Properties

Label 162.3.h.a.5.11
Level $162$
Weight $3$
Character 162.5
Analytic conductor $4.414$
Analytic rank $0$
Dimension $324$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 162.h (of order \(54\), degree \(18\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.41418028264\)
Analytic rank: \(0\)
Dimension: \(324\)
Relative dimension: \(18\) over \(\Q(\zeta_{54})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{54}]$

Embedding invariants

Embedding label 5.11
Character \(\chi\) \(=\) 162.5
Dual form 162.3.h.a.65.11

$q$-expansion

\(f(q)\) \(=\) \(q+(0.326140 + 1.37609i) q^{2} +(-2.78435 + 1.11687i) q^{3} +(-1.78727 + 0.897598i) q^{4} +(5.92375 - 4.41007i) q^{5} +(-2.44501 - 3.46727i) q^{6} +(6.83506 - 4.49549i) q^{7} +(-1.81808 - 2.16670i) q^{8} +(6.50519 - 6.21953i) q^{9} +O(q^{10})\) \(q+(0.326140 + 1.37609i) q^{2} +(-2.78435 + 1.11687i) q^{3} +(-1.78727 + 0.897598i) q^{4} +(5.92375 - 4.41007i) q^{5} +(-2.44501 - 3.46727i) q^{6} +(6.83506 - 4.49549i) q^{7} +(-1.81808 - 2.16670i) q^{8} +(6.50519 - 6.21953i) q^{9} +(8.00064 + 6.71334i) q^{10} +(-1.35679 + 11.6081i) q^{11} +(3.97387 - 4.49537i) q^{12} +(0.463273 + 1.54744i) q^{13} +(8.41540 + 7.93952i) q^{14} +(-11.5683 + 18.8953i) q^{15} +(2.38863 - 3.20849i) q^{16} +(12.5713 + 2.21666i) q^{17} +(10.6803 + 6.92331i) q^{18} +(2.62832 + 14.9060i) q^{19} +(-6.62885 + 13.1991i) q^{20} +(-14.0103 + 20.1509i) q^{21} +(-16.4163 + 1.91879i) q^{22} +(14.0969 - 21.4333i) q^{23} +(7.48209 + 4.00229i) q^{24} +(8.47205 - 28.2986i) q^{25} +(-1.97833 + 1.14219i) q^{26} +(-11.1663 + 24.5828i) q^{27} +(-8.18092 + 14.1698i) q^{28} +(35.0982 - 33.1134i) q^{29} +(-29.7745 - 9.75656i) q^{30} +(-0.496868 + 8.53089i) q^{31} +(5.19421 + 2.24057i) q^{32} +(-9.18698 - 33.8363i) q^{33} +(1.04967 + 18.0222i) q^{34} +(20.6638 - 56.7733i) q^{35} +(-6.04386 + 16.9550i) q^{36} +(-59.1279 + 21.5208i) q^{37} +(-19.6548 + 8.47825i) q^{38} +(-3.01820 - 3.79119i) q^{39} +(-20.3252 - 4.81715i) q^{40} +(10.1113 - 42.6627i) q^{41} +(-32.2988 - 12.7074i) q^{42} +(9.46120 + 21.9335i) q^{43} +(-7.99445 - 21.9646i) q^{44} +(11.1066 - 65.5313i) q^{45} +(34.0917 + 12.4084i) q^{46} +(-39.0928 + 2.27690i) q^{47} +(-3.06731 + 11.6014i) q^{48} +(7.10069 - 16.4612i) q^{49} +(41.7046 + 2.42902i) q^{50} +(-37.4786 + 7.86860i) q^{51} +(-2.21697 - 2.34985i) q^{52} +(57.7082 + 33.3178i) q^{53} +(-37.4700 - 7.34842i) q^{54} +(43.1552 + 74.7470i) q^{55} +(-22.1670 - 6.63638i) q^{56} +(-23.9662 - 38.5679i) q^{57} +(57.0141 + 37.4988i) q^{58} +(3.88648 + 33.2510i) q^{59} +(3.71528 - 44.1545i) q^{60} +(-87.3883 - 43.8880i) q^{61} +(-11.9014 + 2.09853i) q^{62} +(16.5035 - 71.7548i) q^{63} +(-1.38919 + 7.87846i) q^{64} +(9.56862 + 7.12358i) q^{65} +(43.5657 - 23.6775i) q^{66} +(23.9226 - 25.3564i) q^{67} +(-24.4579 + 7.32222i) q^{68} +(-15.3124 + 75.4221i) q^{69} +(84.8646 + 9.91925i) q^{70} +(-57.1834 + 68.1485i) q^{71} +(-25.3028 - 2.78721i) q^{72} +(24.8184 - 20.8251i) q^{73} +(-48.8986 - 74.3468i) q^{74} +(8.01683 + 88.2554i) q^{75} +(-18.0771 - 24.2817i) q^{76} +(42.9103 + 85.4413i) q^{77} +(4.23267 - 5.38979i) q^{78} +(-116.214 + 27.5432i) q^{79} -29.5404i q^{80} +(3.63496 - 80.9184i) q^{81} +62.0056 q^{82} +(-32.1354 - 135.590i) q^{83} +(6.95269 - 48.5906i) q^{84} +(84.2449 - 42.3094i) q^{85} +(-27.0969 + 20.1729i) q^{86} +(-60.7421 + 131.400i) q^{87} +(27.6180 - 18.1646i) q^{88} +(-112.997 - 134.664i) q^{89} +(93.7995 - 6.08869i) q^{90} +(10.1230 + 8.49419i) q^{91} +(-5.95640 + 50.9603i) q^{92} +(-8.14447 - 24.3079i) q^{93} +(-15.8830 - 53.0528i) q^{94} +(81.3059 + 76.7082i) q^{95} +(-16.9649 - 0.437235i) q^{96} +(-57.6236 + 77.4019i) q^{97} +(24.9680 + 4.40254i) q^{98} +(63.3706 + 83.9514i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 324 q+O(q^{10}) \) Copy content Toggle raw display \( 324 q + 72 q^{18} + 108 q^{20} + 270 q^{21} + 162 q^{23} - 54 q^{27} - 162 q^{29} - 216 q^{30} - 378 q^{33} - 486 q^{35} - 180 q^{36} - 108 q^{38} + 216 q^{41} + 432 q^{45} + 324 q^{47} + 126 q^{51} - 216 q^{57} - 378 q^{59} - 540 q^{63} - 1728 q^{65} - 1008 q^{66} + 702 q^{67} - 216 q^{68} - 1872 q^{69} + 540 q^{70} - 1296 q^{71} - 576 q^{72} - 864 q^{74} - 900 q^{75} + 108 q^{76} - 864 q^{77} - 288 q^{78} + 108 q^{79} + 144 q^{81} + 432 q^{83} + 144 q^{84} - 540 q^{85} + 864 q^{86} + 2016 q^{87} - 216 q^{88} + 1782 q^{89} + 1440 q^{90} + 864 q^{92} + 2124 q^{93} - 756 q^{94} + 2808 q^{95} + 288 q^{96} - 918 q^{97} + 1296 q^{98} + 1800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{23}{54}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.326140 + 1.37609i 0.163070 + 0.688047i
\(3\) −2.78435 + 1.11687i −0.928116 + 0.372291i
\(4\) −1.78727 + 0.897598i −0.446816 + 0.224400i
\(5\) 5.92375 4.41007i 1.18475 0.882014i 0.189745 0.981833i \(-0.439234\pi\)
0.995006 + 0.0998191i \(0.0318264\pi\)
\(6\) −2.44501 3.46727i −0.407502 0.577878i
\(7\) 6.83506 4.49549i 0.976437 0.642213i 0.0422914 0.999105i \(-0.486534\pi\)
0.934145 + 0.356893i \(0.116164\pi\)
\(8\) −1.81808 2.16670i −0.227260 0.270838i
\(9\) 6.50519 6.21953i 0.722799 0.691059i
\(10\) 8.00064 + 6.71334i 0.800064 + 0.671334i
\(11\) −1.35679 + 11.6081i −0.123345 + 1.05528i 0.779825 + 0.625997i \(0.215308\pi\)
−0.903170 + 0.429283i \(0.858766\pi\)
\(12\) 3.97387 4.49537i 0.331155 0.374615i
\(13\) 0.463273 + 1.54744i 0.0356364 + 0.119034i 0.973957 0.226732i \(-0.0728043\pi\)
−0.938321 + 0.345766i \(0.887619\pi\)
\(14\) 8.41540 + 7.93952i 0.601100 + 0.567108i
\(15\) −11.5683 + 18.8953i −0.771220 + 1.25968i
\(16\) 2.38863 3.20849i 0.149290 0.200531i
\(17\) 12.5713 + 2.21666i 0.739488 + 0.130392i 0.530689 0.847567i \(-0.321933\pi\)
0.208799 + 0.977958i \(0.433044\pi\)
\(18\) 10.6803 + 6.92331i 0.593347 + 0.384628i
\(19\) 2.62832 + 14.9060i 0.138333 + 0.784524i 0.972481 + 0.232983i \(0.0748488\pi\)
−0.834148 + 0.551541i \(0.814040\pi\)
\(20\) −6.62885 + 13.1991i −0.331442 + 0.659956i
\(21\) −14.0103 + 20.1509i −0.667157 + 0.959566i
\(22\) −16.4163 + 1.91879i −0.746196 + 0.0872178i
\(23\) 14.0969 21.4333i 0.612908 0.931881i −0.387044 0.922061i \(-0.626504\pi\)
0.999952 0.00981996i \(-0.00312584\pi\)
\(24\) 7.48209 + 4.00229i 0.311754 + 0.166762i
\(25\) 8.47205 28.2986i 0.338882 1.13194i
\(26\) −1.97833 + 1.14219i −0.0760895 + 0.0439303i
\(27\) −11.1663 + 24.5828i −0.413566 + 0.910474i
\(28\) −8.18092 + 14.1698i −0.292176 + 0.506063i
\(29\) 35.0982 33.1134i 1.21028 1.14184i 0.224384 0.974501i \(-0.427963\pi\)
0.985899 0.167342i \(-0.0535184\pi\)
\(30\) −29.7745 9.75656i −0.992484 0.325219i
\(31\) −0.496868 + 8.53089i −0.0160280 + 0.275190i 0.980766 + 0.195185i \(0.0625307\pi\)
−0.996794 + 0.0800052i \(0.974506\pi\)
\(32\) 5.19421 + 2.24057i 0.162319 + 0.0700177i
\(33\) −9.18698 33.8363i −0.278393 1.02534i
\(34\) 1.04967 + 18.0222i 0.0308728 + 0.530065i
\(35\) 20.6638 56.7733i 0.590394 1.62209i
\(36\) −6.04386 + 16.9550i −0.167885 + 0.470972i
\(37\) −59.1279 + 21.5208i −1.59805 + 0.581643i −0.979028 0.203728i \(-0.934694\pi\)
−0.619025 + 0.785371i \(0.712472\pi\)
\(38\) −19.6548 + 8.47825i −0.517231 + 0.223112i
\(39\) −3.01820 3.79119i −0.0773898 0.0972100i
\(40\) −20.3252 4.81715i −0.508129 0.120429i
\(41\) 10.1113 42.6627i 0.246616 1.04055i −0.698962 0.715159i \(-0.746354\pi\)
0.945578 0.325396i \(-0.105498\pi\)
\(42\) −32.2988 12.7074i −0.769020 0.302558i
\(43\) 9.46120 + 21.9335i 0.220028 + 0.510082i 0.992100 0.125453i \(-0.0400386\pi\)
−0.772072 + 0.635536i \(0.780779\pi\)
\(44\) −7.99445 21.9646i −0.181692 0.499195i
\(45\) 11.1066 65.5313i 0.246813 1.45625i
\(46\) 34.0917 + 12.4084i 0.741125 + 0.269747i
\(47\) −39.0928 + 2.27690i −0.831762 + 0.0484446i −0.468740 0.883336i \(-0.655292\pi\)
−0.363022 + 0.931781i \(0.618255\pi\)
\(48\) −3.06731 + 11.6014i −0.0639023 + 0.241695i
\(49\) 7.10069 16.4612i 0.144912 0.335944i
\(50\) 41.7046 + 2.42902i 0.834092 + 0.0485803i
\(51\) −37.4786 + 7.86860i −0.734875 + 0.154286i
\(52\) −2.21697 2.34985i −0.0426340 0.0451894i
\(53\) 57.7082 + 33.3178i 1.08883 + 0.628638i 0.933266 0.359187i \(-0.116946\pi\)
0.155568 + 0.987825i \(0.450279\pi\)
\(54\) −37.4700 7.34842i −0.693889 0.136082i
\(55\) 43.1552 + 74.7470i 0.784640 + 1.35904i
\(56\) −22.1670 6.63638i −0.395840 0.118507i
\(57\) −23.9662 38.5679i −0.420460 0.676630i
\(58\) 57.0141 + 37.4988i 0.983002 + 0.646531i
\(59\) 3.88648 + 33.2510i 0.0658725 + 0.563576i 0.985364 + 0.170465i \(0.0545270\pi\)
−0.919491 + 0.393111i \(0.871399\pi\)
\(60\) 3.71528 44.1545i 0.0619213 0.735909i
\(61\) −87.3883 43.8880i −1.43259 0.719476i −0.447952 0.894058i \(-0.647846\pi\)
−0.984643 + 0.174582i \(0.944143\pi\)
\(62\) −11.9014 + 2.09853i −0.191957 + 0.0338473i
\(63\) 16.5035 71.7548i 0.261961 1.13897i
\(64\) −1.38919 + 7.87846i −0.0217060 + 0.123101i
\(65\) 9.56862 + 7.12358i 0.147210 + 0.109593i
\(66\) 43.5657 23.6775i 0.660086 0.358750i
\(67\) 23.9226 25.3564i 0.357053 0.378454i −0.523802 0.851840i \(-0.675487\pi\)
0.880855 + 0.473386i \(0.156968\pi\)
\(68\) −24.4579 + 7.32222i −0.359675 + 0.107680i
\(69\) −15.3124 + 75.4221i −0.221919 + 1.09307i
\(70\) 84.8646 + 9.91925i 1.21235 + 0.141704i
\(71\) −57.1834 + 68.1485i −0.805400 + 0.959839i −0.999778 0.0210882i \(-0.993287\pi\)
0.194377 + 0.980927i \(0.437731\pi\)
\(72\) −25.3028 2.78721i −0.351428 0.0387113i
\(73\) 24.8184 20.8251i 0.339978 0.285275i −0.456773 0.889583i \(-0.650995\pi\)
0.796751 + 0.604308i \(0.206550\pi\)
\(74\) −48.8986 74.3468i −0.660792 1.00469i
\(75\) 8.01683 + 88.2554i 0.106891 + 1.17674i
\(76\) −18.0771 24.2817i −0.237856 0.319496i
\(77\) 42.9103 + 85.4413i 0.557276 + 1.10963i
\(78\) 4.23267 5.38979i 0.0542650 0.0690999i
\(79\) −116.214 + 27.5432i −1.47106 + 0.348649i −0.886511 0.462707i \(-0.846878\pi\)
−0.584553 + 0.811356i \(0.698730\pi\)
\(80\) 29.5404i 0.369255i
\(81\) 3.63496 80.9184i 0.0448761 0.998993i
\(82\) 62.0056 0.756166
\(83\) −32.1354 135.590i −0.387173 1.63361i −0.722400 0.691475i \(-0.756961\pi\)
0.335227 0.942137i \(-0.391187\pi\)
\(84\) 6.95269 48.5906i 0.0827702 0.578460i
\(85\) 84.2449 42.3094i 0.991117 0.497757i
\(86\) −27.0969 + 20.1729i −0.315080 + 0.234569i
\(87\) −60.7421 + 131.400i −0.698185 + 1.51034i
\(88\) 27.6180 18.1646i 0.313841 0.206416i
\(89\) −112.997 134.664i −1.26963 1.51308i −0.755102 0.655607i \(-0.772413\pi\)
−0.514525 0.857475i \(-0.672032\pi\)
\(90\) 93.7995 6.08869i 1.04222 0.0676522i
\(91\) 10.1230 + 8.49419i 0.111242 + 0.0933428i
\(92\) −5.95640 + 50.9603i −0.0647435 + 0.553916i
\(93\) −8.14447 24.3079i −0.0875750 0.261375i
\(94\) −15.8830 53.0528i −0.168968 0.564391i
\(95\) 81.3059 + 76.7082i 0.855852 + 0.807454i
\(96\) −16.9649 0.437235i −0.176718 0.00455454i
\(97\) −57.6236 + 77.4019i −0.594058 + 0.797958i −0.992886 0.119068i \(-0.962009\pi\)
0.398829 + 0.917025i \(0.369417\pi\)
\(98\) 24.9680 + 4.40254i 0.254776 + 0.0449239i
\(99\) 63.3706 + 83.9514i 0.640107 + 0.847994i
\(100\) 10.2590 + 58.1816i 0.102590 + 0.581816i
\(101\) −40.7748 + 81.1892i −0.403711 + 0.803854i 0.596289 + 0.802770i \(0.296641\pi\)
−0.999999 + 0.00108387i \(0.999655\pi\)
\(102\) −23.0512 49.0078i −0.225992 0.480468i
\(103\) 2.48215 0.290122i 0.0240986 0.00281672i −0.104035 0.994574i \(-0.533175\pi\)
0.128134 + 0.991757i \(0.459101\pi\)
\(104\) 2.51057 3.81714i 0.0241401 0.0367032i
\(105\) 5.87338 + 181.155i 0.0559370 + 1.72529i
\(106\) −27.0275 + 90.2781i −0.254976 + 0.851680i
\(107\) 1.57232 0.907782i 0.0146946 0.00848394i −0.492635 0.870236i \(-0.663966\pi\)
0.507329 + 0.861752i \(0.330633\pi\)
\(108\) −2.10836 53.9588i −0.0195219 0.499619i
\(109\) −76.9769 + 133.328i −0.706210 + 1.22319i 0.260043 + 0.965597i \(0.416263\pi\)
−0.966253 + 0.257595i \(0.917070\pi\)
\(110\) −88.7842 + 83.7635i −0.807129 + 0.761487i
\(111\) 140.597 125.960i 1.26664 1.13477i
\(112\) 1.90271 32.6683i 0.0169885 0.291681i
\(113\) 112.124 + 48.3656i 0.992248 + 0.428014i 0.829411 0.558639i \(-0.188676\pi\)
0.162837 + 0.986653i \(0.447936\pi\)
\(114\) 45.2567 45.5583i 0.396988 0.399634i
\(115\) −11.0158 189.134i −0.0957894 1.64464i
\(116\) −33.0072 + 90.6866i −0.284545 + 0.781781i
\(117\) 12.6380 + 7.18504i 0.108017 + 0.0614106i
\(118\) −44.4889 + 16.1926i −0.377024 + 0.137226i
\(119\) 95.8905 41.3631i 0.805803 0.347589i
\(120\) 61.9724 9.28799i 0.516437 0.0774000i
\(121\) −15.1683 3.59495i −0.125358 0.0297103i
\(122\) 31.8932 134.568i 0.261420 1.10302i
\(123\) 19.4956 + 130.081i 0.158501 + 1.05757i
\(124\) −6.76928 15.6930i −0.0545910 0.126556i
\(125\) −11.4663 31.5034i −0.0917305 0.252028i
\(126\) 104.124 0.691730i 0.826379 0.00548992i
\(127\) 121.105 + 44.0787i 0.953583 + 0.347076i 0.771516 0.636210i \(-0.219499\pi\)
0.182068 + 0.983286i \(0.441721\pi\)
\(128\) −11.2946 + 0.657834i −0.0882388 + 0.00513933i
\(129\) −50.8403 50.5036i −0.394111 0.391501i
\(130\) −6.68199 + 15.4906i −0.0514000 + 0.119158i
\(131\) 180.243 + 10.4980i 1.37590 + 0.0801373i 0.730087 0.683354i \(-0.239480\pi\)
0.645818 + 0.763492i \(0.276517\pi\)
\(132\) 46.7910 + 52.2282i 0.354477 + 0.395668i
\(133\) 84.9743 + 90.0675i 0.638905 + 0.677199i
\(134\) 42.6949 + 24.6499i 0.318619 + 0.183955i
\(135\) 42.2656 + 194.867i 0.313078 + 1.44346i
\(136\) −18.0528 31.2683i −0.132741 0.229914i
\(137\) −63.5736 19.0327i −0.464041 0.138925i 0.0462439 0.998930i \(-0.485275\pi\)
−0.510285 + 0.860005i \(0.670460\pi\)
\(138\) −108.782 + 3.52690i −0.788274 + 0.0255573i
\(139\) −90.7012 59.6551i −0.652527 0.429174i 0.179615 0.983737i \(-0.442515\pi\)
−0.832141 + 0.554563i \(0.812885\pi\)
\(140\) 14.0279 + 120.017i 0.100200 + 0.857262i
\(141\) 106.305 50.0014i 0.753936 0.354620i
\(142\) −112.429 56.4637i −0.791750 0.397632i
\(143\) −18.5914 + 3.27816i −0.130009 + 0.0229242i
\(144\) −4.41679 35.7280i −0.0306722 0.248111i
\(145\) 61.8804 350.941i 0.426762 2.42029i
\(146\) 36.7515 + 27.3605i 0.251723 + 0.187401i
\(147\) −1.38567 + 53.7644i −0.00942629 + 0.365744i
\(148\) 86.3603 91.5365i 0.583515 0.618490i
\(149\) −129.384 + 38.7349i −0.868347 + 0.259966i −0.689831 0.723971i \(-0.742315\pi\)
−0.178517 + 0.983937i \(0.557130\pi\)
\(150\) −118.833 + 39.8155i −0.792220 + 0.265437i
\(151\) −275.866 32.2441i −1.82693 0.213537i −0.867878 0.496777i \(-0.834517\pi\)
−0.959049 + 0.283240i \(0.908591\pi\)
\(152\) 27.5183 32.7950i 0.181041 0.215757i
\(153\) 95.5652 63.7678i 0.624609 0.416783i
\(154\) −103.581 + 86.9144i −0.672601 + 0.564379i
\(155\) 34.6785 + 52.7261i 0.223732 + 0.340169i
\(156\) 8.79730 + 4.06673i 0.0563929 + 0.0260688i
\(157\) 116.578 + 156.591i 0.742534 + 0.997396i 0.999520 + 0.0309809i \(0.00986311\pi\)
−0.256986 + 0.966415i \(0.582729\pi\)
\(158\) −75.8041 150.938i −0.479773 0.955306i
\(159\) −197.891 28.3157i −1.24460 0.178086i
\(160\) 40.6503 9.63430i 0.254064 0.0602144i
\(161\) 209.870i 1.30354i
\(162\) 112.537 21.3887i 0.694671 0.132029i
\(163\) −12.4725 −0.0765182 −0.0382591 0.999268i \(-0.512181\pi\)
−0.0382591 + 0.999268i \(0.512181\pi\)
\(164\) 20.2225 + 85.3255i 0.123308 + 0.520277i
\(165\) −203.642 159.923i −1.23419 0.969229i
\(166\) 176.104 88.4426i 1.06087 0.532786i
\(167\) −106.019 + 78.9283i −0.634845 + 0.472625i −0.865834 0.500332i \(-0.833211\pi\)
0.230989 + 0.972956i \(0.425804\pi\)
\(168\) 69.1328 6.27979i 0.411505 0.0373797i
\(169\) 139.017 91.4332i 0.822589 0.541025i
\(170\) 85.6973 + 102.130i 0.504102 + 0.600765i
\(171\) 109.806 + 80.6192i 0.642139 + 0.471457i
\(172\) −36.5972 30.7087i −0.212774 0.178539i
\(173\) −20.2981 + 173.661i −0.117330 + 1.00382i 0.798427 + 0.602091i \(0.205666\pi\)
−0.915757 + 0.401732i \(0.868408\pi\)
\(174\) −200.629 40.7321i −1.15304 0.234093i
\(175\) −69.3091 231.509i −0.396052 1.32291i
\(176\) 34.0036 + 32.0807i 0.193202 + 0.182277i
\(177\) −47.9584 88.2416i −0.270952 0.498540i
\(178\) 148.458 199.414i 0.834033 1.12030i
\(179\) −175.085 30.8722i −0.978129 0.172471i −0.338342 0.941023i \(-0.609866\pi\)
−0.639787 + 0.768552i \(0.720977\pi\)
\(180\) 38.9704 + 127.091i 0.216502 + 0.706061i
\(181\) −29.5059 167.336i −0.163016 0.924510i −0.951086 0.308925i \(-0.900031\pi\)
0.788070 0.615585i \(-0.211080\pi\)
\(182\) −8.38729 + 16.7005i −0.0460840 + 0.0917608i
\(183\) 292.337 + 24.5980i 1.59747 + 0.134415i
\(184\) −72.0687 + 8.42362i −0.391678 + 0.0457806i
\(185\) −255.351 + 388.242i −1.38028 + 2.09861i
\(186\) 30.7937 19.1353i 0.165558 0.102878i
\(187\) −42.7878 + 142.921i −0.228812 + 0.764284i
\(188\) 67.8255 39.1591i 0.360774 0.208293i
\(189\) 34.1895 + 218.223i 0.180897 + 1.15462i
\(190\) −79.0405 + 136.902i −0.416002 + 0.720537i
\(191\) −167.709 + 158.225i −0.878056 + 0.828403i −0.986170 0.165736i \(-0.947000\pi\)
0.108115 + 0.994138i \(0.465519\pi\)
\(192\) −4.93127 23.4879i −0.0256837 0.122333i
\(193\) 0.280772 4.82067i 0.00145478 0.0249776i −0.997503 0.0706291i \(-0.977499\pi\)
0.998957 + 0.0456515i \(0.0145364\pi\)
\(194\) −125.306 54.0516i −0.645905 0.278616i
\(195\) −34.5985 9.14758i −0.177428 0.0469107i
\(196\) 2.08477 + 35.7942i 0.0106366 + 0.182623i
\(197\) 77.6212 213.263i 0.394016 1.08255i −0.571134 0.820857i \(-0.693496\pi\)
0.965151 0.261695i \(-0.0842814\pi\)
\(198\) −94.8572 + 114.584i −0.479077 + 0.578706i
\(199\) 83.7068 30.4668i 0.420637 0.153099i −0.123025 0.992404i \(-0.539260\pi\)
0.543662 + 0.839304i \(0.317037\pi\)
\(200\) −76.7175 + 33.0927i −0.383587 + 0.165463i
\(201\) −38.2888 + 97.3196i −0.190492 + 0.484177i
\(202\) −125.022 29.6308i −0.618922 0.146687i
\(203\) 91.0371 384.116i 0.448459 1.89220i
\(204\) 59.9214 47.7040i 0.293732 0.233843i
\(205\) −128.249 297.315i −0.625606 1.45032i
\(206\) 1.20877 + 3.32106i 0.00586779 + 0.0161216i
\(207\) −41.6019 227.103i −0.200975 1.09712i
\(208\) 6.07153 + 2.20986i 0.0291901 + 0.0106243i
\(209\) −176.596 + 10.2855i −0.844956 + 0.0492131i
\(210\) −247.371 + 67.1643i −1.17796 + 0.319830i
\(211\) −27.5988 + 63.9812i −0.130800 + 0.303229i −0.971012 0.239029i \(-0.923171\pi\)
0.840212 + 0.542257i \(0.182430\pi\)
\(212\) −133.046 7.74904i −0.627575 0.0365521i
\(213\) 83.1053 253.616i 0.390166 1.19068i
\(214\) 1.76199 + 1.86760i 0.00823360 + 0.00872711i
\(215\) 152.774 + 88.2043i 0.710578 + 0.410252i
\(216\) 73.5648 20.4994i 0.340578 0.0949048i
\(217\) 34.9544 + 60.5428i 0.161080 + 0.278999i
\(218\) −208.577 62.4438i −0.956775 0.286440i
\(219\) −45.8440 + 85.7033i −0.209333 + 0.391339i
\(220\) −144.223 94.8566i −0.655557 0.431167i
\(221\) 2.39380 + 20.4802i 0.0108317 + 0.0926707i
\(222\) 219.187 + 152.394i 0.987328 + 0.686458i
\(223\) −220.620 110.799i −0.989325 0.496858i −0.120893 0.992666i \(-0.538576\pi\)
−0.868432 + 0.495808i \(0.834872\pi\)
\(224\) 45.5752 8.03614i 0.203461 0.0358756i
\(225\) −120.892 236.780i −0.537297 1.05236i
\(226\) −29.9874 + 170.067i −0.132688 + 0.752509i
\(227\) 247.411 + 184.190i 1.08992 + 0.811412i 0.983137 0.182871i \(-0.0585391\pi\)
0.106778 + 0.994283i \(0.465947\pi\)
\(228\) 77.4525 + 47.4190i 0.339704 + 0.207978i
\(229\) 23.3400 24.7390i 0.101922 0.108031i −0.674404 0.738362i \(-0.735600\pi\)
0.776326 + 0.630332i \(0.217081\pi\)
\(230\) 256.673 76.8428i 1.11597 0.334099i
\(231\) −214.904 189.973i −0.930321 0.822395i
\(232\) −135.558 15.8445i −0.584303 0.0682952i
\(233\) 42.1209 50.1977i 0.180776 0.215441i −0.668045 0.744121i \(-0.732869\pi\)
0.848821 + 0.528680i \(0.177313\pi\)
\(234\) −5.76552 + 19.7344i −0.0246390 + 0.0843351i
\(235\) −221.535 + 185.890i −0.942702 + 0.791021i
\(236\) −36.7922 55.9398i −0.155899 0.237033i
\(237\) 292.818 206.486i 1.23552 0.871250i
\(238\) 88.1933 + 118.464i 0.370560 + 0.497748i
\(239\) −48.3628 96.2982i −0.202355 0.402921i 0.769451 0.638706i \(-0.220530\pi\)
−0.971805 + 0.235785i \(0.924234\pi\)
\(240\) 32.9928 + 82.2507i 0.137470 + 0.342711i
\(241\) 160.837 38.1190i 0.667372 0.158170i 0.117054 0.993126i \(-0.462655\pi\)
0.550317 + 0.834955i \(0.314507\pi\)
\(242\) 22.0454i 0.0910967i
\(243\) 80.2546 + 229.365i 0.330266 + 0.943888i
\(244\) 195.580 0.801557
\(245\) −30.5325 128.827i −0.124623 0.525824i
\(246\) −172.645 + 69.2524i −0.701810 + 0.281514i
\(247\) −21.8484 + 10.9727i −0.0884552 + 0.0444238i
\(248\) 19.3872 14.4333i 0.0781744 0.0581986i
\(249\) 240.913 + 341.638i 0.967521 + 1.37204i
\(250\) 39.6121 26.0533i 0.158448 0.104213i
\(251\) 51.1493 + 60.9573i 0.203782 + 0.242858i 0.858250 0.513232i \(-0.171552\pi\)
−0.654468 + 0.756090i \(0.727107\pi\)
\(252\) 34.9108 + 143.058i 0.138535 + 0.567692i
\(253\) 229.673 + 192.718i 0.907797 + 0.761732i
\(254\) −21.1591 + 181.028i −0.0833036 + 0.712708i
\(255\) −187.313 + 211.895i −0.734561 + 0.830960i
\(256\) −4.58885 15.3278i −0.0179252 0.0598743i
\(257\) 196.146 + 185.054i 0.763214 + 0.720055i 0.965822 0.259205i \(-0.0834604\pi\)
−0.202608 + 0.979260i \(0.564942\pi\)
\(258\) 52.9167 86.4322i 0.205103 0.335009i
\(259\) −307.396 + 412.905i −1.18686 + 1.59423i
\(260\) −23.4958 4.14294i −0.0903684 0.0159344i
\(261\) 22.3705 433.703i 0.0857105 1.66170i
\(262\) 44.3384 + 251.456i 0.169231 + 0.959754i
\(263\) 179.592 357.596i 0.682858 1.35968i −0.238567 0.971126i \(-0.576678\pi\)
0.921425 0.388556i \(-0.127026\pi\)
\(264\) −56.6105 + 81.4225i −0.214434 + 0.308418i
\(265\) 488.783 57.1305i 1.84446 0.215587i
\(266\) −96.2278 + 146.307i −0.361758 + 0.550027i
\(267\) 465.025 + 248.749i 1.74167 + 0.931646i
\(268\) −19.9961 + 66.7916i −0.0746122 + 0.249222i
\(269\) 259.476 149.808i 0.964593 0.556908i 0.0670096 0.997752i \(-0.478654\pi\)
0.897584 + 0.440844i \(0.145321\pi\)
\(270\) −254.370 + 121.715i −0.942111 + 0.450797i
\(271\) 119.641 207.225i 0.441481 0.764668i −0.556319 0.830969i \(-0.687787\pi\)
0.997800 + 0.0663015i \(0.0211199\pi\)
\(272\) 37.1404 35.0401i 0.136545 0.128824i
\(273\) −37.6728 12.3447i −0.137996 0.0452187i
\(274\) 5.45685 93.6906i 0.0199155 0.341936i
\(275\) 316.998 + 136.740i 1.15272 + 0.497235i
\(276\) −40.3315 148.544i −0.146129 0.538202i
\(277\) 24.6440 + 423.121i 0.0889674 + 1.52751i 0.687365 + 0.726312i \(0.258767\pi\)
−0.598398 + 0.801199i \(0.704196\pi\)
\(278\) 52.5097 144.269i 0.188884 0.518954i
\(279\) 49.8259 + 58.5854i 0.178587 + 0.209983i
\(280\) −160.579 + 58.4460i −0.573496 + 0.208736i
\(281\) −302.892 + 130.655i −1.07791 + 0.464963i −0.859626 0.510923i \(-0.829304\pi\)
−0.218279 + 0.975886i \(0.570044\pi\)
\(282\) 103.477 + 129.978i 0.366939 + 0.460915i
\(283\) 126.872 + 30.0692i 0.448311 + 0.106252i 0.448569 0.893748i \(-0.351934\pi\)
−0.000257903 1.00000i \(0.500082\pi\)
\(284\) 41.0319 173.127i 0.144479 0.609603i
\(285\) −312.057 122.774i −1.09494 0.430785i
\(286\) −10.5744 24.5143i −0.0369736 0.0857143i
\(287\) −122.679 337.057i −0.427452 1.17442i
\(288\) 47.7246 17.7303i 0.165710 0.0615634i
\(289\) −118.447 43.1112i −0.409852 0.149174i
\(290\) 503.110 29.3028i 1.73486 0.101044i
\(291\) 73.9960 279.872i 0.254282 0.961760i
\(292\) −25.6645 + 59.4969i −0.0878920 + 0.203756i
\(293\) −248.629 14.4810i −0.848565 0.0494233i −0.371650 0.928373i \(-0.621208\pi\)
−0.476915 + 0.878950i \(0.658245\pi\)
\(294\) −74.4368 + 15.6279i −0.253186 + 0.0531562i
\(295\) 169.662 + 179.831i 0.575124 + 0.609596i
\(296\) 154.128 + 88.9860i 0.520704 + 0.300629i
\(297\) −270.209 162.973i −0.909794 0.548730i
\(298\) −95.5001 165.411i −0.320470 0.555071i
\(299\) 39.6974 + 11.8846i 0.132767 + 0.0397479i
\(300\) −93.5461 150.540i −0.311820 0.501800i
\(301\) 163.270 + 107.384i 0.542425 + 0.356758i
\(302\) −45.6001 390.134i −0.150994 1.29183i
\(303\) 22.8531 271.599i 0.0754227 0.896367i
\(304\) 54.1038 + 27.1719i 0.177973 + 0.0893814i
\(305\) −711.216 + 125.407i −2.33186 + 0.411169i
\(306\) 118.918 + 110.709i 0.388621 + 0.361796i
\(307\) 80.0200 453.816i 0.260652 1.47823i −0.520486 0.853870i \(-0.674249\pi\)
0.781138 0.624359i \(-0.214640\pi\)
\(308\) −153.384 114.190i −0.498000 0.370747i
\(309\) −6.58715 + 3.58005i −0.0213176 + 0.0115859i
\(310\) −61.2460 + 64.9170i −0.197568 + 0.209410i
\(311\) −128.681 + 38.5247i −0.413767 + 0.123874i −0.486919 0.873447i \(-0.661879\pi\)
0.0731523 + 0.997321i \(0.476694\pi\)
\(312\) −2.72704 + 13.4322i −0.00874053 + 0.0430520i
\(313\) 278.788 + 32.5856i 0.890696 + 0.104107i 0.549117 0.835746i \(-0.314964\pi\)
0.341579 + 0.939853i \(0.389038\pi\)
\(314\) −177.463 + 211.493i −0.565170 + 0.673543i
\(315\) −218.681 497.840i −0.694226 1.58044i
\(316\) 182.983 153.541i 0.579059 0.485888i
\(317\) 243.332 + 369.968i 0.767609 + 1.16709i 0.981729 + 0.190285i \(0.0609413\pi\)
−0.214120 + 0.976807i \(0.568688\pi\)
\(318\) −25.5752 281.552i −0.0804253 0.885383i
\(319\) 336.763 + 452.351i 1.05568 + 1.41803i
\(320\) 26.5154 + 52.7965i 0.0828606 + 0.164989i
\(321\) −3.36402 + 4.28367i −0.0104798 + 0.0133448i
\(322\) 288.801 68.4470i 0.896897 0.212568i
\(323\) 193.213i 0.598184i
\(324\) 66.1356 + 147.885i 0.204122 + 0.456436i
\(325\) 47.7152 0.146816
\(326\) −4.06777 17.1633i −0.0124778 0.0526481i
\(327\) 65.4201 457.205i 0.200062 1.39818i
\(328\) −110.820 + 55.6561i −0.337867 + 0.169683i
\(329\) −256.966 + 191.304i −0.781051 + 0.581471i
\(330\) 153.653 332.387i 0.465614 1.00723i
\(331\) −67.9561 + 44.6954i −0.205305 + 0.135031i −0.647998 0.761642i \(-0.724394\pi\)
0.442693 + 0.896673i \(0.354023\pi\)
\(332\) 179.140 + 213.490i 0.539577 + 0.643043i
\(333\) −250.789 + 507.745i −0.753121 + 1.52476i
\(334\) −143.190 120.150i −0.428712 0.359732i
\(335\) 29.8877 255.706i 0.0892170 0.763300i
\(336\) 31.1885 + 93.0850i 0.0928230 + 0.277039i
\(337\) 66.9670 + 223.685i 0.198715 + 0.663755i 0.998024 + 0.0628344i \(0.0200140\pi\)
−0.799309 + 0.600921i \(0.794801\pi\)
\(338\) 171.160 + 161.481i 0.506390 + 0.477754i
\(339\) −366.210 9.43831i −1.08027 0.0278416i
\(340\) −112.591 + 151.236i −0.331150 + 0.444812i
\(341\) −98.3532 17.3423i −0.288426 0.0508572i
\(342\) −75.1274 + 177.396i −0.219671 + 0.518702i
\(343\) 44.1418 + 250.340i 0.128693 + 0.729855i
\(344\) 30.3222 60.3765i 0.0881459 0.175513i
\(345\) 241.910 + 514.311i 0.701189 + 1.49076i
\(346\) −245.594 + 28.7058i −0.709810 + 0.0829649i
\(347\) −114.038 + 173.387i −0.328641 + 0.499674i −0.961579 0.274528i \(-0.911478\pi\)
0.632938 + 0.774202i \(0.281849\pi\)
\(348\) −9.38183 289.368i −0.0269593 0.831517i
\(349\) −107.364 + 358.619i −0.307632 + 1.02756i 0.654746 + 0.755849i \(0.272776\pi\)
−0.962378 + 0.271714i \(0.912410\pi\)
\(350\) 295.973 170.880i 0.845637 0.488229i
\(351\) −43.2134 5.89060i −0.123115 0.0167823i
\(352\) −33.0561 + 57.2549i −0.0939095 + 0.162656i
\(353\) 287.160 270.922i 0.813485 0.767483i −0.162178 0.986762i \(-0.551852\pi\)
0.975662 + 0.219278i \(0.0703703\pi\)
\(354\) 105.787 94.7744i 0.298835 0.267724i
\(355\) −38.2006 + 655.878i −0.107607 + 1.84754i
\(356\) 322.830 + 139.255i 0.906825 + 0.391166i
\(357\) −220.795 + 222.267i −0.618474 + 0.622596i
\(358\) −14.6192 251.002i −0.0408358 0.701123i
\(359\) 74.3758 204.346i 0.207175 0.569209i −0.791970 0.610561i \(-0.790944\pi\)
0.999145 + 0.0413517i \(0.0131664\pi\)
\(360\) −162.179 + 95.0764i −0.450498 + 0.264101i
\(361\) 123.949 45.1139i 0.343350 0.124969i
\(362\) 220.647 95.1780i 0.609523 0.262923i
\(363\) 46.2488 6.93145i 0.127407 0.0190949i
\(364\) −25.7168 6.09500i −0.0706506 0.0167445i
\(365\) 55.1778 232.814i 0.151172 0.637845i
\(366\) 61.4936 + 410.305i 0.168015 + 1.12105i
\(367\) −205.224 475.763i −0.559194 1.29636i −0.929970 0.367635i \(-0.880168\pi\)
0.370776 0.928722i \(-0.379092\pi\)
\(368\) −35.0962 96.4260i −0.0953701 0.262027i
\(369\) −199.566 340.416i −0.540831 0.922538i
\(370\) −617.538 224.765i −1.66902 0.607474i
\(371\) 544.218 31.6971i 1.46690 0.0854370i
\(372\) 36.3751 + 36.1342i 0.0977825 + 0.0971350i
\(373\) −145.625 + 337.596i −0.390415 + 0.905084i 0.603746 + 0.797177i \(0.293674\pi\)
−0.994161 + 0.107907i \(0.965585\pi\)
\(374\) −210.628 12.2677i −0.563175 0.0328012i
\(375\) 67.1116 + 74.9101i 0.178964 + 0.199760i
\(376\) 76.0071 + 80.5629i 0.202147 + 0.214263i
\(377\) 67.5010 + 38.9717i 0.179048 + 0.103373i
\(378\) −289.144 + 118.219i −0.764932 + 0.312749i
\(379\) 69.5884 + 120.531i 0.183611 + 0.318023i 0.943107 0.332488i \(-0.107888\pi\)
−0.759497 + 0.650511i \(0.774555\pi\)
\(380\) −214.168 64.1178i −0.563601 0.168731i
\(381\) −386.429 + 12.5287i −1.01425 + 0.0328838i
\(382\) −272.429 179.179i −0.713164 0.469056i
\(383\) −9.56984 81.8752i −0.0249865 0.213773i 0.974977 0.222305i \(-0.0713582\pi\)
−0.999964 + 0.00853202i \(0.997284\pi\)
\(384\) 30.7133 14.4462i 0.0799825 0.0376204i
\(385\) 630.992 + 316.896i 1.63894 + 0.823107i
\(386\) 6.72527 1.18585i 0.0174230 0.00307214i
\(387\) 197.963 + 83.8376i 0.511533 + 0.216635i
\(388\) 33.5128 190.061i 0.0863732 0.489847i
\(389\) 154.857 + 115.287i 0.398090 + 0.296367i 0.777526 0.628851i \(-0.216474\pi\)
−0.379436 + 0.925218i \(0.623882\pi\)
\(390\) 1.30396 50.5942i 0.00334348 0.129729i
\(391\) 224.726 238.196i 0.574748 0.609197i
\(392\) −48.5762 + 14.5428i −0.123919 + 0.0370989i
\(393\) −513.585 + 172.079i −1.30683 + 0.437860i
\(394\) 318.785 + 37.2606i 0.809098 + 0.0945700i
\(395\) −566.956 + 675.672i −1.43533 + 1.71056i
\(396\) −188.615 93.1620i −0.476300 0.235258i
\(397\) −452.742 + 379.896i −1.14041 + 0.956917i −0.999452 0.0330990i \(-0.989462\pi\)
−0.140957 + 0.990016i \(0.545018\pi\)
\(398\) 69.2253 + 105.252i 0.173933 + 0.264452i
\(399\) −337.192 155.874i −0.845093 0.390661i
\(400\) −70.5593 94.7776i −0.176398 0.236944i
\(401\) −168.917 336.341i −0.421239 0.838757i −0.999734 0.0230704i \(-0.992656\pi\)
0.578494 0.815686i \(-0.303640\pi\)
\(402\) −146.408 20.9492i −0.364200 0.0521124i
\(403\) −13.4312 + 3.18326i −0.0333281 + 0.00789890i
\(404\) 181.706i 0.449768i
\(405\) −335.323 495.371i −0.827959 1.22314i
\(406\) 558.270 1.37505
\(407\) −169.591 715.561i −0.416686 1.75814i
\(408\) 85.1879 + 66.8992i 0.208794 + 0.163969i
\(409\) 282.570 141.912i 0.690881 0.346974i −0.0684712 0.997653i \(-0.521812\pi\)
0.759353 + 0.650679i \(0.225516\pi\)
\(410\) 367.306 273.449i 0.895868 0.666949i
\(411\) 198.268 18.0100i 0.482404 0.0438200i
\(412\) −4.17585 + 2.74650i −0.0101356 + 0.00666627i
\(413\) 176.044 + 209.801i 0.426256 + 0.507992i
\(414\) 298.947 131.316i 0.722095 0.317188i
\(415\) −788.323 661.481i −1.89957 1.59393i
\(416\) −1.06080 + 9.07572i −0.00255000 + 0.0218166i
\(417\) 319.171 + 64.7989i 0.765398 + 0.155393i
\(418\) −71.7488 239.658i −0.171648 0.573344i
\(419\) −552.722 521.466i −1.31915 1.24455i −0.948885 0.315621i \(-0.897787\pi\)
−0.370260 0.928928i \(-0.620731\pi\)
\(420\) −173.102 318.501i −0.412148 0.758335i
\(421\) −105.109 + 141.186i −0.249665 + 0.335359i −0.909234 0.416286i \(-0.863332\pi\)
0.659568 + 0.751644i \(0.270739\pi\)
\(422\) −97.0452 17.1117i −0.229965 0.0405490i
\(423\) −240.145 + 257.950i −0.567719 + 0.609812i
\(424\) −32.7282 185.611i −0.0771891 0.437761i
\(425\) 169.233 336.971i 0.398195 0.792872i
\(426\) 376.103 + 31.6463i 0.882871 + 0.0742870i
\(427\) −794.602 + 92.8757i −1.86089 + 0.217507i
\(428\) −1.99534 + 3.03376i −0.00466200 + 0.00708823i
\(429\) 48.1035 29.8917i 0.112129 0.0696777i
\(430\) −71.5515 + 238.999i −0.166399 + 0.555811i
\(431\) −105.672 + 61.0098i −0.245179 + 0.141554i −0.617555 0.786528i \(-0.711877\pi\)
0.372376 + 0.928082i \(0.378543\pi\)
\(432\) 52.2016 + 94.5463i 0.120837 + 0.218857i
\(433\) 347.589 602.041i 0.802745 1.39039i −0.115058 0.993359i \(-0.536705\pi\)
0.917803 0.397036i \(-0.129961\pi\)
\(434\) −71.9125 + 67.8460i −0.165697 + 0.156327i
\(435\) 219.660 + 1046.26i 0.504966 + 2.40519i
\(436\) 17.9032 307.387i 0.0410625 0.705015i
\(437\) 356.535 + 153.794i 0.815869 + 0.351931i
\(438\) −132.887 35.1344i −0.303396 0.0802154i
\(439\) −38.4537 660.225i −0.0875939 1.50393i −0.700431 0.713720i \(-0.747009\pi\)
0.612837 0.790209i \(-0.290028\pi\)
\(440\) 83.4948 229.400i 0.189761 0.521364i
\(441\) −56.1899 151.246i −0.127415 0.342962i
\(442\) −27.4020 + 9.97351i −0.0619954 + 0.0225645i
\(443\) 340.576 146.910i 0.768795 0.331626i 0.0246960 0.999695i \(-0.492138\pi\)
0.744099 + 0.668069i \(0.232879\pi\)
\(444\) −138.222 + 351.323i −0.311312 + 0.791268i
\(445\) −1263.24 299.394i −2.83875 0.672797i
\(446\) 80.5173 339.729i 0.180532 0.761724i
\(447\) 316.987 252.357i 0.709144 0.564557i
\(448\) 25.9224 + 60.0948i 0.0578624 + 0.134140i
\(449\) 271.962 + 747.209i 0.605706 + 1.66416i 0.739502 + 0.673154i \(0.235061\pi\)
−0.133796 + 0.991009i \(0.542717\pi\)
\(450\) 286.404 243.582i 0.636453 0.541293i
\(451\) 481.514 + 175.257i 1.06766 + 0.388596i
\(452\) −243.808 + 14.2002i −0.539399 + 0.0314164i
\(453\) 804.120 218.329i 1.77510 0.481961i
\(454\) −172.773 + 400.532i −0.380557 + 0.882229i
\(455\) 97.4261 + 5.67442i 0.214123 + 0.0124713i
\(456\) −39.9926 + 122.047i −0.0877030 + 0.267647i
\(457\) −252.553 267.691i −0.552633 0.585757i 0.389487 0.921032i \(-0.372652\pi\)
−0.942120 + 0.335275i \(0.891171\pi\)
\(458\) 41.6553 + 24.0497i 0.0909504 + 0.0525102i
\(459\) −194.866 + 284.286i −0.424546 + 0.619359i
\(460\) 189.454 + 328.144i 0.411857 + 0.713357i
\(461\) 7.08981 + 2.12255i 0.0153792 + 0.00460423i 0.294484 0.955657i \(-0.404852\pi\)
−0.279104 + 0.960261i \(0.590038\pi\)
\(462\) 191.332 357.686i 0.414138 0.774212i
\(463\) 200.805 + 132.071i 0.433704 + 0.285252i 0.747529 0.664229i \(-0.231240\pi\)
−0.313825 + 0.949481i \(0.601611\pi\)
\(464\) −22.4075 191.708i −0.0482920 0.413164i
\(465\) −155.445 108.076i −0.334291 0.232422i
\(466\) 82.8140 + 41.5908i 0.177712 + 0.0892505i
\(467\) −147.477 + 26.0042i −0.315797 + 0.0556836i −0.329300 0.944225i \(-0.606813\pi\)
0.0135031 + 0.999909i \(0.495702\pi\)
\(468\) −29.0368 1.49772i −0.0620443 0.00320025i
\(469\) 49.5226 280.856i 0.105592 0.598841i
\(470\) −328.053 244.227i −0.697986 0.519631i
\(471\) −499.486 305.802i −1.06048 0.649261i
\(472\) 64.9790 68.8737i 0.137667 0.145919i
\(473\) −267.443 + 80.0672i −0.565419 + 0.169275i
\(474\) 379.644 + 335.602i 0.800937 + 0.708020i
\(475\) 444.085 + 51.9061i 0.934917 + 0.109276i
\(476\) −134.254 + 159.998i −0.282047 + 0.336130i
\(477\) 582.624 142.179i 1.22143 0.298069i
\(478\) 116.742 97.9584i 0.244231 0.204934i
\(479\) −298.650 454.076i −0.623487 0.947966i −0.999770 0.0214609i \(-0.993168\pi\)
0.376283 0.926505i \(-0.377202\pi\)
\(480\) −102.424 + 72.2265i −0.213384 + 0.150472i
\(481\) −60.6945 81.5268i −0.126184 0.169494i
\(482\) 104.911 + 208.894i 0.217657 + 0.433390i
\(483\) 234.398 + 584.351i 0.485296 + 1.20984i
\(484\) 30.3365 7.18989i 0.0626788 0.0148551i
\(485\) 712.634i 1.46935i
\(486\) −289.453 + 185.243i −0.595582 + 0.381158i
\(487\) −409.714 −0.841302 −0.420651 0.907222i \(-0.638198\pi\)
−0.420651 + 0.907222i \(0.638198\pi\)
\(488\) 63.7864 + 269.136i 0.130710 + 0.551508i
\(489\) 34.7277 13.9302i 0.0710178 0.0284870i
\(490\) 167.320 84.0312i 0.341469 0.171492i
\(491\) −51.1217 + 38.0587i −0.104117 + 0.0775126i −0.647958 0.761676i \(-0.724377\pi\)
0.543841 + 0.839188i \(0.316970\pi\)
\(492\) −151.604 214.990i −0.308139 0.436971i
\(493\) 514.631 338.478i 1.04388 0.686568i
\(494\) −22.2251 26.4868i −0.0449901 0.0536171i
\(495\) 745.623 + 217.838i 1.50631 + 0.440077i
\(496\) 26.1845 + 21.9714i 0.0527913 + 0.0442971i
\(497\) −84.4910 + 722.867i −0.170002 + 1.45446i
\(498\) −391.555 + 442.940i −0.786254 + 0.889438i
\(499\) −118.380 395.416i −0.237234 0.792417i −0.990834 0.135084i \(-0.956870\pi\)
0.753600 0.657333i \(-0.228316\pi\)
\(500\) 48.7708 + 46.0129i 0.0975416 + 0.0920257i
\(501\) 207.041 338.174i 0.413256 0.674998i
\(502\) −67.2011 + 90.2668i −0.133867 + 0.179814i
\(503\) 624.038 + 110.035i 1.24063 + 0.218757i 0.755187 0.655510i \(-0.227546\pi\)
0.485446 + 0.874267i \(0.338657\pi\)
\(504\) −185.476 + 94.6976i −0.368008 + 0.187892i
\(505\) 116.511 + 660.765i 0.230714 + 1.30844i
\(506\) −190.293 + 378.904i −0.376073 + 0.748822i
\(507\) −284.954 + 409.847i −0.562039 + 0.808377i
\(508\) −256.012 + 29.9235i −0.503960 + 0.0589045i
\(509\) 145.013 220.482i 0.284898 0.433166i −0.664478 0.747308i \(-0.731346\pi\)
0.949376 + 0.314141i \(0.101717\pi\)
\(510\) −352.677 188.653i −0.691524 0.369907i
\(511\) 76.0161 253.911i 0.148759 0.496891i
\(512\) 19.5959 11.3137i 0.0382733 0.0220971i
\(513\) −395.779 101.833i −0.771499 0.198504i
\(514\) −190.681 + 330.269i −0.370974 + 0.642546i
\(515\) 13.4242 12.6651i 0.0260664 0.0245924i
\(516\) 136.197 + 44.6293i 0.263948 + 0.0864908i
\(517\) 26.6103 456.882i 0.0514707 0.883717i
\(518\) −668.450 288.341i −1.29044 0.556643i
\(519\) −137.441 506.204i −0.264818 0.975345i
\(520\) −1.96184 33.6836i −0.00377278 0.0647761i
\(521\) 76.0911 209.059i 0.146048 0.401264i −0.845000 0.534766i \(-0.820400\pi\)
0.991049 + 0.133502i \(0.0426221\pi\)
\(522\) 604.112 110.664i 1.15730 0.212000i
\(523\) 464.275 168.982i 0.887716 0.323102i 0.142396 0.989810i \(-0.454519\pi\)
0.745319 + 0.666708i \(0.232297\pi\)
\(524\) −331.566 + 143.024i −0.632759 + 0.272946i
\(525\) 451.547 + 567.191i 0.860089 + 1.08036i
\(526\) 550.658 + 130.508i 1.04688 + 0.248115i
\(527\) −25.1564 + 106.143i −0.0477350 + 0.201410i
\(528\) −130.508 51.3462i −0.247174 0.0972466i
\(529\) −51.1367 118.548i −0.0966668 0.224099i
\(530\) 238.029 + 653.978i 0.449111 + 1.23392i
\(531\) 232.088 + 192.132i 0.437076 + 0.361830i
\(532\) −232.716 84.7017i −0.437436 0.159214i
\(533\) 70.7022 4.11794i 0.132650 0.00772596i
\(534\) −190.639 + 721.046i −0.357002 + 1.35027i
\(535\) 5.31068 12.3115i 0.00992650 0.0230122i
\(536\) −98.4329 5.73307i −0.183644 0.0106960i
\(537\) 521.978 109.589i 0.972027 0.204076i
\(538\) 290.776 + 308.204i 0.540475 + 0.572870i
\(539\) 181.449 + 104.760i 0.336641 + 0.194360i
\(540\) −250.452 310.341i −0.463799 0.574705i
\(541\) 415.628 + 719.890i 0.768260 + 1.33066i 0.938506 + 0.345263i \(0.112210\pi\)
−0.170246 + 0.985402i \(0.554456\pi\)
\(542\) 324.181 + 97.0533i 0.598119 + 0.179065i
\(543\) 269.048 + 432.968i 0.495485 + 0.797363i
\(544\) 60.3315 + 39.6806i 0.110903 + 0.0729423i
\(545\) 131.993 + 1129.28i 0.242190 + 2.07206i
\(546\) 4.70083 55.8675i 0.00860958 0.102321i
\(547\) −179.107 89.9511i −0.327436 0.164444i 0.277485 0.960730i \(-0.410499\pi\)
−0.604921 + 0.796285i \(0.706795\pi\)
\(548\) 130.707 23.0471i 0.238516 0.0420568i
\(549\) −841.440 + 258.014i −1.53268 + 0.469970i
\(550\) −84.7806 + 480.815i −0.154147 + 0.874209i
\(551\) 585.837 + 436.140i 1.06323 + 0.791542i
\(552\) 191.256 103.946i 0.346479 0.188308i
\(553\) −670.509 + 710.698i −1.21249 + 1.28517i
\(554\) −574.216 + 171.909i −1.03649 + 0.310305i
\(555\) 277.369 1366.20i 0.499763 2.46162i
\(556\) 215.653 + 25.2063i 0.387866 + 0.0453350i
\(557\) 109.391 130.368i 0.196394 0.234053i −0.658856 0.752269i \(-0.728959\pi\)
0.855250 + 0.518216i \(0.173404\pi\)
\(558\) −64.3687 + 87.6721i −0.115356 + 0.157119i
\(559\) −29.5577 + 24.8018i −0.0528760 + 0.0443682i
\(560\) −132.798 201.910i −0.237140 0.360554i
\(561\) −40.4887 445.731i −0.0721724 0.794529i
\(562\) −278.578 374.195i −0.495690 0.665828i
\(563\) −12.2266 24.3452i −0.0217169 0.0432419i 0.882513 0.470289i \(-0.155850\pi\)
−0.904229 + 0.427047i \(0.859554\pi\)
\(564\) −145.114 + 184.785i −0.257294 + 0.327633i
\(565\) 877.491 207.969i 1.55308 0.368087i
\(566\) 184.394i 0.325785i
\(567\) −338.923 569.423i −0.597747 1.00427i
\(568\) 251.621 0.442995
\(569\) 69.7536 + 294.313i 0.122590 + 0.517247i 0.999341 + 0.0363024i \(0.0115580\pi\)
−0.876751 + 0.480944i \(0.840294\pi\)
\(570\) 67.1739 469.461i 0.117849 0.823616i
\(571\) 256.588 128.863i 0.449366 0.225680i −0.209699 0.977766i \(-0.567248\pi\)
0.659065 + 0.752086i \(0.270952\pi\)
\(572\) 30.2852 22.5465i 0.0529462 0.0394170i
\(573\) 290.242 627.863i 0.506531 1.09575i
\(574\) 423.812 278.745i 0.738348 0.485619i
\(575\) −487.102 580.506i −0.847134 1.00958i
\(576\) 39.9634 + 59.8910i 0.0693809 + 0.103977i
\(577\) −411.746 345.496i −0.713597 0.598779i 0.212009 0.977268i \(-0.431999\pi\)
−0.925606 + 0.378489i \(0.876444\pi\)
\(578\) 20.6947 177.055i 0.0358040 0.306323i
\(579\) 4.60231 + 13.7360i 0.00794872 + 0.0237237i
\(580\) 204.408 + 682.769i 0.352427 + 1.17719i
\(581\) −829.190 782.300i −1.42718 1.34647i
\(582\) 409.263 + 10.5479i 0.703201 + 0.0181235i
\(583\) −465.054 + 624.676i −0.797691 + 1.07149i
\(584\) −90.2435 15.9124i −0.154527 0.0272472i
\(585\) 106.551 13.1721i 0.182138 0.0225164i
\(586\) −61.1608 346.860i −0.104370 0.591911i
\(587\) 160.748 320.076i 0.273847 0.545274i −0.714104 0.700039i \(-0.753166\pi\)
0.987951 + 0.154765i \(0.0494621\pi\)
\(588\) −45.7823 97.3350i −0.0778610 0.165536i
\(589\) −128.467 + 15.0157i −0.218111 + 0.0254935i
\(590\) −192.131 + 292.120i −0.325645 + 0.495119i
\(591\) 22.0627 + 680.490i 0.0373312 + 1.15142i
\(592\) −72.1857 + 241.117i −0.121935 + 0.407292i
\(593\) −387.608 + 223.785i −0.653639 + 0.377379i −0.789849 0.613301i \(-0.789841\pi\)
0.136210 + 0.990680i \(0.456508\pi\)
\(594\) 136.140 424.985i 0.229192 0.715462i
\(595\) 385.617 667.909i 0.648097 1.12254i
\(596\) 196.475 185.364i 0.329655 0.311014i
\(597\) −199.041 + 178.320i −0.333403 + 0.298694i
\(598\) −3.40743 + 58.5033i −0.00569804 + 0.0978316i
\(599\) 117.709 + 50.7748i 0.196509 + 0.0847659i 0.492060 0.870561i \(-0.336244\pi\)
−0.295551 + 0.955327i \(0.595503\pi\)
\(600\) 176.648 177.825i 0.294413 0.296375i
\(601\) 16.4140 + 281.818i 0.0273112 + 0.468915i 0.984042 + 0.177939i \(0.0569430\pi\)
−0.956730 + 0.290976i \(0.906020\pi\)
\(602\) −94.5219 + 259.697i −0.157013 + 0.431390i
\(603\) −2.08425 313.736i −0.00345647 0.520291i
\(604\) 521.988 189.988i 0.864219 0.314550i
\(605\) −105.707 + 45.5976i −0.174722 + 0.0753679i
\(606\) 381.199 57.1315i 0.629042 0.0942764i
\(607\) −654.557 155.133i −1.07835 0.255573i −0.347199 0.937792i \(-0.612867\pi\)
−0.731148 + 0.682219i \(0.761015\pi\)
\(608\) −19.7457 + 83.3137i −0.0324765 + 0.137029i
\(609\) 175.530 + 1171.19i 0.288226 + 1.92313i
\(610\) −404.527 937.799i −0.663159 1.53738i
\(611\) −21.6340 59.4389i −0.0354075 0.0972813i
\(612\) −113.563 + 199.749i −0.185560 + 0.326387i
\(613\) −339.176 123.450i −0.553306 0.201387i 0.0502089 0.998739i \(-0.484011\pi\)
−0.603515 + 0.797352i \(0.706234\pi\)
\(614\) 650.591 37.8926i 1.05959 0.0617144i
\(615\) 689.153 + 684.590i 1.12057 + 1.11315i
\(616\) 107.112 248.313i 0.173883 0.403105i
\(617\) −513.612 29.9145i −0.832434 0.0484838i −0.363367 0.931646i \(-0.618373\pi\)
−0.469067 + 0.883162i \(0.655410\pi\)
\(618\) −7.07482 7.89694i −0.0114479 0.0127782i
\(619\) −204.978 217.264i −0.331143 0.350991i 0.540313 0.841464i \(-0.318306\pi\)
−0.871457 + 0.490473i \(0.836824\pi\)
\(620\) −109.307 63.1082i −0.176301 0.101787i
\(621\) 369.480 + 585.871i 0.594976 + 0.943431i
\(622\) −94.9817 164.513i −0.152704 0.264491i
\(623\) −1377.72 412.463i −2.21143 0.662059i
\(624\) −19.3734 + 0.628120i −0.0310471 + 0.00100660i
\(625\) 410.143 + 269.755i 0.656229 + 0.431609i
\(626\) 46.0830 + 394.265i 0.0736151 + 0.629817i
\(627\) 480.216 225.874i 0.765895 0.360245i
\(628\) −348.911 175.230i −0.555591 0.279029i
\(629\) −791.019 + 139.478i −1.25758 + 0.221746i
\(630\) 613.753 463.291i 0.974211 0.735382i
\(631\) −56.2479 + 318.998i −0.0891409 + 0.505543i 0.907245 + 0.420602i \(0.138181\pi\)
−0.996386 + 0.0849409i \(0.972930\pi\)
\(632\) 270.964 + 201.725i 0.428741 + 0.319186i
\(633\) 5.38577 208.970i 0.00850833 0.330127i
\(634\) −429.751 + 455.509i −0.677840 + 0.718469i
\(635\) 911.787 272.971i 1.43588 0.429876i
\(636\) 379.101 127.019i 0.596070 0.199716i
\(637\) 28.7623 + 3.36183i 0.0451528 + 0.00527760i
\(638\) −512.645 + 610.947i −0.803519 + 0.957597i
\(639\) 51.8628 + 798.973i 0.0811624 + 1.25035i
\(640\) −64.0051 + 53.7067i −0.100008 + 0.0839167i
\(641\) −123.579 187.893i −0.192791 0.293125i 0.726137 0.687550i \(-0.241314\pi\)
−0.918928 + 0.394425i \(0.870944\pi\)
\(642\) −6.99187 3.23213i −0.0108908 0.00503447i
\(643\) 15.0426 + 20.2057i 0.0233944 + 0.0314241i 0.813666 0.581332i \(-0.197468\pi\)
−0.790272 + 0.612756i \(0.790061\pi\)
\(644\) 188.379 + 375.093i 0.292514 + 0.582443i
\(645\) −523.890 74.9619i −0.812232 0.116220i
\(646\) −265.880 + 63.0146i −0.411578 + 0.0975459i
\(647\) 19.0762i 0.0294841i 0.999891 + 0.0147421i \(0.00469272\pi\)
−0.999891 + 0.0147421i \(0.995307\pi\)
\(648\) −181.935 + 139.240i −0.280763 + 0.214877i
\(649\) −391.253 −0.602855
\(650\) 15.5618 + 65.6606i 0.0239413 + 0.101016i
\(651\) −164.944 129.533i −0.253370 0.198975i
\(652\) 22.2916 11.1953i 0.0341896 0.0171707i
\(653\) 28.5423 21.2490i 0.0437095 0.0325405i −0.575082 0.818096i \(-0.695030\pi\)
0.618792 + 0.785555i \(0.287623\pi\)
\(654\) 650.493 59.0886i 0.994637 0.0903495i
\(655\) 1114.01 732.699i 1.70079 1.11862i
\(656\) −112.731 134.348i −0.171846 0.204798i
\(657\) 31.9260 289.830i 0.0485936 0.441141i
\(658\) −347.059 291.217i −0.527445 0.442579i
\(659\) −26.3156 + 225.144i −0.0399326 + 0.341645i 0.958472 + 0.285186i \(0.0920552\pi\)
−0.998405 + 0.0564594i \(0.982019\pi\)
\(660\) 507.508 + 103.036i 0.768952 + 0.156115i
\(661\) −274.553 917.071i −0.415360 1.38740i −0.868380 0.495899i \(-0.834839\pi\)
0.453020 0.891500i \(-0.350346\pi\)
\(662\) −83.6682 78.9369i −0.126387 0.119240i
\(663\) −29.5390 54.3505i −0.0445535 0.0819766i
\(664\) −235.358 + 316.141i −0.354455 + 0.476115i
\(665\) 900.571 + 158.795i 1.35424 + 0.238789i
\(666\) −780.497 179.513i −1.17192 0.269540i
\(667\) −214.954 1219.07i −0.322270 1.82768i
\(668\) 118.638 236.228i 0.177602 0.353635i
\(669\) 738.030 + 62.0998i 1.10318 + 0.0928248i
\(670\) 361.622 42.2676i 0.539735 0.0630859i
\(671\) 628.024 954.863i 0.935952 1.42305i
\(672\) −117.922 + 73.2771i −0.175479 + 0.109043i
\(673\) 59.2091 197.772i 0.0879779 0.293867i −0.902665 0.430343i \(-0.858393\pi\)
0.990643 + 0.136476i \(0.0435778\pi\)
\(674\) −285.971 + 165.106i −0.424290 + 0.244964i
\(675\) 601.058 + 524.257i 0.890456 + 0.776677i
\(676\) −166.391 + 288.197i −0.246140 + 0.426327i
\(677\) 141.911 133.886i 0.209617 0.197763i −0.574272 0.818665i \(-0.694715\pi\)
0.783889 + 0.620901i \(0.213233\pi\)
\(678\) −106.448 507.018i −0.157003 0.747814i
\(679\) −45.9012 + 788.093i −0.0676011 + 1.16067i
\(680\) −244.836 105.612i −0.360052 0.155311i
\(681\) −894.595 236.524i −1.31365 0.347319i
\(682\) −8.21227 140.999i −0.0120414 0.206744i
\(683\) 437.357 1201.63i 0.640346 1.75934i −0.0102893 0.999947i \(-0.503275\pi\)
0.650636 0.759390i \(-0.274503\pi\)
\(684\) −268.616 45.5264i −0.392713 0.0665590i
\(685\) −460.530 + 167.619i −0.672307 + 0.244700i
\(686\) −330.095 + 142.389i −0.481188 + 0.207564i
\(687\) −37.3565 + 94.9498i −0.0543762 + 0.138209i
\(688\) 92.9729 + 22.0350i 0.135135 + 0.0320276i
\(689\) −24.8227 + 104.735i −0.0360271 + 0.152010i
\(690\) −628.843 + 500.628i −0.911367 + 0.725548i
\(691\) 90.3819 + 209.529i 0.130799 + 0.303226i 0.971012 0.239030i \(-0.0768296\pi\)
−0.840213 + 0.542256i \(0.817570\pi\)
\(692\) −119.600 328.598i −0.172832 0.474853i
\(693\) 810.544 + 288.931i 1.16962 + 0.416927i
\(694\) −275.789 100.379i −0.397391 0.144638i
\(695\) −800.375 + 46.6165i −1.15162 + 0.0670741i
\(696\) 395.137 107.285i 0.567726 0.154145i
\(697\) 221.680 513.913i 0.318049 0.737321i
\(698\) −528.509 30.7822i −0.757176 0.0441005i
\(699\) −61.2147 + 186.811i −0.0875747 + 0.267255i
\(700\) 331.676 + 351.556i 0.473822 + 0.502222i
\(701\) −44.1583 25.4948i −0.0629933 0.0363692i 0.468173 0.883637i \(-0.344913\pi\)
−0.531166 + 0.847268i \(0.678246\pi\)
\(702\) −5.98760 61.3868i −0.00852935 0.0874456i
\(703\) −476.196 824.795i −0.677377 1.17325i
\(704\) −89.5690 26.8152i −0.127229 0.0380898i
\(705\) 409.215 765.009i 0.580447 1.08512i
\(706\) 466.468 + 306.801i 0.660719 + 0.434562i
\(707\) 86.2874 + 738.236i 0.122047 + 1.04418i
\(708\) 164.920 + 114.664i 0.232938 + 0.161954i
\(709\) −21.9538 11.0256i −0.0309645 0.0155509i 0.433250 0.901274i \(-0.357367\pi\)
−0.464214 + 0.885723i \(0.653663\pi\)
\(710\) −915.008 + 161.341i −1.28874 + 0.227240i
\(711\) −584.688 + 901.970i −0.822347 + 1.26859i
\(712\) −86.3404 + 489.661i −0.121265 + 0.687726i
\(713\) 175.841 + 130.909i 0.246621 + 0.183602i
\(714\) −377.870 231.345i −0.529230 0.324012i
\(715\) −95.6737 + 101.408i −0.133809 + 0.141830i
\(716\) 340.634 101.979i 0.475746 0.142429i
\(717\) 242.212 + 214.113i 0.337813 + 0.298623i
\(718\) 305.456 + 35.7027i 0.425426 + 0.0497252i
\(719\) 295.098 351.685i 0.410429 0.489130i −0.520741 0.853714i \(-0.674344\pi\)
0.931170 + 0.364584i \(0.118789\pi\)
\(720\) −183.727 192.166i −0.255177 0.266897i
\(721\) 15.6614 13.1415i 0.0217218 0.0182268i
\(722\) 102.506 + 155.853i 0.141975 + 0.215862i
\(723\) −405.251 + 285.771i −0.560513 + 0.395257i
\(724\) 202.936 + 272.590i 0.280298 + 0.376505i
\(725\) −639.711 1273.77i −0.882360 1.75692i
\(726\) 24.6219 + 61.3821i 0.0339145 + 0.0845483i
\(727\) −451.045 + 106.900i −0.620419 + 0.147042i −0.528792 0.848751i \(-0.677355\pi\)
−0.0916271 + 0.995793i \(0.529207\pi\)
\(728\) 37.3766i 0.0513415i
\(729\) −479.628 548.997i −0.657926 0.753083i
\(730\) 338.369 0.463519
\(731\) 70.3205 + 296.705i 0.0961976 + 0.405890i
\(732\) −544.562 + 218.438i −0.743938 + 0.298412i
\(733\) 508.507 255.382i 0.693734 0.348406i −0.0667438 0.997770i \(-0.521261\pi\)
0.760478 + 0.649364i \(0.224965\pi\)
\(734\) 587.763 437.573i 0.800766 0.596148i
\(735\) 228.897 + 324.598i 0.311424 + 0.441630i
\(736\) 121.245 79.7440i 0.164735 0.108348i
\(737\) 261.882 + 312.099i 0.355335 + 0.423472i
\(738\) 403.358 385.646i 0.546556 0.522555i
\(739\) 353.663 + 296.758i 0.478569 + 0.401567i 0.849909 0.526930i \(-0.176657\pi\)
−0.371340 + 0.928497i \(0.621101\pi\)
\(740\) 107.894 923.095i 0.145803 1.24743i
\(741\) 48.5785 54.9537i 0.0655580 0.0741615i
\(742\) 221.110 + 738.558i 0.297991 + 0.995361i
\(743\) 630.319 + 594.676i 0.848344 + 0.800371i 0.981648 0.190704i \(-0.0610771\pi\)
−0.133304 + 0.991075i \(0.542559\pi\)
\(744\) −37.8607 + 61.8403i −0.0508880 + 0.0831187i
\(745\) −595.613 + 800.048i −0.799481 + 1.07389i
\(746\) −512.058 90.2896i −0.686405 0.121032i
\(747\) −1052.35 682.171i −1.40877 0.913214i
\(748\) −51.8127 293.844i −0.0692683 0.392840i
\(749\) 6.66600 13.2731i 0.00889987 0.0177211i
\(750\) −81.1956 + 116.783i −0.108261 + 0.155711i
\(751\) 8.35046 0.976029i 0.0111191 0.00129964i −0.110532 0.993873i \(-0.535255\pi\)
0.121651 + 0.992573i \(0.461181\pi\)
\(752\) −86.0730 + 130.868i −0.114459 + 0.174026i
\(753\) −210.499 112.599i −0.279547 0.149534i
\(754\) −31.6140 + 105.598i −0.0419283 + 0.140050i
\(755\) −1776.36 + 1025.58i −2.35280 + 1.35839i
\(756\) −256.982 359.334i −0.339923 0.475309i
\(757\) −288.642 + 499.943i −0.381297 + 0.660426i −0.991248 0.132013i \(-0.957856\pi\)
0.609951 + 0.792439i \(0.291189\pi\)
\(758\) −143.166 + 135.070i −0.188873 + 0.178193i
\(759\) −854.730 280.079i −1.12613 0.369011i
\(760\) 18.3832 315.627i 0.0241884 0.415299i
\(761\) 431.783 + 186.253i 0.567388 + 0.244747i 0.660395 0.750918i \(-0.270389\pi\)
−0.0930071 + 0.995665i \(0.529648\pi\)
\(762\) −143.271 527.676i −0.188019 0.692489i
\(763\) 73.2325 + 1257.35i 0.0959796 + 1.64791i
\(764\) 157.717 433.325i 0.206436 0.567179i
\(765\) 284.885 799.194i 0.372398 1.04470i
\(766\) 109.547 39.8718i 0.143012 0.0520519i
\(767\) −49.6533 + 21.4183i −0.0647370 + 0.0279248i
\(768\) 29.8962 + 37.5529i 0.0389273 + 0.0488969i
\(769\) 783.510 + 185.695i 1.01887 + 0.241476i 0.705918 0.708293i \(-0.250535\pi\)
0.312950 + 0.949770i \(0.398683\pi\)
\(770\) −230.287 + 971.657i −0.299074 + 1.26189i
\(771\) −752.821 296.185i −0.976421 0.384157i