 −0.370298 0.928913i \(-0.620745\pi\)
−0.370298 + 0.928913i \(0.620745\pi\)
\(234\) 0 0
\(235\) −1593.00 −0.442195
\(236\) −636.000 −0.175424
\(237\) 0 0
\(238\) 2604.00 0.709211
\(239\) −6915.00 −1.87152 −0.935762 0.352633i \(-0.885287\pi\)
−0.935762 + 0.352633i \(0.885287\pi\)
\(240\) 0 0
\(241\) −1489.00 −0.397987 −0.198994 0.980001i \(-0.563767\pi\)
−0.198994 + 0.980001i \(0.563767\pi\)
\(242\) 2212.00 0.587573
\(243\) 0 0
\(244\) 764.000 0.200451
\(245\) 5562.00 1.45038
\(246\) 0 0
\(247\) 1036.00 0.266879
\(248\) 1640.00 0.419920
\(249\) 0 0
\(250\) 3042.00 0.769572
\(251\) 4620.00 1.16180 0.580900 0.813975i \(-0.302701\pi\)
0.580900 + 0.813975i \(0.302701\pi\)
\(252\) 0 0
\(253\) −2925.00 −0.726850
\(254\) 1760.00 0.434773
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3351.00 −0.813345 −0.406672 0.913574i \(-0.633311\pi\)
−0.406672 + 0.913574i \(0.633311\pi\)
\(258\) 0 0
\(259\) 5146.00 1.23458
\(260\) −1332.00 −0.317720
\(261\) 0 0
\(262\) 3006.00 0.708822
\(263\) 603.000 0.141379 0.0706893 0.997498i \(-0.477480\pi\)
0.0706893 + 0.997498i \(0.477480\pi\)
\(264\) 0 0
\(265\) −1026.00 −0.237837
\(266\) −1736.00 −0.400154
\(267\) 0 0
\(268\) −1684.00 −0.383831
\(269\) 1470.00 0.333188 0.166594 0.986026i \(-0.446723\pi\)
0.166594 + 0.986026i \(0.446723\pi\)
\(270\) 0 0
\(271\) 2072.00 0.464447 0.232223 0.972662i \(-0.425400\pi\)
0.232223 + 0.972662i \(0.425400\pi\)
\(272\) 672.000 0.149801
\(273\) 0 0
\(274\) −5322.00 −1.17341
\(275\) −660.000 −0.144725
\(276\) 0 0
\(277\) 7139.00 1.54852 0.774262 0.632866i \(-0.218121\pi\)
0.774262 + 0.632866i \(0.218121\pi\)
\(278\) 242.000 0.0522093
\(279\) 0 0
\(280\) 2232.00 0.476384
\(281\) −8427.00 −1.78901 −0.894507 0.447055i \(-0.852473\pi\)
−0.894507 + 0.447055i \(0.852473\pi\)
\(282\) 0 0
\(283\) −457.000 −0.0959923 −0.0479962 0.998848i \(-0.515284\pi\)
−0.0479962 + 0.998848i \(0.515284\pi\)
\(284\) −624.000 −0.130379
\(285\) 0 0
\(286\) 1110.00 0.229495
\(287\) −8091.00 −1.66410
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) 1998.00 0.404574
\(291\) 0 0
\(292\) 728.000 0.145901
\(293\) 5889.00 1.17419 0.587097 0.809516i \(-0.300271\pi\)
0.587097 + 0.809516i \(0.300271\pi\)
\(294\) 0 0
\(295\) −1431.00 −0.282427
\(296\) 1328.00 0.260772
\(297\) 0 0
\(298\) −5658.00 −1.09986
\(299\) 7215.00 1.39550
\(300\) 0 0
\(301\) 1333.00 0.255259
\(302\) −922.000 −0.175679
\(303\) 0 0
\(304\) −448.000 −0.0845216
\(305\) 1719.00 0.322720
\(306\) 0 0
\(307\) −1204.00 −0.223830 −0.111915 0.993718i \(-0.535698\pi\)
−0.111915 + 0.993718i \(0.535698\pi\)
\(308\) −1860.00 −0.344102
\(309\) 0 0
\(310\) 3690.00 0.676058
\(311\) 3285.00 0.598956 0.299478 0.954103i \(-0.403188\pi\)
0.299478 + 0.954103i \(0.403188\pi\)
\(312\) 0 0
\(313\) −10057.0 −1.81615 −0.908075 0.418807i \(-0.862449\pi\)
−0.908075 + 0.418807i \(0.862449\pi\)
\(314\) 5954.00 1.07008
\(315\) 0 0
\(316\) 4532.00 0.806788
\(317\) −2295.00 −0.406625 −0.203312 0.979114i \(-0.565171\pi\)
−0.203312 + 0.979114i \(0.565171\pi\)
\(318\) 0 0
\(319\) −1665.00 −0.292232
\(320\) 576.000 0.100623
\(321\) 0 0
\(322\) −12090.0 −2.09239
\(323\) −1176.00 −0.202583
\(324\) 0 0
\(325\) 1628.00 0.277862
\(326\) 6632.00 1.12673
\(327\) 0 0
\(328\) −2088.00 −0.351495
\(329\) 5487.00 0.919478
\(330\) 0 0
\(331\) −6679.00 −1.10910 −0.554548 0.832151i \(-0.687109\pi\)
−0.554548 + 0.832151i \(0.687109\pi\)
\(332\) 4332.00 0.716113
\(333\) 0 0
\(334\) −1362.00 −0.223130
\(335\) −3789.00 −0.617956
\(336\) 0 0
\(337\) 2183.00 0.352865 0.176433 0.984313i \(-0.443544\pi\)
0.176433 + 0.984313i \(0.443544\pi\)
\(338\) 1656.00 0.266493
\(339\) 0 0
\(340\) 1512.00 0.241176
\(341\) −3075.00 −0.488330
\(342\) 0 0
\(343\) −8525.00 −1.34200
\(344\) 344.000 0.0539164
\(345\) 0 0
\(346\) −7962.00 −1.23711
\(347\) −3891.00 −0.601959 −0.300980 0.953631i \(-0.597314\pi\)
−0.300980 + 0.953631i \(0.597314\pi\)
\(348\) 0 0
\(349\) 2795.00 0.428690 0.214345 0.976758i \(-0.431238\pi\)
0.214345 + 0.976758i \(0.431238\pi\)
\(350\) −2728.00 −0.416622
\(351\) 0 0
\(352\) −480.000 −0.0726821
\(353\) −4755.00 −0.716949 −0.358475 0.933539i \(-0.616703\pi\)
−0.358475 + 0.933539i \(0.616703\pi\)
\(354\) 0 0
\(355\) −1404.00 −0.209906
\(356\) 4200.00 0.625280
\(357\) 0 0
\(358\) 4008.00 0.591702
\(359\) −4608.00 −0.677440 −0.338720 0.940887i \(-0.609994\pi\)
−0.338720 + 0.940887i \(0.609994\pi\)
\(360\) 0 0
\(361\) −6075.00 −0.885698
\(362\) −2548.00 −0.369944
\(363\) 0 0
\(364\) 4588.00 0.660650
\(365\) 1638.00 0.234895
\(366\) 0 0
\(367\) 3845.00 0.546887 0.273443 0.961888i \(-0.411837\pi\)
0.273443 + 0.961888i \(0.411837\pi\)
\(368\) −3120.00 −0.441960
\(369\) 0 0
\(370\) 2988.00 0.419834
\(371\) 3534.00 0.494545
\(372\) 0 0
\(373\) −8317.00 −1.15453 −0.577263 0.816559i \(-0.695879\pi\)
−0.577263 + 0.816559i \(0.695879\pi\)
\(374\) −1260.00 −0.174206
\(375\) 0 0
\(376\) 1416.00 0.194214
\(377\) 4107.00 0.561064
\(378\) 0 0
\(379\) 12560.0 1.70228 0.851140 0.524939i \(-0.175912\pi\)
0.851140 + 0.524939i \(0.175912\pi\)
\(380\) −1008.00 −0.136077
\(381\) 0 0
\(382\) 2322.00 0.311005
\(383\) −12087.0 −1.61258 −0.806288 0.591523i \(-0.798527\pi\)
−0.806288 + 0.591523i \(0.798527\pi\)
\(384\) 0 0
\(385\) −4185.00 −0.553993
\(386\) −7222.00 −0.952306
\(387\) 0 0
\(388\) −3604.00 −0.471560
\(389\) 8541.00 1.11323 0.556614 0.830771i \(-0.312100\pi\)
0.556614 + 0.830771i \(0.312100\pi\)
\(390\) 0 0
\(391\) −8190.00 −1.05930
\(392\) −4944.00 −0.637015
\(393\) 0 0
\(394\) 4092.00 0.523228
\(395\) 10197.0 1.29890
\(396\) 0 0
\(397\) −13174.0 −1.66545 −0.832726 0.553686i \(-0.813221\pi\)
−0.832726 + 0.553686i \(0.813221\pi\)
\(398\) −5992.00 −0.754653
\(399\) 0 0
\(400\) −704.000 −0.0880000
\(401\) −9603.00 −1.19589 −0.597944 0.801538i \(-0.704015\pi\)
−0.597944 + 0.801538i \(0.704015\pi\)
\(402\) 0 0
\(403\) 7585.00 0.937558
\(404\) −1548.00 −0.190633
\(405\) 0 0
\(406\) −6882.00 −0.841251
\(407\) −2490.00 −0.303255
\(408\) 0 0
\(409\) 11471.0 1.38681 0.693404 0.720549i \(-0.256110\pi\)
0.693404 + 0.720549i \(0.256110\pi\)
\(410\) −4698.00 −0.565897
\(411\) 0 0
\(412\) 2204.00 0.263552
\(413\) 4929.00 0.587264
\(414\) 0 0
\(415\) 9747.00 1.15292
\(416\) 1184.00 0.139544
\(417\) 0 0
\(418\) 840.000 0.0982913
\(419\) 5973.00 0.696420 0.348210 0.937416i \(-0.386790\pi\)
0.348210 + 0.937416i \(0.386790\pi\)
\(420\) 0 0
\(421\) −8905.00 −1.03089 −0.515443 0.856924i \(-0.672373\pi\)
−0.515443 + 0.856924i \(0.672373\pi\)
\(422\) −1510.00 −0.174184
\(423\) 0 0
\(424\) 912.000 0.104459
\(425\) −1848.00 −0.210920
\(426\) 0 0
\(427\) −5921.00 −0.671047
\(428\) 48.0000 0.00542095
\(429\) 0 0
\(430\) 774.000 0.0868037
\(431\) −1416.00 −0.158251 −0.0791257 0.996865i \(-0.525213\pi\)
−0.0791257 + 0.996865i \(0.525213\pi\)
\(432\) 0 0
\(433\) 10766.0 1.19488 0.597438 0.801915i \(-0.296186\pi\)
0.597438 + 0.801915i \(0.296186\pi\)
\(434\) −12710.0 −1.40576
\(435\) 0 0
\(436\) −2008.00 −0.220564
\(437\) 5460.00 0.597682
\(438\) 0 0
\(439\) 4349.00 0.472817 0.236408 0.971654i \(-0.424030\pi\)
0.236408 + 0.971654i \(0.424030\pi\)
\(440\) −1080.00 −0.117016
\(441\) 0 0
\(442\) 3108.00 0.334463
\(443\) 14547.0 1.56016 0.780078 0.625683i \(-0.215180\pi\)
0.780078 + 0.625683i \(0.215180\pi\)
\(444\) 0 0
\(445\) 9450.00 1.00668
\(446\) 6926.00 0.735326
\(447\) 0 0
\(448\) −1984.00 −0.209230
\(449\) 3330.00 0.350005 0.175003 0.984568i \(-0.444007\pi\)
0.175003 + 0.984568i \(0.444007\pi\)
\(450\) 0 0
\(451\) 3915.00 0.408759
\(452\) 5604.00 0.583164
\(453\) 0 0
\(454\) 12450.0 1.28702
\(455\) 10323.0 1.06363
\(456\) 0 0
\(457\) 8147.00 0.833918 0.416959 0.908925i \(-0.363096\pi\)
0.416959 + 0.908925i \(0.363096\pi\)
\(458\) 2930.00 0.298930
\(459\) 0 0
\(460\) −7020.00 −0.711542
\(461\) −8031.00 −0.811369 −0.405684 0.914013i \(-0.632967\pi\)
−0.405684 + 0.914013i \(0.632967\pi\)
\(462\) 0 0
\(463\) 4283.00 0.429909 0.214955 0.976624i \(-0.431040\pi\)
0.214955 + 0.976624i \(0.431040\pi\)
\(464\) −1776.00 −0.177691
\(465\) 0 0
\(466\) 5268.00 0.523681
\(467\) −5460.00 −0.541025 −0.270512 0.962716i \(-0.587193\pi\)
−0.270512 + 0.962716i \(0.587193\pi\)
\(468\) 0 0
\(469\) 13051.0 1.28494
\(470\) 3186.00 0.312679
\(471\) 0 0
\(472\) 1272.00 0.124044
\(473\) −645.000 −0.0627001
\(474\) 0 0
\(475\) 1232.00 0.119006
\(476\) −5208.00 −0.501488
\(477\) 0 0
\(478\) 13830.0 1.32337
\(479\) −429.000 −0.0409217 −0.0204609 0.999791i \(-0.506513\pi\)
−0.0204609 + 0.999791i \(0.506513\pi\)
\(480\) 0 0
\(481\) 6142.00 0.582227
\(482\) 2978.00 0.281419
\(483\) 0 0
\(484\) −4424.00 −0.415477
\(485\) −8109.00 −0.759197
\(486\) 0 0
\(487\) −11296.0 −1.05107 −0.525535 0.850772i \(-0.676135\pi\)
−0.525535 + 0.850772i \(0.676135\pi\)
\(488\) −1528.00 −0.141740
\(489\) 0 0
\(490\) −11124.0 −1.02557
\(491\) 14673.0 1.34864 0.674321 0.738438i \(-0.264436\pi\)
0.674321 + 0.738438i \(0.264436\pi\)
\(492\) 0 0
\(493\) −4662.00 −0.425894
\(494\) −2072.00 −0.188712
\(495\) 0 0
\(496\) −3280.00 −0.296928
\(497\) 4836.00 0.436467
\(498\) 0 0
\(499\) 13439.0 1.20564 0.602818 0.797879i \(-0.294045\pi\)
0.602818 + 0.797879i \(0.294045\pi\)
\(500\) −6084.00 −0.544170
\(501\) 0 0
\(502\) −9240.00 −0.821517
\(503\) 17388.0 1.54134 0.770669 0.637236i \(-0.219922\pi\)
0.770669 + 0.637236i \(0.219922\pi\)
\(504\) 0 0
\(505\) −3483.00 −0.306914
\(506\) 5850.00 0.513961
\(507\) 0 0
\(508\) −3520.00 −0.307431
\(509\) 3789.00 0.329950 0.164975 0.986298i \(-0.447246\pi\)
0.164975 + 0.986298i \(0.447246\pi\)
\(510\) 0 0
\(511\) −5642.00 −0.488429
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 6702.00 0.575122
\(515\) 4959.00 0.424310
\(516\) 0 0
\(517\) −2655.00 −0.225854
\(518\) −10292.0 −0.872982
\(519\) 0 0
\(520\) 2664.00 0.224662
\(521\) −9786.00 −0.822903 −0.411451 0.911432i \(-0.634978\pi\)
−0.411451 + 0.911432i \(0.634978\pi\)
\(522\) 0 0
\(523\) −8008.00 −0.669532 −0.334766 0.942301i \(-0.608657\pi\)
−0.334766 + 0.942301i \(0.608657\pi\)
\(524\) −6012.00 −0.501213
\(525\) 0 0
\(526\) −1206.00 −0.0999698
\(527\) −8610.00 −0.711684
\(528\) 0 0
\(529\) 25858.0 2.12526
\(530\) 2052.00 0.168176
\(531\) 0 0
\(532\) 3472.00 0.282952
\(533\) −9657.00 −0.784786
\(534\) 0 0
\(535\) 108.000 0.00872756
\(536\) 3368.00 0.271409
\(537\) 0 0
\(538\) −2940.00 −0.235599
\(539\) 9270.00 0.740793
\(540\) 0 0
\(541\) −2938.00 −0.233483 −0.116742 0.993162i \(-0.537245\pi\)
−0.116742 + 0.993162i \(0.537245\pi\)
\(542\) −4144.00 −0.328413
\(543\) 0 0
\(544\) −1344.00 −0.105926
\(545\) −4518.00 −0.355101
\(546\) 0 0
\(547\) −10375.0 −0.810974 −0.405487 0.914101i \(-0.632898\pi\)
−0.405487 + 0.914101i \(0.632898\pi\)
\(548\) 10644.0 0.829725
\(549\) 0 0
\(550\) 1320.00 0.102336
\(551\) 3108.00 0.240300
\(552\) 0 0
\(553\) −35123.0 −2.70087
\(554\) −14278.0 −1.09497
\(555\) 0 0
\(556\) −484.000 −0.0369176
\(557\) −3306.00 −0.251490 −0.125745 0.992063i \(-0.540132\pi\)
−0.125745 + 0.992063i \(0.540132\pi\)
\(558\) 0 0
\(559\) 1591.00 0.120379
\(560\) −4464.00 −0.336854
\(561\) 0 0
\(562\) 16854.0 1.26502
\(563\) 21093.0 1.57898 0.789488 0.613765i \(-0.210346\pi\)
0.789488 + 0.613765i \(0.210346\pi\)
\(564\) 0 0
\(565\) 12609.0 0.938875
\(566\) 914.000 0.0678768
\(567\) 0 0
\(568\) 1248.00 0.0921918
\(569\) −1287.00 −0.0948222 −0.0474111 0.998875i \(-0.515097\pi\)
−0.0474111 + 0.998875i \(0.515097\pi\)
\(570\) 0 0
\(571\) 15035.0 1.10192 0.550959 0.834532i \(-0.314262\pi\)
0.550959 + 0.834532i \(0.314262\pi\)
\(572\) −2220.00 −0.162278
\(573\) 0 0
\(574\) 16182.0 1.17670
\(575\) 8580.00 0.622280
\(576\) 0 0
\(577\) 1190.00 0.0858585 0.0429292 0.999078i \(-0.486331\pi\)
0.0429292 + 0.999078i \(0.486331\pi\)
\(578\) 6298.00 0.453222
\(579\) 0 0
\(580\) −3996.00 −0.286077
\(581\) −33573.0 −2.39732
\(582\) 0 0
\(583\) −1710.00 −0.121477
\(584\) −1456.00 −0.103167
\(585\) 0 0
\(586\) −11778.0 −0.830281
\(587\) 17883.0 1.25743 0.628714 0.777637i \(-0.283582\pi\)
0.628714 + 0.777637i \(0.283582\pi\)
\(588\) 0 0
\(589\) 5740.00 0.401549
\(590\) 2862.00 0.199706
\(591\) 0 0
\(592\) −2656.00 −0.184393
\(593\) −20118.0 −1.39317 −0.696583 0.717476i \(-0.745297\pi\)
−0.696583 + 0.717476i \(0.745297\pi\)
\(594\) 0 0
\(595\) −11718.0 −0.807380
\(596\) 11316.0 0.777721
\(597\) 0 0
\(598\) −14430.0 −0.986767
\(599\) 1065.00 0.0726456 0.0363228 0.999340i \(-0.488436\pi\)
0.0363228 + 0.999340i \(0.488436\pi\)
\(600\) 0 0
\(601\) −20725.0 −1.40664 −0.703320 0.710874i \(-0.748300\pi\)
−0.703320 + 0.710874i \(0.748300\pi\)
\(602\) −2666.00 −0.180495
\(603\) 0 0
\(604\) 1844.00 0.124224
\(605\) −9954.00 −0.668905
\(606\) 0 0
\(607\) −15745.0 −1.05283 −0.526417 0.850227i \(-0.676465\pi\)
−0.526417 + 0.850227i \(0.676465\pi\)
\(608\) 896.000 0.0597658
\(609\) 0 0
\(610\) −3438.00 −0.228198
\(611\) 6549.00 0.433624
\(612\) 0 0
\(613\) 5042.00 0.332210 0.166105 0.986108i \(-0.446881\pi\)
0.166105 + 0.986108i \(0.446881\pi\)
\(614\) 2408.00 0.158272
\(615\) 0 0
\(616\) 3720.00 0.243317
\(617\) 10053.0 0.655946 0.327973 0.944687i \(-0.393635\pi\)
0.327973 + 0.944687i \(0.393635\pi\)
\(618\) 0 0
\(619\) −5983.00 −0.388493 −0.194246 0.980953i \(-0.562226\pi\)
−0.194246 + 0.980953i \(0.562226\pi\)
\(620\) −7380.00 −0.478045
\(621\) 0 0
\(622\) −6570.00 −0.423526
\(623\) −32550.0 −2.09324
\(624\) 0 0
\(625\) −8189.00 −0.524096
\(626\) 20114.0 1.28421
\(627\) 0 0
\(628\) −11908.0 −0.756658
\(629\) −6972.00 −0.441958
\(630\) 0 0
\(631\) −19696.0 −1.24261 −0.621304 0.783570i \(-0.713397\pi\)
−0.621304 + 0.783570i \(0.713397\pi\)
\(632\) −9064.00 −0.570485
\(633\) 0 0
\(634\) 4590.00 0.287527
\(635\) −7920.00 −0.494954
\(636\) 0 0
\(637\) −22866.0 −1.42227
\(638\) 3330.00 0.206639
\(639\) 0 0
\(640\) −1152.00 −0.0711512
\(641\) 10977.0 0.676389 0.338195 0.941076i \(-0.390184\pi\)
0.338195 + 0.941076i \(0.390184\pi\)
\(642\) 0 0
\(643\) −15829.0 −0.970816 −0.485408 0.874288i \(-0.661329\pi\)
−0.485408 + 0.874288i \(0.661329\pi\)
\(644\) 24180.0 1.47954
\(645\) 0 0
\(646\) 2352.00 0.143248
\(647\) −28224.0 −1.71499 −0.857496 0.514490i \(-0.827981\pi\)
−0.857496 + 0.514490i \(0.827981\pi\)
\(648\) 0 0
\(649\) −2385.00 −0.144252
\(650\) −3256.00 −0.196478
\(651\) 0 0
\(652\) −13264.0 −0.796715
\(653\) −28167.0 −1.68799 −0.843997 0.536348i \(-0.819803\pi\)
−0.843997 + 0.536348i \(0.819803\pi\)
\(654\) 0 0
\(655\) −13527.0 −0.806937
\(656\) 4176.00 0.248545
\(657\) 0 0
\(658\) −10974.0 −0.650169
\(659\) −10737.0 −0.634680 −0.317340 0.948312i \(-0.602790\pi\)
−0.317340 + 0.948312i \(0.602790\pi\)
\(660\) 0 0
\(661\) 10127.0 0.595907 0.297954 0.954580i \(-0.403696\pi\)
0.297954 + 0.954580i \(0.403696\pi\)
\(662\) 13358.0 0.784250
\(663\) 0 0
\(664\) −8664.00 −0.506368
\(665\) 7812.00 0.455543
\(666\) 0 0
\(667\) 21645.0 1.25652
\(668\) 2724.00 0.157777
\(669\) 0 0
\(670\) 7578.00 0.436961
\(671\) 2865.00 0.164832
\(672\) 0 0
\(673\) 251.000 0.0143764 0.00718822 0.999974i \(-0.497712\pi\)
0.00718822 + 0.999974i \(0.497712\pi\)
\(674\) −4366.00 −0.249513
\(675\) 0 0
\(676\) −3312.00 −0.188439
\(677\) −8451.00 −0.479761 −0.239881 0.970802i \(-0.577108\pi\)
−0.239881 + 0.970802i \(0.577108\pi\)
\(678\) 0 0
\(679\) 27931.0 1.57864
\(680\) −3024.00 −0.170537
\(681\) 0 0
\(682\) 6150.00 0.345302
\(683\) 25884.0 1.45011 0.725054 0.688692i \(-0.241815\pi\)
0.725054 + 0.688692i \(0.241815\pi\)
\(684\) 0 0
\(685\) 23949.0 1.33583
\(686\) 17050.0 0.948939
\(687\) 0 0
\(688\) −688.000 −0.0381246
\(689\) 4218.00 0.233226
\(690\) 0 0
\(691\) 6365.00 0.350414 0.175207 0.984532i \(-0.443941\pi\)
0.175207 + 0.984532i \(0.443941\pi\)
\(692\) 15924.0 0.874768
\(693\) 0 0
\(694\) 7782.00 0.425649
\(695\) −1089.00 −0.0594362
\(696\) 0 0
\(697\) 10962.0 0.595718
\(698\) −5590.00 −0.303130
\(699\) 0 0
\(700\) 5456.00 0.294596
\(701\) −1122.00 −0.0604527 −0.0302264 0.999543i \(-0.509623\pi\)
−0.0302264 + 0.999543i \(0.509623\pi\)
\(702\) 0 0
\(703\) 4648.00 0.249364
\(704\) 960.000 0.0513940
\(705\) 0 0
\(706\) 9510.00 0.506960
\(707\) 11997.0 0.638181
\(708\) 0 0
\(709\) 4283.00 0.226871 0.113435 0.993545i \(-0.463814\pi\)
0.113435 + 0.993545i \(0.463814\pi\)
\(710\) 2808.00 0.148426
\(711\) 0 0
\(712\) −8400.00 −0.442139
\(713\) 39975.0 2.09969
\(714\) 0 0
\(715\) −4995.00 −0.261262
\(716\) −8016.00 −0.418397
\(717\) 0 0
\(718\) 9216.00 0.479022
\(719\) −4032.00 −0.209135 −0.104568 0.994518i \(-0.533346\pi\)
−0.104568 + 0.994518i \(0.533346\pi\)
\(720\) 0 0
\(721\) −17081.0 −0.882288
\(722\) 12150.0 0.626283
\(723\) 0 0
\(724\) 5096.00 0.261590
\(725\) 4884.00 0.250189
\(726\) 0 0
\(727\) 24005.0 1.22462 0.612308 0.790619i \(-0.290241\pi\)
0.612308 + 0.790619i \(0.290241\pi\)
\(728\) −9176.00 −0.467150
\(729\) 0 0
\(730\) −3276.00 −0.166096
\(731\) −1806.00 −0.0913780
\(732\) 0 0
\(733\) −37501.0 −1.88967 −0.944837 0.327541i \(-0.893780\pi\)
−0.944837 + 0.327541i \(0.893780\pi\)
\(734\) −7690.00 −0.386707
\(735\) 0 0
\(736\) 6240.00 0.312513
\(737\) −6315.00 −0.315626
\(738\) 0 0
\(739\) −880.000 −0.0438042 −0.0219021 0.999760i \(-0.506972\pi\)
−0.0219021 + 0.999760i \(0.506972\pi\)
\(740\) −5976.00 −0.296868
\(741\) 0 0
\(742\) −7068.00 −0.349696
\(743\) −1623.00 −0.0801374 −0.0400687 0.999197i \(-0.512758\pi\)
−0.0400687 + 0.999197i \(0.512758\pi\)
\(744\) 0 0
\(745\) 25461.0 1.25211
\(746\) 16634.0 0.816373
\(747\) 0 0
\(748\) 2520.00 0.123182
\(749\) −372.000 −0.0181476
\(750\) 0 0
\(751\) −6889.00 −0.334731 −0.167366 0.985895i \(-0.553526\pi\)
−0.167366 + 0.985895i \(0.553526\pi\)
\(752\) −2832.00 −0.137330
\(753\) 0 0
\(754\) −8214.00 −0.396732
\(755\) 4149.00 0.199997
\(756\) 0 0
\(757\) −12850.0 −0.616963 −0.308482 0.951230i \(-0.599821\pi\)
−0.308482 + 0.951230i \(0.599821\pi\)
\(758\) −25120.0 −1.20369
\(759\) 0 0
\(760\) 2016.00 0.0962211
\(761\) −4611.00 −0.219643 −0.109822 0.993951i \(-0.535028\pi\)
−0.109822 + 0.993951i \(0.535028\pi\)
\(762\) 0 0
\(763\) 15562.0 0.738378
\(764\) −4644.00 −0.219914
\(765\) 0 0
\(766\) 24174.0 1.14026
\(767\) 5883.00 0.276953
\(768\) 0 0
\(769\) −2305.00 −0.108089 −0.0540445 0.998539i \(-0.517211\pi\)
−0.0540445 + 0.998539i \(0.517211\pi\)
\(770\) 8370.00 0.391732
\(771\) 0 0
\(772\) 14444.0 0.673382
\(773\) 34902.0 1.62398 0.811991 0.583670i \(-0.198384\pi\)
0.811991 + 0.583670i \(0.198384\pi\)
\(774\) 0 0
\(775\) 9020.00 0.418075
\(776\) 7208.00 0.333443
\(777\) 0 0
\(778\) −17082.0 −0.787171
\(779\) −7308.00 −0.336118
\(780\) 0 0
\(781\) −2340.00 −0.107211
\(782\) 16380.0 0.749038
\(783\) 0 0
\(784\) 9888.00 0.450437
\(785\) −26793.0 −1.21820
\(786\) 0 0
\(787\) 26255.0 1.18919 0.594593 0.804027i \(-0.297313\pi\)
0.594593 + 0.804027i \(0.297313\pi\)
\(788\) −8184.00 −0.369978
\(789\) 0 0
\(790\) −20394.0 −0.918463
\(791\) −43431.0 −1.95225
\(792\) 0 0
\(793\) −7067.00 −0.316465
\(794\) 26348.0 1.17765
\(795\) 0 0
\(796\) 11984.0 0.533620
\(797\) 1437.00 0.0638659 0.0319330 0.999490i \(-0.489834\pi\)
0.0319330 + 0.999490i \(0.489834\pi\)
\(798\) 0 0
\(799\) −7434.00 −0.329156
\(800\) 1408.00 0.0622254
\(801\) 0 0
\(802\) 19206.0 0.845620
\(803\) 2730.00 0.119975
\(804\) 0 0
\(805\) 54405.0 2.38202
\(806\) −15170.0 −0.662953
\(807\) 0 0
\(808\) 3096.00 0.134798
\(809\) −25734.0 −1.11837 −0.559184 0.829044i \(-0.688885\pi\)
−0.559184 + 0.829044i \(0.688885\pi\)
\(810\) 0 0
\(811\) −3220.00 −0.139420 −0.0697099 0.997567i \(-0.522207\pi\)
−0.0697099 + 0.997567i \(0.522207\pi\)
\(812\) 13764.0 0.594854
\(813\) 0 0
\(814\) 4980.00 0.214434
\(815\) −29844.0 −1.28269
\(816\) 0 0
\(817\) 1204.00 0.0515577
\(818\) −22942.0 −0.980621
\(819\) 0 0
\(820\) 9396.00 0.400149
\(821\) −44631.0 −1.89724 −0.948619 0.316420i \(-0.897519\pi\)
−0.948619 + 0.316420i \(0.897519\pi\)
\(822\) 0 0
\(823\) 24947.0 1.05662 0.528310 0.849052i \(-0.322826\pi\)
0.528310 + 0.849052i \(0.322826\pi\)
\(824\) −4408.00 −0.186359
\(825\) 0 0
\(826\) −9858.00 −0.415259
\(827\) 14964.0 0.629201 0.314601 0.949224i \(-0.398129\pi\)
0.314601 + 0.949224i \(0.398129\pi\)
\(828\) 0 0
\(829\) −7462.00 −0.312625 −0.156312 0.987708i \(-0.549961\pi\)
−0.156312 + 0.987708i \(0.549961\pi\)
\(830\) −19494.0 −0.815237
\(831\) 0 0
\(832\) −2368.00 −0.0986726
\(833\) 25956.0 1.07962
\(834\) 0 0
\(835\) 6129.00 0.254015
\(836\) −1680.00 −0.0695024
\(837\) 0 0
\(838\) −11946.0 −0.492444
\(839\) −2697.00 −0.110978 −0.0554891 0.998459i \(-0.517672\pi\)
−0.0554891 + 0.998459i \(0.517672\pi\)
\(840\) 0 0
\(841\) −12068.0 −0.494813
\(842\) 17810.0 0.728947
\(843\) 0 0
\(844\) 3020.00 0.123167
\(845\) −7452.00 −0.303381
\(846\) 0 0
\(847\) 34286.0 1.39089
\(848\) −1824.00 −0.0738637
\(849\) 0 0
\(850\) 3696.00 0.149143
\(851\) 32370.0 1.30391
\(852\) 0 0
\(853\) −39625.0 −1.59054 −0.795272 0.606253i \(-0.792672\pi\)
−0.795272 + 0.606253i \(0.792672\pi\)
\(854\) 11842.0 0.474502
\(855\) 0 0
\(856\) −96.0000 −0.00383319
\(857\) 2973.00 0.118501 0.0592507 0.998243i \(-0.481129\pi\)
0.0592507 + 0.998243i \(0.481129\pi\)
\(858\) 0 0
\(859\) −45229.0 −1.79650 −0.898250 0.439485i \(-0.855161\pi\)
−0.898250 + 0.439485i \(0.855161\pi\)
\(860\) −1548.00 −0.0613795
\(861\) 0 0
\(862\) 2832.00 0.111901
\(863\) −1416.00 −0.0558531 −0.0279265 0.999610i \(-0.508890\pi\)
−0.0279265 + 0.999610i \(0.508890\pi\)
\(864\) 0 0
\(865\) 35829.0 1.40835
\(866\) −21532.0 −0.844904
\(867\) 0 0
\(868\) 25420.0 0.994022
\(869\) 16995.0 0.663424
\(870\) 0 0
\(871\) 15577.0 0.605978
\(872\) 4016.00 0.155962
\(873\) 0 0
\(874\) −10920.0 −0.422625
\(875\) 47151.0 1.82171
\(876\) 0 0
\(877\) 17555.0 0.675930 0.337965 0.941159i \(-0.390262\pi\)
0.337965 + 0.941159i \(0.390262\pi\)
\(878\) −8698.00 −0.334332
\(879\) 0 0
\(880\) 2160.00 0.0827427
\(881\) −30030.0 −1.14840 −0.574198 0.818717i \(-0.694686\pi\)
−0.574198 + 0.818717i \(0.694686\pi\)
\(882\) 0 0
\(883\) −35740.0 −1.36211 −0.681057 0.732230i \(-0.738479\pi\)
−0.681057 + 0.732230i \(0.738479\pi\)
\(884\) −6216.00 −0.236501
\(885\) 0 0
\(886\) −29094.0 −1.10320
\(887\) −747.000 −0.0282771 −0.0141386 0.999900i \(-0.504501\pi\)
−0.0141386 + 0.999900i \(0.504501\pi\)
\(888\) 0 0
\(889\) 27280.0 1.02918
\(890\) −18900.0 −0.711831
\(891\) 0 0
\(892\) −13852.0 −0.519954
\(893\) 4956.00 0.185718
\(894\) 0 0
\(895\) −18036.0 −0.673606
\(896\) 3968.00 0.147948
\(897\) 0 0
\(898\) −6660.00 −0.247491
\(899\) 22755.0 0.844184
\(900\) 0 0
\(901\) −4788.00 −0.177038
\(902\) −7830.00 −0.289036
\(903\) 0 0
\(904\) −11208.0 −0.412359
\(905\) 11466.0 0.421152
\(906\) 0 0
\(907\) −20539.0 −0.751914 −0.375957 0.926637i \(-0.622686\pi\)
−0.375957 + 0.926637i \(0.622686\pi\)
\(908\) −24900.0 −0.910061
\(909\) 0 0
\(910\) −20646.0 −0.752097
\(911\) 24123.0 0.877311 0.438656 0.898655i \(-0.355455\pi\)
0.438656 + 0.898655i \(0.355455\pi\)
\(912\) 0 0
\(913\) 16245.0 0.588862
\(914\) −16294.0 −0.589669
\(915\) 0 0
\(916\) −5860.00 −0.211375
\(917\) 46593.0 1.67790
\(918\) 0 0
\(919\) 23312.0 0.836770 0.418385 0.908270i \(-0.362596\pi\)
0.418385 + 0.908270i \(0.362596\pi\)
\(920\) 14040.0 0.503136
\(921\) 0 0
\(922\) 16062.0 0.573724
\(923\) 5772.00 0.205837
\(924\) 0 0
\(925\) 7304.00 0.259626
\(926\) −8566.00 −0.303992
\(927\) 0 0
\(928\) 3552.00 0.125647
\(929\) −18699.0 −0.660381 −0.330191 0.943914i \(-0.607113\pi\)
−0.330191 + 0.943914i \(0.607113\pi\)
\(930\) 0 0
\(931\) −17304.0 −0.609147
\(932\) −10536.0 −0.370298
\(933\) 0 0
\(934\) 10920.0 0.382562
\(935\) 5670.00 0.198320
\(936\) 0 0
\(937\) −31234.0 −1.08898 −0.544488 0.838769i \(-0.683276\pi\)
−0.544488 + 0.838769i \(0.683276\pi\)
\(938\) −26102.0 −0.908593
\(939\) 0 0
\(940\) −6372.00 −0.221098
\(941\) −11751.0 −0.407090 −0.203545 0.979066i \(-0.565246\pi\)
−0.203545 + 0.979066i \(0.565246\pi\)
\(942\) 0 0
\(943\) −50895.0 −1.75755
\(944\) −2544.00 −0.0877120
\(945\) 0 0
\(946\) 1290.00 0.0443356
\(947\) 25887.0 0.888294 0.444147 0.895954i \(-0.353507\pi\)
0.444147 + 0.895954i \(0.353507\pi\)
\(948\) 0 0
\(949\) −6734.00 −0.230342
\(950\) −2464.00 −0.0841502
\(951\) 0 0
\(952\) 10416.0 0.354606
\(953\) 41130.0 1.39804 0.699020 0.715102i \(-0.253620\pi\)
0.699020 + 0.715102i \(0.253620\pi\)
\(954\) 0 0
\(955\) −10449.0 −0.354054
\(956\) −27660.0 −0.935762
\(957\) 0 0
\(958\) 858.000 0.0289360
\(959\) −82491.0 −2.77766
\(960\) 0 0
\(961\) 12234.0 0.410661
\(962\) −12284.0 −0.411697
\(963\) 0 0
\(964\) −5956.00 −0.198994
\(965\) 32499.0 1.08412
\(966\) 0 0
\(967\) −28645.0 −0.952597 −0.476298 0.879284i \(-0.658022\pi\)
−0.476298 + 0.879284i \(0.658022\pi\)
\(968\) 8848.00 0.293787
\(969\) 0 0
\(970\) 16218.0 0.536834
\(971\) 32256.0 1.06606 0.533030 0.846096i \(-0.321053\pi\)
0.533030 + 0.846096i \(0.321053\pi\)
\(972\) 0 0
\(973\) 3751.00 0.123588
\(974\) 22592.0 0.743218
\(975\) 0 0
\(976\) 3056.00 0.100226
\(977\) −9015.00 −0.295205 −0.147603 0.989047i \(-0.547156\pi\)
−0.147603 + 0.989047i \(0.547156\pi\)
\(978\) 0 0
\(979\) 15750.0 0.514170
\(980\) 22248.0 0.725190
\(981\) 0 0
\(982\) −29346.0 −0.953634
\(983\) −15885.0 −0.515415 −0.257707 0.966223i \(-0.582967\pi\)
−0.257707 + 0.966223i \(0.582967\pi\)
\(984\) 0 0
\(985\) −18414.0 −0.595654
\(986\) 9324.00 0.301153
\(987\) 0 0
\(988\) 4144.00 0.133439
\(989\) 8385.00 0.269593
\(990\) 0 0
\(991\) 34904.0 1.11883 0.559416 0.828887i \(-0.311026\pi\)
0.559416 + 0.828887i \(0.311026\pi\)
\(992\) 6560.00 0.209960
\(993\) 0 0
\(994\) −9672.00 −0.308629
\(995\) 26964.0 0.859112
\(996\) 0 0
\(997\) −35341.0 −1.12263 −0.561314 0.827603i \(-0.689704\pi\)
−0.561314 + 0.827603i \(0.689704\pi\)
\(998\) −26878.0 −0.852513
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.a.a.1.1 1
3.2 odd 2 162.4.a.d.1.1 1
4.3 odd 2 1296.4.a.g.1.1 1
9.2 odd 6 18.4.c.a.13.1 yes 2
9.4 even 3 54.4.c.a.19.1 2
9.5 odd 6 18.4.c.a.7.1 2
9.7 even 3 54.4.c.a.37.1 2
12.11 even 2 1296.4.a.b.1.1 1
36.7 odd 6 432.4.i.a.145.1 2
36.11 even 6 144.4.i.a.49.1 2
36.23 even 6 144.4.i.a.97.1 2
36.31 odd 6 432.4.i.a.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.4.c.a.7.1 2 9.5 odd 6
18.4.c.a.13.1 yes 2 9.2 odd 6
54.4.c.a.19.1 2 9.4 even 3
54.4.c.a.37.1 2 9.7 even 3
144.4.i.a.49.1 2 36.11 even 6
144.4.i.a.97.1 2 36.23 even 6
162.4.a.a.1.1 1 1.1 even 1 trivial
162.4.a.d.1.1 1 3.2 odd 2
432.4.i.a.145.1 2 36.7 odd 6
432.4.i.a.289.1 2 36.31 odd 6
1296.4.a.b.1.1 1 12.11 even 2
1296.4.a.g.1.1 1 4.3 odd 2