Defining parameters
| Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 162.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(108\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(162))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 93 | 12 | 81 |
| Cusp forms | 69 | 12 | 57 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(25\) | \(3\) | \(22\) | \(19\) | \(3\) | \(16\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(22\) | \(3\) | \(19\) | \(16\) | \(3\) | \(13\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(23\) | \(2\) | \(21\) | \(17\) | \(2\) | \(15\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(23\) | \(4\) | \(19\) | \(17\) | \(4\) | \(13\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(48\) | \(7\) | \(41\) | \(36\) | \(7\) | \(29\) | \(12\) | \(0\) | \(12\) | ||||
| Minus space | \(-\) | \(45\) | \(5\) | \(40\) | \(33\) | \(5\) | \(28\) | \(12\) | \(0\) | \(12\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(162))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(162))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(162)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 2}\)