Properties

Label 162.3.h.a.5.10
Level $162$
Weight $3$
Character 162.5
Analytic conductor $4.414$
Analytic rank $0$
Dimension $324$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 162.h (of order \(54\), degree \(18\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.41418028264\)
Analytic rank: \(0\)
Dimension: \(324\)
Relative dimension: \(18\) over \(\Q(\zeta_{54})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{54}]$

Embedding invariants

Embedding label 5.10
Character \(\chi\) \(=\) 162.5
Dual form 162.3.h.a.65.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.326140 + 1.37609i) q^{2} +(-2.96504 - 0.456664i) q^{3} +(-1.78727 + 0.897598i) q^{4} +(-1.81547 + 1.35157i) q^{5} +(-0.338606 - 4.22911i) q^{6} +(-1.49360 + 0.982359i) q^{7} +(-1.81808 - 2.16670i) q^{8} +(8.58292 + 2.70805i) q^{9} +O(q^{10})\) \(q+(0.326140 + 1.37609i) q^{2} +(-2.96504 - 0.456664i) q^{3} +(-1.78727 + 0.897598i) q^{4} +(-1.81547 + 1.35157i) q^{5} +(-0.338606 - 4.22911i) q^{6} +(-1.49360 + 0.982359i) q^{7} +(-1.81808 - 2.16670i) q^{8} +(8.58292 + 2.70805i) q^{9} +(-2.45198 - 2.05746i) q^{10} +(2.37524 - 20.3215i) q^{11} +(5.70921 - 1.84524i) q^{12} +(-4.99401 - 16.6812i) q^{13} +(-1.83894 - 1.73495i) q^{14} +(6.00016 - 3.17840i) q^{15} +(2.38863 - 3.20849i) q^{16} +(-26.1697 - 4.61443i) q^{17} +(-0.927299 + 12.6941i) q^{18} +(1.74443 + 9.89314i) q^{19} +(2.03157 - 4.04518i) q^{20} +(4.87720 - 2.23066i) q^{21} +(28.7389 - 3.35910i) q^{22} +(23.2916 - 35.4131i) q^{23} +(4.40122 + 7.25460i) q^{24} +(-5.70088 + 19.0423i) q^{25} +(21.3261 - 12.3126i) q^{26} +(-24.2120 - 11.9490i) q^{27} +(1.78770 - 3.09639i) q^{28} +(-34.8032 + 32.8351i) q^{29} +(6.33066 + 7.22018i) q^{30} +(-0.786383 + 13.5017i) q^{31} +(5.19421 + 2.24057i) q^{32} +(-16.3228 + 59.1693i) q^{33} +(-2.18511 - 37.5169i) q^{34} +(1.38387 - 3.80216i) q^{35} +(-17.7707 + 2.86400i) q^{36} +(34.9752 - 12.7299i) q^{37} +(-13.0450 + 5.62705i) q^{38} +(7.18976 + 51.7409i) q^{39} +(6.22912 + 1.47633i) q^{40} +(8.80684 - 37.1590i) q^{41} +(4.66024 + 5.98398i) q^{42} +(-5.48771 - 12.7219i) q^{43} +(13.9953 + 38.4519i) q^{44} +(-19.2422 + 6.68401i) q^{45} +(56.3280 + 20.5017i) q^{46} +(-51.4277 + 2.99533i) q^{47} +(-8.54760 + 8.42250i) q^{48} +(-18.1421 + 42.0581i) q^{49} +(-28.0632 - 1.63450i) q^{50} +(75.4870 + 25.6327i) q^{51} +(23.8986 + 25.3311i) q^{52} +(-75.3752 - 43.5179i) q^{53} +(8.54641 - 37.2150i) q^{54} +(23.1537 + 40.1034i) q^{55} +(4.84397 + 1.45019i) q^{56} +(-0.654457 - 30.1302i) q^{57} +(-56.5349 - 37.1836i) q^{58} +(-3.83757 - 32.8325i) q^{59} +(-7.87096 + 11.0664i) q^{60} +(-26.8566 - 13.4879i) q^{61} +(-18.8360 + 3.32130i) q^{62} +(-15.4798 + 4.38675i) q^{63} +(-1.38919 + 7.87846i) q^{64} +(31.6123 + 23.5345i) q^{65} +(-86.7460 - 3.16417i) q^{66} +(34.5211 - 36.5902i) q^{67} +(50.9141 - 15.2427i) q^{68} +(-85.2323 + 94.3648i) q^{69} +(5.68346 + 0.664301i) q^{70} +(-30.0250 + 35.7824i) q^{71} +(-9.73687 - 23.5201i) q^{72} +(34.6422 - 29.0683i) q^{73} +(28.9244 + 43.9774i) q^{74} +(25.5992 - 53.8577i) q^{75} +(-11.9978 - 16.1159i) q^{76} +(16.4153 + 32.6856i) q^{77} +(-68.8555 + 26.7686i) q^{78} +(30.3037 - 7.18212i) q^{79} +9.05334i q^{80} +(66.3329 + 46.4860i) q^{81} +54.0065 q^{82} +(-8.40363 - 35.4577i) q^{83} +(-6.71462 + 8.36455i) q^{84} +(53.7472 - 26.9928i) q^{85} +(15.7168 - 11.7007i) q^{86} +(118.187 - 81.4641i) q^{87} +(-48.3489 + 31.7996i) q^{88} +(30.7663 + 36.6658i) q^{89} +(-15.4735 - 24.2991i) q^{90} +(23.8460 + 20.0091i) q^{91} +(-9.84146 + 84.1991i) q^{92} +(8.49738 - 39.6739i) q^{93} +(-20.8945 - 69.7925i) q^{94} +(-16.5382 - 15.6030i) q^{95} +(-14.3779 - 9.01537i) q^{96} +(-79.4489 + 106.718i) q^{97} +(-63.7927 - 11.2484i) q^{98} +(75.4181 - 167.985i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 324 q+O(q^{10}) \) Copy content Toggle raw display \( 324 q + 72 q^{18} + 108 q^{20} + 270 q^{21} + 162 q^{23} - 54 q^{27} - 162 q^{29} - 216 q^{30} - 378 q^{33} - 486 q^{35} - 180 q^{36} - 108 q^{38} + 216 q^{41} + 432 q^{45} + 324 q^{47} + 126 q^{51} - 216 q^{57} - 378 q^{59} - 540 q^{63} - 1728 q^{65} - 1008 q^{66} + 702 q^{67} - 216 q^{68} - 1872 q^{69} + 540 q^{70} - 1296 q^{71} - 576 q^{72} - 864 q^{74} - 900 q^{75} + 108 q^{76} - 864 q^{77} - 288 q^{78} + 108 q^{79} + 144 q^{81} + 432 q^{83} + 144 q^{84} - 540 q^{85} + 864 q^{86} + 2016 q^{87} - 216 q^{88} + 1782 q^{89} + 1440 q^{90} + 864 q^{92} + 2124 q^{93} - 756 q^{94} + 2808 q^{95} + 288 q^{96} - 918 q^{97} + 1296 q^{98} + 1800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{23}{54}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.326140 + 1.37609i 0.163070 + 0.688047i
\(3\) −2.96504 0.456664i −0.988346 0.152221i
\(4\) −1.78727 + 0.897598i −0.446816 + 0.224400i
\(5\) −1.81547 + 1.35157i −0.363095 + 0.270314i −0.763210 0.646151i \(-0.776378\pi\)
0.400115 + 0.916465i \(0.368970\pi\)
\(6\) −0.338606 4.22911i −0.0564344 0.704851i
\(7\) −1.49360 + 0.982359i −0.213372 + 0.140337i −0.651697 0.758480i \(-0.725942\pi\)
0.438325 + 0.898817i \(0.355572\pi\)
\(8\) −1.81808 2.16670i −0.227260 0.270838i
\(9\) 8.58292 + 2.70805i 0.953657 + 0.300895i
\(10\) −2.45198 2.05746i −0.245198 0.205746i
\(11\) 2.37524 20.3215i 0.215931 1.84741i −0.257129 0.966377i \(-0.582776\pi\)
0.473060 0.881030i \(-0.343149\pi\)
\(12\) 5.70921 1.84524i 0.475768 0.153770i
\(13\) −4.99401 16.6812i −0.384155 1.28317i −0.903495 0.428599i \(-0.859007\pi\)
0.519340 0.854568i \(-0.326178\pi\)
\(14\) −1.83894 1.73495i −0.131353 0.123925i
\(15\) 6.00016 3.17840i 0.400011 0.211893i
\(16\) 2.38863 3.20849i 0.149290 0.200531i
\(17\) −26.1697 4.61443i −1.53940 0.271437i −0.661373 0.750057i \(-0.730026\pi\)
−0.878022 + 0.478620i \(0.841137\pi\)
\(18\) −0.927299 + 12.6941i −0.0515166 + 0.705228i
\(19\) 1.74443 + 9.89314i 0.0918120 + 0.520692i 0.995678 + 0.0928755i \(0.0296059\pi\)
−0.903866 + 0.427816i \(0.859283\pi\)
\(20\) 2.03157 4.04518i 0.101578 0.202259i
\(21\) 4.87720 2.23066i 0.232248 0.106222i
\(22\) 28.7389 3.35910i 1.30631 0.152686i
\(23\) 23.2916 35.4131i 1.01268 1.53970i 0.181729 0.983349i \(-0.441831\pi\)
0.830947 0.556351i \(-0.187799\pi\)
\(24\) 4.40122 + 7.25460i 0.183384 + 0.302275i
\(25\) −5.70088 + 19.0423i −0.228035 + 0.761690i
\(26\) 21.3261 12.3126i 0.820235 0.473563i
\(27\) −24.2120 11.9490i −0.896741 0.442555i
\(28\) 1.78770 3.09639i 0.0638465 0.110585i
\(29\) −34.8032 + 32.8351i −1.20011 + 1.13225i −0.212199 + 0.977226i \(0.568063\pi\)
−0.987911 + 0.155020i \(0.950456\pi\)
\(30\) 6.33066 + 7.22018i 0.211022 + 0.240673i
\(31\) −0.786383 + 13.5017i −0.0253672 + 0.435538i 0.961583 + 0.274513i \(0.0885168\pi\)
−0.986950 + 0.161024i \(0.948520\pi\)
\(32\) 5.19421 + 2.24057i 0.162319 + 0.0700177i
\(33\) −16.3228 + 59.1693i −0.494629 + 1.79301i
\(34\) −2.18511 37.5169i −0.0642680 1.10344i
\(35\) 1.38387 3.80216i 0.0395392 0.108633i
\(36\) −17.7707 + 2.86400i −0.493630 + 0.0795557i
\(37\) 34.9752 12.7299i 0.945275 0.344052i 0.177028 0.984206i \(-0.443352\pi\)
0.768247 + 0.640154i \(0.221129\pi\)
\(38\) −13.0450 + 5.62705i −0.343288 + 0.148080i
\(39\) 7.18976 + 51.7409i 0.184353 + 1.32669i
\(40\) 6.22912 + 1.47633i 0.155728 + 0.0369082i
\(41\) 8.80684 37.1590i 0.214801 0.906317i −0.753682 0.657239i \(-0.771724\pi\)
0.968483 0.249078i \(-0.0801276\pi\)
\(42\) 4.66024 + 5.98398i 0.110958 + 0.142476i
\(43\) −5.48771 12.7219i −0.127621 0.295859i 0.842411 0.538835i \(-0.181136\pi\)
−0.970032 + 0.242976i \(0.921876\pi\)
\(44\) 13.9953 + 38.4519i 0.318076 + 0.873907i
\(45\) −19.2422 + 6.68401i −0.427604 + 0.148534i
\(46\) 56.3280 + 20.5017i 1.22452 + 0.445690i
\(47\) −51.4277 + 2.99533i −1.09421 + 0.0637303i −0.595739 0.803178i \(-0.703141\pi\)
−0.498468 + 0.866908i \(0.666104\pi\)
\(48\) −8.54760 + 8.42250i −0.178075 + 0.175469i
\(49\) −18.1421 + 42.0581i −0.370247 + 0.858328i
\(50\) −28.0632 1.63450i −0.561264 0.0326899i
\(51\) 75.4870 + 25.6327i 1.48014 + 0.502603i
\(52\) 23.8986 + 25.3311i 0.459589 + 0.487136i
\(53\) −75.3752 43.5179i −1.42217 0.821093i −0.425690 0.904869i \(-0.639969\pi\)
−0.996485 + 0.0837763i \(0.973302\pi\)
\(54\) 8.54641 37.2150i 0.158267 0.689167i
\(55\) 23.1537 + 40.1034i 0.420977 + 0.729153i
\(56\) 4.84397 + 1.45019i 0.0864994 + 0.0258962i
\(57\) −0.654457 30.1302i −0.0114817 0.528600i
\(58\) −56.5349 37.1836i −0.974740 0.641097i
\(59\) −3.83757 32.8325i −0.0650435 0.556483i −0.985991 0.166797i \(-0.946658\pi\)
0.920948 0.389686i \(-0.127416\pi\)
\(60\) −7.87096 + 11.0664i −0.131183 + 0.184440i
\(61\) −26.8566 13.4879i −0.440273 0.221113i 0.214833 0.976651i \(-0.431079\pi\)
−0.655105 + 0.755538i \(0.727376\pi\)
\(62\) −18.8360 + 3.32130i −0.303807 + 0.0535694i
\(63\) −15.4798 + 4.38675i −0.245710 + 0.0696309i
\(64\) −1.38919 + 7.87846i −0.0217060 + 0.123101i
\(65\) 31.6123 + 23.5345i 0.486343 + 0.362069i
\(66\) −86.7460 3.16417i −1.31433 0.0479419i
\(67\) 34.5211 36.5902i 0.515240 0.546123i −0.416553 0.909111i \(-0.636762\pi\)
0.931794 + 0.362988i \(0.118244\pi\)
\(68\) 50.9141 15.2427i 0.748737 0.224157i
\(69\) −85.2323 + 94.3648i −1.23525 + 1.36761i
\(70\) 5.68346 + 0.664301i 0.0811922 + 0.00949001i
\(71\) −30.0250 + 35.7824i −0.422887 + 0.503977i −0.934856 0.355027i \(-0.884472\pi\)
0.511969 + 0.859004i \(0.328916\pi\)
\(72\) −9.73687 23.5201i −0.135234 0.326668i
\(73\) 34.6422 29.0683i 0.474551 0.398196i −0.373900 0.927469i \(-0.621980\pi\)
0.848451 + 0.529273i \(0.177535\pi\)
\(74\) 28.9244 + 43.9774i 0.390870 + 0.594289i
\(75\) 25.5992 53.8577i 0.341323 0.718102i
\(76\) −11.9978 16.1159i −0.157866 0.212051i
\(77\) 16.4153 + 32.6856i 0.213186 + 0.424488i
\(78\) −68.8555 + 26.7686i −0.882762 + 0.343187i
\(79\) 30.3037 7.18212i 0.383592 0.0909129i −0.0342958 0.999412i \(-0.510919\pi\)
0.417887 + 0.908499i \(0.362771\pi\)
\(80\) 9.05334i 0.113167i
\(81\) 66.3329 + 46.4860i 0.818925 + 0.573901i
\(82\) 54.0065 0.658616
\(83\) −8.40363 35.4577i −0.101249 0.427201i 0.898687 0.438591i \(-0.144522\pi\)
−0.999935 + 0.0113902i \(0.996374\pi\)
\(84\) −6.71462 + 8.36455i −0.0799359 + 0.0995779i
\(85\) 53.7472 26.9928i 0.632319 0.317563i
\(86\) 15.7168 11.7007i 0.182754 0.136055i
\(87\) 118.187 81.4641i 1.35848 0.936369i
\(88\) −48.3489 + 31.7996i −0.549420 + 0.361359i
\(89\) 30.7663 + 36.6658i 0.345688 + 0.411975i 0.910674 0.413125i \(-0.135563\pi\)
−0.564986 + 0.825101i \(0.691118\pi\)
\(90\) −15.4735 24.2991i −0.171927 0.269990i
\(91\) 23.8460 + 20.0091i 0.262044 + 0.219881i
\(92\) −9.84146 + 84.1991i −0.106972 + 0.915207i
\(93\) 8.49738 39.6739i 0.0913697 0.426601i
\(94\) −20.8945 69.7925i −0.222282 0.742473i
\(95\) −16.5382 15.6030i −0.174087 0.164242i
\(96\) −14.3779 9.01537i −0.149769 0.0939102i
\(97\) −79.4489 + 106.718i −0.819061 + 1.10019i 0.174248 + 0.984702i \(0.444251\pi\)
−0.993309 + 0.115488i \(0.963157\pi\)
\(98\) −63.7927 11.2484i −0.650946 0.114779i
\(99\) 75.4181 167.985i 0.761799 1.69682i
\(100\) −6.90332 39.1507i −0.0690332 0.391507i
\(101\) −9.20125 + 18.3212i −0.0911015 + 0.181398i −0.934569 0.355783i \(-0.884214\pi\)
0.843467 + 0.537181i \(0.180511\pi\)
\(102\) −10.6537 + 112.237i −0.104448 + 1.10036i
\(103\) 52.4939 6.13566i 0.509650 0.0595695i 0.142618 0.989778i \(-0.454448\pi\)
0.367032 + 0.930208i \(0.380374\pi\)
\(104\) −27.0636 + 41.1482i −0.260227 + 0.395656i
\(105\) −5.83954 + 10.6416i −0.0556147 + 0.101348i
\(106\) 35.3018 117.916i 0.333036 1.11242i
\(107\) 157.896 91.1613i 1.47566 0.851975i 0.476041 0.879423i \(-0.342072\pi\)
0.999623 + 0.0274483i \(0.00873817\pi\)
\(108\) 53.9987 0.376651i 0.499988 0.00348751i
\(109\) 2.64586 4.58276i 0.0242739 0.0420437i −0.853633 0.520875i \(-0.825606\pi\)
0.877907 + 0.478831i \(0.158939\pi\)
\(110\) −47.6347 + 44.9410i −0.433043 + 0.408555i
\(111\) −109.516 + 21.7728i −0.986631 + 0.196152i
\(112\) −0.415783 + 7.13871i −0.00371235 + 0.0637385i
\(113\) 76.2715 + 32.9003i 0.674969 + 0.291153i 0.705841 0.708370i \(-0.250569\pi\)
−0.0308721 + 0.999523i \(0.509828\pi\)
\(114\) 41.2485 10.7273i 0.361829 0.0940987i
\(115\) 5.57807 + 95.7717i 0.0485049 + 0.832797i
\(116\) 32.7298 89.9244i 0.282153 0.775210i
\(117\) 2.31027 156.697i 0.0197459 1.33929i
\(118\) 43.9290 15.9888i 0.372279 0.135499i
\(119\) 43.6202 18.8159i 0.366557 0.158117i
\(120\) −17.7954 7.22198i −0.148295 0.0601832i
\(121\) −289.582 68.6323i −2.39324 0.567209i
\(122\) 9.80159 41.3562i 0.0803409 0.338985i
\(123\) −43.0818 + 106.156i −0.350259 + 0.863058i
\(124\) −10.7136 24.8369i −0.0864000 0.200298i
\(125\) −34.7398 95.4468i −0.277918 0.763575i
\(126\) −11.0851 19.8709i −0.0879773 0.157706i
\(127\) −5.62608 2.04773i −0.0442999 0.0161238i 0.319775 0.947493i \(-0.396393\pi\)
−0.364075 + 0.931370i \(0.618615\pi\)
\(128\) −11.2946 + 0.657834i −0.0882388 + 0.00513933i
\(129\) 10.4616 + 40.2271i 0.0810978 + 0.311838i
\(130\) −22.0756 + 51.1770i −0.169812 + 0.393669i
\(131\) 78.1195 + 4.54994i 0.596332 + 0.0347324i 0.353657 0.935375i \(-0.384938\pi\)
0.242675 + 0.970108i \(0.421975\pi\)
\(132\) −23.9372 120.403i −0.181342 0.912140i
\(133\) −12.3241 13.0628i −0.0926624 0.0982164i
\(134\) 61.6103 + 35.5707i 0.459778 + 0.265453i
\(135\) 60.1062 11.0312i 0.445231 0.0817123i
\(136\) 37.5805 + 65.0914i 0.276327 + 0.478613i
\(137\) −25.8036 7.72510i −0.188348 0.0563876i 0.191240 0.981543i \(-0.438749\pi\)
−0.379588 + 0.925156i \(0.623934\pi\)
\(138\) −157.652 86.5114i −1.14241 0.626894i
\(139\) −14.9901 9.85913i −0.107842 0.0709290i 0.494442 0.869211i \(-0.335372\pi\)
−0.602285 + 0.798281i \(0.705743\pi\)
\(140\) 0.939463 + 8.03762i 0.00671045 + 0.0574116i
\(141\) 153.853 + 14.6039i 1.09116 + 0.103574i
\(142\) −59.0323 29.6471i −0.415720 0.208782i
\(143\) −350.848 + 61.8640i −2.45348 + 0.432615i
\(144\) 29.1902 21.0697i 0.202710 0.146317i
\(145\) 18.8053 106.650i 0.129692 0.735519i
\(146\) 51.2989 + 38.1906i 0.351362 + 0.261580i
\(147\) 72.9984 116.419i 0.496588 0.791966i
\(148\) −51.0836 + 54.1454i −0.345159 + 0.365847i
\(149\) 255.839 76.5933i 1.71704 0.514049i 0.731264 0.682094i \(-0.238931\pi\)
0.985779 + 0.168045i \(0.0537455\pi\)
\(150\) 82.4621 + 17.6618i 0.549747 + 0.117745i
\(151\) −127.609 14.9153i −0.845091 0.0987770i −0.317482 0.948264i \(-0.602837\pi\)
−0.527609 + 0.849487i \(0.676911\pi\)
\(152\) 18.2640 21.7662i 0.120158 0.143198i
\(153\) −212.116 110.474i −1.38638 0.722054i
\(154\) −39.6247 + 33.2491i −0.257303 + 0.215903i
\(155\) −16.8208 25.5748i −0.108521 0.164999i
\(156\) −59.2926 86.0212i −0.380081 0.551418i
\(157\) 35.2216 + 47.3109i 0.224342 + 0.301343i 0.900016 0.435857i \(-0.143555\pi\)
−0.675674 + 0.737200i \(0.736147\pi\)
\(158\) 19.7665 + 39.3584i 0.125105 + 0.249104i
\(159\) 203.618 + 163.453i 1.28061 + 1.02801i
\(160\) −12.4582 + 2.95266i −0.0778640 + 0.0184541i
\(161\) 75.7738i 0.470645i
\(162\) −42.3352 + 106.441i −0.261328 + 0.657044i
\(163\) 20.8275 0.127776 0.0638879 0.997957i \(-0.479650\pi\)
0.0638879 + 0.997957i \(0.479650\pi\)
\(164\) 17.6137 + 74.3180i 0.107401 + 0.453159i
\(165\) −50.3379 129.482i −0.305078 0.784737i
\(166\) 46.0523 23.1284i 0.277424 0.139327i
\(167\) 56.0891 41.7568i 0.335863 0.250041i −0.415994 0.909368i \(-0.636566\pi\)
0.751856 + 0.659327i \(0.229159\pi\)
\(168\) −13.7003 6.51193i −0.0815494 0.0387615i
\(169\) −112.124 + 73.7450i −0.663455 + 0.436361i
\(170\) 54.6738 + 65.1577i 0.321610 + 0.383280i
\(171\) −11.8189 + 89.6360i −0.0691162 + 0.524187i
\(172\) 21.2272 + 17.8117i 0.123414 + 0.103557i
\(173\) −18.7971 + 160.819i −0.108653 + 0.929590i 0.823448 + 0.567392i \(0.192048\pi\)
−0.932101 + 0.362198i \(0.882026\pi\)
\(174\) 150.648 + 136.068i 0.865792 + 0.782002i
\(175\) −10.1915 34.0419i −0.0582370 0.194525i
\(176\) −59.5277 56.1615i −0.338226 0.319100i
\(177\) −3.61487 + 99.1021i −0.0204230 + 0.559899i
\(178\) −40.4215 + 54.2954i −0.227087 + 0.305031i
\(179\) −22.6499 3.99380i −0.126536 0.0223117i 0.110021 0.993929i \(-0.464908\pi\)
−0.236557 + 0.971618i \(0.576019\pi\)
\(180\) 28.3913 29.2179i 0.157730 0.162321i
\(181\) 44.3976 + 251.792i 0.245291 + 1.39111i 0.819816 + 0.572627i \(0.194076\pi\)
−0.574525 + 0.818487i \(0.694813\pi\)
\(182\) −19.7573 + 39.3401i −0.108557 + 0.216154i
\(183\) 73.4715 + 52.2566i 0.401484 + 0.285555i
\(184\) −119.075 + 13.9179i −0.647149 + 0.0756409i
\(185\) −46.2911 + 70.3822i −0.250222 + 0.380445i
\(186\) 57.3663 1.24605i 0.308421 0.00669921i
\(187\) −155.931 + 520.847i −0.833858 + 2.78528i
\(188\) 89.2264 51.5149i 0.474609 0.274015i
\(189\) 47.9014 5.93783i 0.253446 0.0314171i
\(190\) 16.0774 27.8469i 0.0846181 0.146563i
\(191\) −29.7463 + 28.0642i −0.155740 + 0.146933i −0.760168 0.649727i \(-0.774883\pi\)
0.604428 + 0.796660i \(0.293402\pi\)
\(192\) 7.71680 22.7256i 0.0401917 0.118362i
\(193\) 4.95855 85.1351i 0.0256920 0.441114i −0.960793 0.277265i \(-0.910572\pi\)
0.986485 0.163849i \(-0.0523910\pi\)
\(194\) −172.766 74.5240i −0.890546 0.384144i
\(195\) −82.9843 84.2168i −0.425560 0.431881i
\(196\) −5.32655 91.4533i −0.0271763 0.466598i
\(197\) 37.7841 103.811i 0.191797 0.526959i −0.806100 0.591780i \(-0.798425\pi\)
0.997897 + 0.0648213i \(0.0206477\pi\)
\(198\) 255.760 + 48.9956i 1.29172 + 0.247453i
\(199\) −211.206 + 76.8726i −1.06134 + 0.386295i −0.812930 0.582361i \(-0.802129\pi\)
−0.248406 + 0.968656i \(0.579907\pi\)
\(200\) 51.6235 22.2682i 0.258118 0.111341i
\(201\) −119.066 + 92.7270i −0.592368 + 0.461328i
\(202\) −28.2126 6.68650i −0.139666 0.0331015i
\(203\) 19.7263 83.2319i 0.0971740 0.410009i
\(204\) −157.923 + 21.9445i −0.774133 + 0.107571i
\(205\) 34.2344 + 79.3642i 0.166997 + 0.387143i
\(206\) 25.5636 + 70.2355i 0.124095 + 0.340949i
\(207\) 295.810 240.873i 1.42903 1.16364i
\(208\) −65.4503 23.8220i −0.314665 0.114529i
\(209\) 205.187 11.9508i 0.981755 0.0571807i
\(210\) −16.5483 4.56511i −0.0788015 0.0217386i
\(211\) 93.5866 216.958i 0.443538 1.02824i −0.539022 0.842292i \(-0.681206\pi\)
0.982560 0.185946i \(-0.0595349\pi\)
\(212\) 173.777 + 10.1214i 0.819704 + 0.0477423i
\(213\) 105.366 92.3849i 0.494675 0.433732i
\(214\) 176.943 + 187.548i 0.826835 + 0.876394i
\(215\) 27.1574 + 15.6793i 0.126313 + 0.0729271i
\(216\) 18.1294 + 74.1844i 0.0839326 + 0.343446i
\(217\) −12.0889 20.9387i −0.0557094 0.0964915i
\(218\) 7.16922 + 2.14632i 0.0328863 + 0.00984553i
\(219\) −115.990 + 70.3688i −0.529635 + 0.321319i
\(220\) −77.3786 50.8927i −0.351721 0.231330i
\(221\) 53.7179 + 459.586i 0.243068 + 2.07958i
\(222\) −65.6790 143.603i −0.295851 0.646862i
\(223\) −235.958 118.503i −1.05811 0.531402i −0.167358 0.985896i \(-0.553524\pi\)
−0.890749 + 0.454495i \(0.849820\pi\)
\(224\) −9.95914 + 1.75606i −0.0444604 + 0.00783958i
\(225\) −100.498 + 148.000i −0.446656 + 0.657777i
\(226\) −20.3987 + 115.687i −0.0902598 + 0.511889i
\(227\) 185.906 + 138.402i 0.818968 + 0.609699i 0.922967 0.384878i \(-0.125757\pi\)
−0.103999 + 0.994577i \(0.533164\pi\)
\(228\) 28.2145 + 53.2632i 0.123748 + 0.233610i
\(229\) 205.891 218.231i 0.899085 0.952975i −0.100032 0.994984i \(-0.531894\pi\)
0.999117 + 0.0420095i \(0.0133760\pi\)
\(230\) −129.972 + 38.9109i −0.565094 + 0.169178i
\(231\) −33.7457 104.410i −0.146085 0.451993i
\(232\) 134.419 + 15.7113i 0.579392 + 0.0677212i
\(233\) −269.919 + 321.677i −1.15845 + 1.38059i −0.247084 + 0.968994i \(0.579472\pi\)
−0.911367 + 0.411595i \(0.864972\pi\)
\(234\) 216.383 47.9261i 0.924715 0.204812i
\(235\) 89.3173 74.9461i 0.380074 0.318920i
\(236\) 36.3291 + 55.2358i 0.153937 + 0.234050i
\(237\) −93.1316 + 7.45664i −0.392960 + 0.0314626i
\(238\) 40.1188 + 53.8889i 0.168566 + 0.226424i
\(239\) 53.9739 + 107.471i 0.225832 + 0.449669i 0.977803 0.209528i \(-0.0671927\pi\)
−0.751971 + 0.659197i \(0.770896\pi\)
\(240\) 4.13433 26.8435i 0.0172264 0.111848i
\(241\) 302.001 71.5756i 1.25312 0.296994i 0.450116 0.892970i \(-0.351383\pi\)
0.803002 + 0.595976i \(0.203235\pi\)
\(242\) 420.876i 1.73916i
\(243\) −175.451 168.125i −0.722021 0.691871i
\(244\) 60.1066 0.246339
\(245\) −23.9080 100.876i −0.0975835 0.411737i
\(246\) −160.131 24.6628i −0.650941 0.100255i
\(247\) 156.318 78.5056i 0.632865 0.317837i
\(248\) 30.6838 22.8432i 0.123725 0.0921098i
\(249\) 8.72484 + 108.971i 0.0350395 + 0.437635i
\(250\) 120.014 78.9342i 0.480055 0.315737i
\(251\) −215.361 256.658i −0.858014 1.02254i −0.999469 0.0325963i \(-0.989622\pi\)
0.141455 0.989945i \(-0.454822\pi\)
\(252\) 23.7289 21.7349i 0.0941623 0.0862495i
\(253\) −664.323 557.434i −2.62578 2.20329i
\(254\) 0.982972 8.40986i 0.00386997 0.0331097i
\(255\) −171.689 + 55.4904i −0.673291 + 0.217610i
\(256\) −4.58885 15.3278i −0.0179252 0.0598743i
\(257\) −288.522 272.206i −1.12265 1.05917i −0.997753 0.0669985i \(-0.978658\pi\)
−0.124899 0.992169i \(-0.539861\pi\)
\(258\) −51.9443 + 27.5158i −0.201334 + 0.106651i
\(259\) −39.7337 + 53.3716i −0.153412 + 0.206068i
\(260\) −77.6240 13.6872i −0.298554 0.0526431i
\(261\) −387.632 + 187.572i −1.48518 + 0.718668i
\(262\) 19.2168 + 108.984i 0.0733464 + 0.415968i
\(263\) −15.1270 + 30.1203i −0.0575170 + 0.114526i −0.920555 0.390614i \(-0.872263\pi\)
0.863038 + 0.505140i \(0.168559\pi\)
\(264\) 157.878 72.2079i 0.598024 0.273515i
\(265\) 195.659 22.8693i 0.738337 0.0862992i
\(266\) 13.9562 21.2194i 0.0524670 0.0797722i
\(267\) −74.4792 122.765i −0.278948 0.459796i
\(268\) −28.8550 + 96.3826i −0.107668 + 0.359636i
\(269\) −61.2007 + 35.3343i −0.227512 + 0.131354i −0.609424 0.792845i \(-0.708599\pi\)
0.381912 + 0.924199i \(0.375266\pi\)
\(270\) 34.7829 + 79.1140i 0.128826 + 0.293015i
\(271\) −9.27388 + 16.0628i −0.0342209 + 0.0592724i −0.882629 0.470071i \(-0.844228\pi\)
0.848408 + 0.529343i \(0.177562\pi\)
\(272\) −77.3153 + 72.9432i −0.284247 + 0.268173i
\(273\) −61.5668 70.2175i −0.225519 0.257207i
\(274\) 2.21486 38.0277i 0.00808343 0.138787i
\(275\) 373.426 + 161.080i 1.35791 + 0.585746i
\(276\) 67.6310 245.159i 0.245040 0.888258i
\(277\) −11.6496 200.015i −0.0420562 0.722077i −0.951764 0.306830i \(-0.900732\pi\)
0.909708 0.415248i \(-0.136305\pi\)
\(278\) 8.67822 23.8432i 0.0312166 0.0857669i
\(279\) −43.3127 + 113.754i −0.155243 + 0.407721i
\(280\) −10.7541 + 3.91418i −0.0384076 + 0.0139792i
\(281\) 459.962 198.408i 1.63687 0.706079i 0.638876 0.769310i \(-0.279400\pi\)
0.997999 + 0.0632308i \(0.0201404\pi\)
\(282\) 30.0813 + 216.479i 0.106671 + 0.767657i
\(283\) 72.8688 + 17.2702i 0.257487 + 0.0610255i 0.357332 0.933978i \(-0.383687\pi\)
−0.0998450 + 0.995003i \(0.531835\pi\)
\(284\) 21.5444 90.9030i 0.0758606 0.320081i
\(285\) 41.9112 + 53.8160i 0.147057 + 0.188828i
\(286\) −199.556 462.623i −0.697749 1.61756i
\(287\) 23.3495 + 64.1523i 0.0813573 + 0.223527i
\(288\) 38.5139 + 33.2968i 0.133729 + 0.115614i
\(289\) 391.990 + 142.673i 1.35637 + 0.493678i
\(290\) 152.894 8.90505i 0.527220 0.0307071i
\(291\) 284.304 280.143i 0.976988 0.962690i
\(292\) −35.8232 + 83.0476i −0.122682 + 0.284409i
\(293\) −199.054 11.5936i −0.679365 0.0395685i −0.285007 0.958525i \(-0.591996\pi\)
−0.394358 + 0.918957i \(0.629033\pi\)
\(294\) 184.011 + 62.4837i 0.625888 + 0.212530i
\(295\) 51.3424 + 54.4197i 0.174042 + 0.184474i
\(296\) −91.1695 52.6368i −0.308005 0.177827i
\(297\) −300.331 + 463.642i −1.01121 + 1.56109i
\(298\) 188.839 + 327.079i 0.633688 + 1.09758i
\(299\) −707.050 211.677i −2.36472 0.707950i
\(300\) 2.58992 + 119.236i 0.00863306 + 0.397453i
\(301\) 20.6940 + 13.6106i 0.0687507 + 0.0452181i
\(302\) −21.0935 180.466i −0.0698459 0.597570i
\(303\) 35.6487 50.1212i 0.117652 0.165416i
\(304\) 35.9089 + 18.0341i 0.118121 + 0.0593228i
\(305\) 66.9873 11.8117i 0.219631 0.0387268i
\(306\) 82.8432 327.922i 0.270729 1.07164i
\(307\) 53.4401 303.074i 0.174072 0.987211i −0.765138 0.643867i \(-0.777329\pi\)
0.939210 0.343344i \(-0.111560\pi\)
\(308\) −58.6771 43.6834i −0.190510 0.141829i
\(309\) −158.449 5.77961i −0.512778 0.0187042i
\(310\) 29.7073 31.4879i 0.0958301 0.101574i
\(311\) −223.749 + 66.9859i −0.719449 + 0.215389i −0.625540 0.780192i \(-0.715121\pi\)
−0.0939086 + 0.995581i \(0.529936\pi\)
\(312\) 99.0355 109.647i 0.317422 0.351433i
\(313\) 152.969 + 17.8795i 0.488720 + 0.0571231i 0.356884 0.934149i \(-0.383839\pi\)
0.131835 + 0.991272i \(0.457913\pi\)
\(314\) −53.6170 + 63.8982i −0.170755 + 0.203497i
\(315\) 22.1741 28.8860i 0.0703939 0.0917016i
\(316\) −47.7142 + 40.0369i −0.150994 + 0.126699i
\(317\) −177.662 270.122i −0.560448 0.852120i 0.438464 0.898749i \(-0.355523\pi\)
−0.998912 + 0.0466286i \(0.985152\pi\)
\(318\) −158.519 + 333.505i −0.498489 + 1.04876i
\(319\) 584.593 + 785.244i 1.83258 + 2.46158i
\(320\) −8.12626 16.1807i −0.0253946 0.0505647i
\(321\) −509.798 + 198.191i −1.58816 + 0.617419i
\(322\) −104.272 + 24.7129i −0.323826 + 0.0767481i
\(323\) 266.950i 0.826472i
\(324\) −160.280 23.5425i −0.494692 0.0726619i
\(325\) 346.117 1.06498
\(326\) 6.79267 + 28.6605i 0.0208364 + 0.0879157i
\(327\) −9.93785 + 12.3798i −0.0303910 + 0.0378587i
\(328\) −96.5240 + 48.4762i −0.294280 + 0.147793i
\(329\) 73.8702 54.9943i 0.224529 0.167156i
\(330\) 161.762 111.499i 0.490187 0.337875i
\(331\) 446.745 293.829i 1.34968 0.887699i 0.350869 0.936424i \(-0.385886\pi\)
0.998812 + 0.0487250i \(0.0155158\pi\)
\(332\) 46.8463 + 55.8292i 0.141103 + 0.168160i
\(333\) 334.662 14.5453i 1.00499 0.0436795i
\(334\) 75.7541 + 63.5652i 0.226809 + 0.190315i
\(335\) −13.2179 + 113.086i −0.0394564 + 0.337571i
\(336\) 4.49280 20.9767i 0.0133714 0.0624306i
\(337\) −112.773 376.688i −0.334638 1.11777i −0.945388 0.325946i \(-0.894317\pi\)
0.610750 0.791823i \(-0.290868\pi\)
\(338\) −138.048 130.242i −0.408426 0.385330i
\(339\) −211.124 132.381i −0.622784 0.390505i
\(340\) −71.8317 + 96.4867i −0.211270 + 0.283784i
\(341\) 272.506 + 48.0502i 0.799138 + 0.140910i
\(342\) −127.202 + 12.9700i −0.371936 + 0.0379241i
\(343\) −29.4302 166.907i −0.0858022 0.486609i
\(344\) −17.5876 + 35.0197i −0.0511266 + 0.101801i
\(345\) 27.1963 286.514i 0.0788298 0.830476i
\(346\) −227.433 + 26.5830i −0.657319 + 0.0768296i
\(347\) −71.1228 + 108.137i −0.204965 + 0.311634i −0.923312 0.384051i \(-0.874529\pi\)
0.718347 + 0.695685i \(0.244899\pi\)
\(348\) −138.110 + 251.683i −0.396869 + 0.723227i
\(349\) 121.056 404.355i 0.346865 1.15861i −0.589555 0.807728i \(-0.700697\pi\)
0.936420 0.350881i \(-0.114118\pi\)
\(350\) 43.5210 25.1269i 0.124346 0.0717910i
\(351\) −78.4080 + 463.558i −0.223385 + 1.32068i
\(352\) 57.8691 100.232i 0.164401 0.284751i
\(353\) 68.9599 65.0603i 0.195354 0.184307i −0.582349 0.812939i \(-0.697866\pi\)
0.777703 + 0.628632i \(0.216385\pi\)
\(354\) −137.553 + 27.3468i −0.388567 + 0.0772507i
\(355\) 6.14717 105.543i 0.0173160 0.297304i
\(356\) −87.8987 37.9158i −0.246906 0.106505i
\(357\) −137.928 + 35.8702i −0.386354 + 0.100477i
\(358\) −1.89122 32.4710i −0.00528273 0.0907010i
\(359\) −62.4343 + 171.537i −0.173912 + 0.477819i −0.995771 0.0918723i \(-0.970715\pi\)
0.821859 + 0.569691i \(0.192937\pi\)
\(360\) 49.4660 + 29.5400i 0.137406 + 0.0820555i
\(361\) 244.398 88.9535i 0.677002 0.246409i
\(362\) −332.009 + 143.215i −0.917151 + 0.395621i
\(363\) 827.281 + 335.739i 2.27901 + 0.924902i
\(364\) −60.5793 14.3575i −0.166427 0.0394438i
\(365\) −23.6042 + 99.5941i −0.0646691 + 0.272861i
\(366\) −47.9480 + 118.147i −0.131005 + 0.322805i
\(367\) 78.8448 + 182.783i 0.214836 + 0.498046i 0.991221 0.132213i \(-0.0422082\pi\)
−0.776385 + 0.630259i \(0.782949\pi\)
\(368\) −57.9876 159.320i −0.157575 0.432934i
\(369\) 176.217 295.083i 0.477553 0.799683i
\(370\) −111.950 40.7464i −0.302567 0.110126i
\(371\) 155.331 9.04700i 0.418682 0.0243854i
\(372\) 20.4241 + 78.5350i 0.0549036 + 0.211116i
\(373\) 44.7434 103.727i 0.119956 0.278088i −0.847650 0.530556i \(-0.821983\pi\)
0.967605 + 0.252468i \(0.0812423\pi\)
\(374\) −767.590 44.7070i −2.05238 0.119537i
\(375\) 59.4178 + 298.868i 0.158447 + 0.796981i
\(376\) 99.9896 + 105.983i 0.265930 + 0.281869i
\(377\) 721.536 + 416.579i 1.91389 + 1.10498i
\(378\) 23.7936 + 63.9802i 0.0629459 + 0.169260i
\(379\) −106.147 183.852i −0.280071 0.485098i 0.691331 0.722539i \(-0.257025\pi\)
−0.971402 + 0.237441i \(0.923691\pi\)
\(380\) 43.5635 + 13.0420i 0.114641 + 0.0343212i
\(381\) 15.7464 + 8.64082i 0.0413292 + 0.0226793i
\(382\) −48.3204 31.7808i −0.126493 0.0831958i
\(383\) −26.5379 227.046i −0.0692895 0.592810i −0.982625 0.185602i \(-0.940577\pi\)
0.913336 0.407208i \(-0.133498\pi\)
\(384\) 33.7892 + 3.20732i 0.0879928 + 0.00835239i
\(385\) −73.9784 37.1534i −0.192152 0.0965022i
\(386\) 118.771 20.9425i 0.307697 0.0542552i
\(387\) −12.6489 124.052i −0.0326844 0.320549i
\(388\) 46.2060 262.047i 0.119088 0.675380i
\(389\) 356.273 + 265.236i 0.915870 + 0.681840i 0.948212 0.317637i \(-0.102889\pi\)
−0.0323428 + 0.999477i \(0.510297\pi\)
\(390\) 88.8256 141.661i 0.227758 0.363232i
\(391\) −772.945 + 819.274i −1.97684 + 2.09533i
\(392\) 124.111 37.1564i 0.316610 0.0947867i
\(393\) −229.550 49.1651i −0.584096 0.125102i
\(394\) 155.176 + 18.1375i 0.393848 + 0.0460343i
\(395\) −45.3085 + 53.9965i −0.114705 + 0.136700i
\(396\) 15.9911 + 367.929i 0.0403816 + 0.929115i
\(397\) −499.331 + 418.989i −1.25776 + 1.05539i −0.261845 + 0.965110i \(0.584331\pi\)
−0.995917 + 0.0902772i \(0.971225\pi\)
\(398\) −174.667 265.568i −0.438861 0.667255i
\(399\) 30.5761 + 44.3596i 0.0766319 + 0.111177i
\(400\) 47.4796 + 63.7762i 0.118699 + 0.159441i
\(401\) 185.124 + 368.611i 0.461655 + 0.919231i 0.997204 + 0.0747265i \(0.0238084\pi\)
−0.535549 + 0.844504i \(0.679895\pi\)
\(402\) −166.433 133.604i −0.414013 0.332348i
\(403\) 229.151 54.3098i 0.568613 0.134764i
\(404\) 41.0039i 0.101495i
\(405\) −183.255 + 5.25951i −0.452481 + 0.0129864i
\(406\) 120.968 0.297952
\(407\) −175.616 740.984i −0.431490 1.82060i
\(408\) −81.7028 210.160i −0.200252 0.515098i
\(409\) 497.114 249.660i 1.21544 0.610416i 0.278676 0.960385i \(-0.410104\pi\)
0.936761 + 0.349969i \(0.113808\pi\)
\(410\) −98.0474 + 72.9936i −0.239140 + 0.178033i
\(411\) 72.9810 + 34.6888i 0.177569 + 0.0844010i
\(412\) −88.3132 + 58.0845i −0.214353 + 0.140982i
\(413\) 37.9851 + 45.2688i 0.0919735 + 0.109610i
\(414\) 427.939 + 328.504i 1.03367 + 0.793488i
\(415\) 63.1801 + 53.0144i 0.152241 + 0.127746i
\(416\) 11.4353 97.8350i 0.0274886 0.235180i
\(417\) 39.9439 + 36.0781i 0.0957887 + 0.0865183i
\(418\) 83.3650 + 278.459i 0.199438 + 0.666169i
\(419\) −190.009 179.264i −0.453481 0.427837i 0.425307 0.905049i \(-0.360166\pi\)
−0.878788 + 0.477212i \(0.841648\pi\)
\(420\) 0.884946 24.2609i 0.00210701 0.0577640i
\(421\) −355.348 + 477.315i −0.844056 + 1.13376i 0.145463 + 0.989364i \(0.453533\pi\)
−0.989519 + 0.144400i \(0.953875\pi\)
\(422\) 329.077 + 58.0252i 0.779803 + 0.137500i
\(423\) −449.512 113.560i −1.06267 0.268464i
\(424\) 42.7478 + 242.435i 0.100820 + 0.571780i
\(425\) 237.060 472.024i 0.557787 1.11065i
\(426\) 161.494 + 114.863i 0.379094 + 0.269631i
\(427\) 53.3631 6.23725i 0.124972 0.0146072i
\(428\) −200.376 + 304.657i −0.468168 + 0.711815i
\(429\) 1068.53 23.2095i 2.49074 0.0541014i
\(430\) −12.7191 + 42.4847i −0.0295793 + 0.0988017i
\(431\) −482.077 + 278.327i −1.11851 + 0.645770i −0.941019 0.338353i \(-0.890130\pi\)
−0.177488 + 0.984123i \(0.556797\pi\)
\(432\) −96.1719 + 49.1423i −0.222620 + 0.113755i
\(433\) 16.8025 29.1028i 0.0388049 0.0672121i −0.845971 0.533229i \(-0.820978\pi\)
0.884776 + 0.466017i \(0.154312\pi\)
\(434\) 24.8709 23.4644i 0.0573061 0.0540656i
\(435\) −104.462 + 307.635i −0.240142 + 0.707206i
\(436\) −0.615372 + 10.5655i −0.00141140 + 0.0242329i
\(437\) 390.977 + 168.651i 0.894685 + 0.385929i
\(438\) −134.663 136.663i −0.307450 0.312016i
\(439\) 2.84104 + 48.7787i 0.00647161 + 0.111113i 0.999997 0.00249813i \(-0.000795180\pi\)
−0.993525 + 0.113611i \(0.963758\pi\)
\(440\) 44.7968 123.078i 0.101811 0.279723i
\(441\) −269.607 + 311.851i −0.611355 + 0.707146i
\(442\) −614.914 + 223.810i −1.39121 + 0.506358i
\(443\) −416.753 + 179.770i −0.940752 + 0.405801i −0.810539 0.585685i \(-0.800826\pi\)
−0.130214 + 0.991486i \(0.541566\pi\)
\(444\) 176.191 137.215i 0.396827 0.309043i
\(445\) −105.412 24.9830i −0.236880 0.0561417i
\(446\) 86.1152 363.349i 0.193083 0.814683i
\(447\) −793.551 + 110.270i −1.77528 + 0.246688i
\(448\) −5.66458 13.1320i −0.0126442 0.0293125i
\(449\) −13.0978 35.9860i −0.0291711 0.0801469i 0.924252 0.381782i \(-0.124690\pi\)
−0.953423 + 0.301636i \(0.902467\pi\)
\(450\) −236.438 90.0254i −0.525418 0.200056i
\(451\) −734.208 267.230i −1.62795 0.592527i
\(452\) −165.849 + 9.65959i −0.366922 + 0.0213708i
\(453\) 371.554 + 102.499i 0.820207 + 0.226267i
\(454\) −129.822 + 300.962i −0.285952 + 0.662912i
\(455\) −70.3355 4.09658i −0.154583 0.00900346i
\(456\) −64.0932 + 56.1970i −0.140555 + 0.123239i
\(457\) 100.924 + 106.973i 0.220839 + 0.234076i 0.828316 0.560262i \(-0.189299\pi\)
−0.607476 + 0.794338i \(0.707818\pi\)
\(458\) 367.456 + 212.151i 0.802305 + 0.463211i
\(459\) 578.484 + 424.426i 1.26031 + 0.924676i
\(460\) −95.9340 166.163i −0.208552 0.361223i
\(461\) 57.9071 + 17.3363i 0.125612 + 0.0376058i 0.348992 0.937126i \(-0.386524\pi\)
−0.223380 + 0.974731i \(0.571709\pi\)
\(462\) 132.673 80.4897i 0.287170 0.174220i
\(463\) 188.212 + 123.789i 0.406506 + 0.267363i 0.736253 0.676706i \(-0.236593\pi\)
−0.329748 + 0.944069i \(0.606964\pi\)
\(464\) 22.2191 + 190.097i 0.0478861 + 0.409692i
\(465\) 38.1952 + 83.5117i 0.0821403 + 0.179595i
\(466\) −530.689 266.522i −1.13882 0.571936i
\(467\) −665.634 + 117.369i −1.42534 + 0.251326i −0.832514 0.554004i \(-0.813099\pi\)
−0.592827 + 0.805330i \(0.701988\pi\)
\(468\) 136.522 + 282.133i 0.291714 + 0.602848i
\(469\) −15.6161 + 88.5634i −0.0332966 + 0.188835i
\(470\) 132.263 + 98.4660i 0.281410 + 0.209502i
\(471\) −82.8283 156.363i −0.175856 0.331981i
\(472\) −64.1612 + 68.0069i −0.135935 + 0.144082i
\(473\) −271.563 + 81.3007i −0.574129 + 0.171883i
\(474\) −40.6350 125.726i −0.0857278 0.265244i
\(475\) −198.333 23.1818i −0.417542 0.0488037i
\(476\) −61.0718 + 72.7825i −0.128302 + 0.152904i
\(477\) −529.091 577.631i −1.10920 1.21097i
\(478\) −130.287 + 109.324i −0.272567 + 0.228711i
\(479\) 84.8402 + 128.993i 0.177119 + 0.269297i 0.913126 0.407677i \(-0.133661\pi\)
−0.736007 + 0.676974i \(0.763291\pi\)
\(480\) 38.2875 3.06552i 0.0797657 0.00638649i
\(481\) −387.017 519.854i −0.804608 1.08078i
\(482\) 196.990 + 392.238i 0.408692 + 0.813773i
\(483\) 34.6032 224.672i 0.0716421 0.465160i
\(484\) 579.165 137.265i 1.19662 0.283605i
\(485\) 301.125i 0.620877i
\(486\) 174.133 296.269i 0.358299 0.609608i
\(487\) 60.8259 0.124899 0.0624496 0.998048i \(-0.480109\pi\)
0.0624496 + 0.998048i \(0.480109\pi\)
\(488\) 19.6032 + 82.7123i 0.0401705 + 0.169492i
\(489\) −61.7542 9.51115i −0.126287 0.0194502i
\(490\) 131.017 65.7992i 0.267381 0.134284i
\(491\) −51.4622 + 38.3122i −0.104811 + 0.0780290i −0.648288 0.761395i \(-0.724515\pi\)
0.543477 + 0.839424i \(0.317107\pi\)
\(492\) −18.2869 228.399i −0.0371686 0.464226i
\(493\) 1062.31 698.689i 2.15478 1.41722i
\(494\) 159.012 + 189.504i 0.321888 + 0.383611i
\(495\) 90.1243 + 406.906i 0.182069 + 0.822032i
\(496\) 41.4416 + 34.7737i 0.0835517 + 0.0701082i
\(497\) 9.69430 82.9400i 0.0195056 0.166881i
\(498\) −147.109 + 47.5460i −0.295399 + 0.0954740i
\(499\) 60.8079 + 203.113i 0.121860 + 0.407039i 0.997051 0.0767369i \(-0.0244501\pi\)
−0.875192 + 0.483776i \(0.839265\pi\)
\(500\) 147.762 + 139.406i 0.295524 + 0.278813i
\(501\) −185.375 + 98.1966i −0.370010 + 0.196001i
\(502\) 282.947 380.064i 0.563640 0.757099i
\(503\) 752.605 + 132.705i 1.49623 + 0.263826i 0.861044 0.508531i \(-0.169811\pi\)
0.635188 + 0.772357i \(0.280922\pi\)
\(504\) 37.6482 + 25.5646i 0.0746987 + 0.0507233i
\(505\) −8.05775 45.6978i −0.0159559 0.0904906i
\(506\) 550.418 1095.97i 1.08778 2.16595i
\(507\) 366.128 167.454i 0.722147 0.330284i
\(508\) 11.8933 1.39013i 0.0234121 0.00273648i
\(509\) −127.404 + 193.708i −0.250302 + 0.380566i −0.938682 0.344785i \(-0.887952\pi\)
0.688380 + 0.725351i \(0.258322\pi\)
\(510\) −132.355 218.163i −0.259519 0.427770i
\(511\) −23.1863 + 77.4476i −0.0453744 + 0.151561i
\(512\) 19.5959 11.3137i 0.0382733 0.0220971i
\(513\) 75.9769 260.377i 0.148103 0.507558i
\(514\) 280.483 485.810i 0.545686 0.945156i
\(515\) −87.0086 + 82.0884i −0.168949 + 0.159395i
\(516\) −54.8055 62.5061i −0.106212 0.121136i
\(517\) −61.2838 + 1052.20i −0.118537 + 2.03521i
\(518\) −86.4031 37.2707i −0.166801 0.0719511i
\(519\) 129.174 468.251i 0.248891 0.902218i
\(520\) −6.48143 111.282i −0.0124643 0.214003i
\(521\) 216.439 594.662i 0.415430 1.14139i −0.538832 0.842413i \(-0.681134\pi\)
0.954262 0.298972i \(-0.0966436\pi\)
\(522\) −384.539 472.243i −0.736666 0.904681i
\(523\) −261.032 + 95.0079i −0.499105 + 0.181659i −0.579292 0.815120i \(-0.696671\pi\)
0.0801862 + 0.996780i \(0.474448\pi\)
\(524\) −143.704 + 61.9880i −0.274245 + 0.118298i
\(525\) 14.6724 + 105.590i 0.0279475 + 0.201123i
\(526\) −46.3818 10.9927i −0.0881784 0.0208987i
\(527\) 82.8819 349.706i 0.157271 0.663579i
\(528\) 150.855 + 193.705i 0.285711 + 0.366866i
\(529\) −502.064 1163.92i −0.949082 2.20022i
\(530\) 95.2826 + 261.787i 0.179778 + 0.493937i
\(531\) 55.9746 292.191i 0.105413 0.550265i
\(532\) 33.7516 + 12.2846i 0.0634428 + 0.0230913i
\(533\) −663.837 + 38.6641i −1.24547 + 0.0725405i
\(534\) 144.646 142.529i 0.270873 0.266908i
\(535\) −163.445 + 378.908i −0.305505 + 0.708240i
\(536\) −142.042 8.27302i −0.265004 0.0154347i
\(537\) 65.3341 + 22.1852i 0.121665 + 0.0413132i
\(538\) −68.5832 72.6940i −0.127478 0.135119i
\(539\) 811.591 + 468.572i 1.50573 + 0.869336i
\(540\) −97.5241 + 73.6668i −0.180600 + 0.136420i
\(541\) −49.9183 86.4611i −0.0922705 0.159817i 0.816196 0.577776i \(-0.196079\pi\)
−0.908466 + 0.417958i \(0.862746\pi\)
\(542\) −25.1285 7.52299i −0.0463626 0.0138800i
\(543\) −16.6567 766.847i −0.0306753 1.41224i
\(544\) −125.592 82.6033i −0.230868 0.151844i
\(545\) 1.39044 + 11.8959i 0.00255126 + 0.0218274i
\(546\) 76.5464 107.622i 0.140195 0.197111i
\(547\) 306.684 + 154.023i 0.560666 + 0.281577i 0.706478 0.707735i \(-0.250283\pi\)
−0.145812 + 0.989312i \(0.546579\pi\)
\(548\) 53.0520 9.35450i 0.0968102 0.0170703i
\(549\) −193.982 188.495i −0.353337 0.343342i
\(550\) −99.8723 + 566.404i −0.181586 + 1.02982i
\(551\) −385.554 287.035i −0.699736 0.520934i
\(552\) 359.419 + 13.1103i 0.651122 + 0.0237505i
\(553\) −38.2064 + 40.4964i −0.0690893 + 0.0732303i
\(554\) 271.441 81.2640i 0.489965 0.146686i
\(555\) 169.396 187.547i 0.305218 0.337922i
\(556\) 35.6408 + 4.16581i 0.0641022 + 0.00749247i
\(557\) −106.393 + 126.794i −0.191010 + 0.227637i −0.853047 0.521834i \(-0.825248\pi\)
0.662036 + 0.749472i \(0.269692\pi\)
\(558\) −170.662 22.5025i −0.305846 0.0403271i
\(559\) −184.811 + 155.075i −0.330610 + 0.277415i
\(560\) −8.89363 13.5221i −0.0158815 0.0241466i
\(561\) 700.195 1473.12i 1.24812 2.62589i
\(562\) 423.040 + 568.242i 0.752740 + 1.01111i
\(563\) −432.361 860.901i −0.767959 1.52913i −0.846601 0.532228i \(-0.821355\pi\)
0.0786423 0.996903i \(-0.474942\pi\)
\(564\) −288.085 + 111.997i −0.510789 + 0.198577i
\(565\) −182.936 + 43.3566i −0.323780 + 0.0767374i
\(566\) 105.907i 0.187114i
\(567\) −144.741 4.26892i −0.255275 0.00752896i
\(568\) 132.117 0.232601
\(569\) 117.458 + 495.596i 0.206429 + 0.870994i 0.973363 + 0.229268i \(0.0736332\pi\)
−0.766934 + 0.641726i \(0.778219\pi\)
\(570\) −60.3869 + 75.2253i −0.105942 + 0.131974i
\(571\) 10.3335 5.18967i 0.0180972 0.00908874i −0.439728 0.898131i \(-0.644925\pi\)
0.457825 + 0.889042i \(0.348629\pi\)
\(572\) 571.530 425.488i 0.999178 0.743860i
\(573\) 101.015 69.6273i 0.176291 0.121514i
\(574\) −80.6643 + 53.0538i −0.140530 + 0.0924282i
\(575\) 541.563 + 645.410i 0.941849 + 1.12245i
\(576\) −33.2585 + 63.8582i −0.0577405 + 0.110865i
\(577\) −193.333 162.226i −0.335066 0.281154i 0.459694 0.888077i \(-0.347959\pi\)
−0.794760 + 0.606923i \(0.792403\pi\)
\(578\) −68.4873 + 585.947i −0.118490 + 1.01375i
\(579\) −53.5804 + 250.164i −0.0925396 + 0.432063i
\(580\) 62.1190 + 207.492i 0.107102 + 0.357745i
\(581\) 47.3839 + 44.7044i 0.0815557 + 0.0769439i
\(582\) 478.226 + 299.862i 0.821693 + 0.515228i
\(583\) −1063.38 + 1428.37i −1.82398 + 2.45004i
\(584\) −125.965 22.2110i −0.215693 0.0380325i
\(585\) 207.593 + 287.602i 0.354860 + 0.491627i
\(586\) −48.9657 277.698i −0.0835591 0.473887i
\(587\) 102.805 204.701i 0.175136 0.348724i −0.788889 0.614535i \(-0.789344\pi\)
0.964025 + 0.265811i \(0.0856398\pi\)
\(588\) −25.9700 + 273.595i −0.0441666 + 0.465297i
\(589\) −134.946 + 15.7729i −0.229110 + 0.0267791i
\(590\) −58.1418 + 88.4004i −0.0985455 + 0.149831i
\(591\) −159.438 + 290.549i −0.269776 + 0.491622i
\(592\) 42.6991 142.625i 0.0721268 0.240920i
\(593\) 391.301 225.918i 0.659868 0.380975i −0.132359 0.991202i \(-0.542255\pi\)
0.792226 + 0.610227i \(0.208922\pi\)
\(594\) −735.965 262.070i −1.23900 0.441196i
\(595\) −53.7603 + 93.1156i −0.0903535 + 0.156497i
\(596\) −388.503 + 366.534i −0.651851 + 0.614989i
\(597\) 661.339 131.480i 1.10777 0.220235i
\(598\) 60.6898 1042.00i 0.101488 1.74248i
\(599\) 88.2093 + 38.0498i 0.147261 + 0.0635222i 0.468435 0.883498i \(-0.344818\pi\)
−0.321174 + 0.947020i \(0.604077\pi\)
\(600\) −163.235 + 42.4515i −0.272058 + 0.0707526i
\(601\) −4.75091 81.5700i −0.00790501 0.135724i −0.999951 0.00985159i \(-0.996864\pi\)
0.992046 0.125872i \(-0.0401729\pi\)
\(602\) −11.9804 + 32.9158i −0.0199010 + 0.0546774i
\(603\) 395.380 220.566i 0.655688 0.365781i
\(604\) 241.459 87.8838i 0.399766 0.145503i
\(605\) 618.490 266.791i 1.02230 0.440976i
\(606\) 80.5979 + 32.7094i 0.133000 + 0.0539759i
\(607\) −382.402 90.6309i −0.629986 0.149309i −0.0967951 0.995304i \(-0.530859\pi\)
−0.533191 + 0.845995i \(0.679007\pi\)
\(608\) −13.1053 + 55.2956i −0.0215548 + 0.0909467i
\(609\) −96.4983 + 237.778i −0.158454 + 0.390439i
\(610\) 38.1012 + 88.3285i 0.0624610 + 0.144801i
\(611\) 306.796 + 842.916i 0.502122 + 1.37957i
\(612\) 478.270 + 7.05140i 0.781487 + 0.0115219i
\(613\) 481.245 + 175.159i 0.785065 + 0.285740i 0.703283 0.710910i \(-0.251717\pi\)
0.0817818 + 0.996650i \(0.473939\pi\)
\(614\) 434.487 25.3060i 0.707633 0.0412149i
\(615\) −65.2635 250.952i −0.106120 0.408052i
\(616\) 40.9756 94.9920i 0.0665188 0.154208i
\(617\) −27.0489 1.57542i −0.0438394 0.00255335i 0.0362111 0.999344i \(-0.488471\pi\)
−0.0800505 + 0.996791i \(0.525508\pi\)
\(618\) −43.7231 219.925i −0.0707494 0.355866i
\(619\) −710.387 752.966i −1.14764 1.21642i −0.972756 0.231833i \(-0.925528\pi\)
−0.174880 0.984590i \(-0.555954\pi\)
\(620\) 53.0191 + 30.6106i 0.0855147 + 0.0493719i
\(621\) −987.086 + 579.112i −1.58951 + 0.932547i
\(622\) −165.152 286.052i −0.265518 0.459891i
\(623\) −81.9716 24.5407i −0.131576 0.0393911i
\(624\) 183.184 + 100.522i 0.293564 + 0.161093i
\(625\) −223.109 146.741i −0.356975 0.234786i
\(626\) 25.2855 + 216.331i 0.0403922 + 0.345577i
\(627\) −613.844 58.2669i −0.979018 0.0929296i
\(628\) −105.417 52.9422i −0.167861 0.0843028i
\(629\) −974.032 + 171.748i −1.54854 + 0.273050i
\(630\) 46.9817 + 21.0927i 0.0745741 + 0.0334805i
\(631\) 184.039 1043.74i 0.291662 1.65410i −0.388805 0.921320i \(-0.627112\pi\)
0.680467 0.732779i \(-0.261777\pi\)
\(632\) −70.6560 52.6015i −0.111798 0.0832302i
\(633\) −376.565 + 600.552i −0.594889 + 0.948739i
\(634\) 313.770 332.577i 0.494906 0.524570i
\(635\) 12.9816 3.88645i 0.0204435 0.00612039i
\(636\) −510.634 109.368i −0.802884 0.171962i
\(637\) 792.180 + 92.5925i 1.24361 + 0.145357i
\(638\) −889.910 + 1060.55i −1.39484 + 1.66231i
\(639\) −354.603 + 225.808i −0.554934 + 0.353377i
\(640\) 19.6159 16.4597i 0.0306498 0.0257182i
\(641\) 168.632 + 256.392i 0.263076 + 0.399988i 0.942736 0.333539i \(-0.108243\pi\)
−0.679660 + 0.733527i \(0.737873\pi\)
\(642\) −438.996 636.891i −0.683794 0.992043i
\(643\) −58.3634 78.3956i −0.0907673 0.121922i 0.754420 0.656392i \(-0.227918\pi\)
−0.845187 + 0.534471i \(0.820511\pi\)
\(644\) −68.0144 135.428i −0.105612 0.210292i
\(645\) −73.3625 58.8916i −0.113740 0.0913048i
\(646\) 367.349 87.0632i 0.568651 0.134773i
\(647\) 734.277i 1.13490i 0.823409 + 0.567448i \(0.192069\pi\)
−0.823409 + 0.567448i \(0.807931\pi\)
\(648\) −19.8772 228.239i −0.0306747 0.352220i
\(649\) −676.320 −1.04210
\(650\) 112.883 + 476.290i 0.173666 + 0.732754i
\(651\) 26.2823 + 67.6045i 0.0403721 + 0.103847i
\(652\) −37.2242 + 18.6947i −0.0570923 + 0.0286728i
\(653\) −12.5686 + 9.35697i −0.0192475 + 0.0143292i −0.606739 0.794901i \(-0.707523\pi\)
0.587492 + 0.809230i \(0.300115\pi\)
\(654\) −20.2769 9.63786i −0.0310044 0.0147368i
\(655\) −147.973 + 97.3237i −0.225914 + 0.148586i
\(656\) −98.1881 117.016i −0.149677 0.178378i
\(657\) 376.050 155.678i 0.572374 0.236952i
\(658\) 99.7694 + 83.7164i 0.151625 + 0.127229i
\(659\) 70.7986 605.721i 0.107433 0.919152i −0.826802 0.562494i \(-0.809842\pi\)
0.934235 0.356658i \(-0.116084\pi\)
\(660\) 206.190 + 186.235i 0.312409 + 0.282174i
\(661\) 148.033 + 494.466i 0.223954 + 0.748057i 0.993933 + 0.109988i \(0.0350814\pi\)
−0.769979 + 0.638069i \(0.779733\pi\)
\(662\) 550.037 + 518.933i 0.830871 + 0.783887i
\(663\) 50.6006 1387.22i 0.0763207 2.09234i
\(664\) −61.5478 + 82.6730i −0.0926924 + 0.124508i
\(665\) 40.0293 + 7.05825i 0.0601945 + 0.0106139i
\(666\) 129.162 + 455.783i 0.193938 + 0.684359i
\(667\) 352.173 + 1997.27i 0.527995 + 2.99441i
\(668\) −62.7653 + 124.976i −0.0939600 + 0.187090i
\(669\) 645.509 + 459.118i 0.964886 + 0.686275i
\(670\) −159.928 + 18.6929i −0.238699 + 0.0278999i
\(671\) −337.885 + 513.729i −0.503555 + 0.765618i
\(672\) 30.3312 0.658823i 0.0451357 0.000980391i
\(673\) 154.169 514.961i 0.229078 0.765173i −0.763739 0.645526i \(-0.776638\pi\)
0.992816 0.119647i \(-0.0381764\pi\)
\(674\) 481.579 278.040i 0.714508 0.412522i
\(675\) 365.566 392.932i 0.541579 0.582121i
\(676\) 134.202 232.444i 0.198523 0.343852i
\(677\) −12.4368 + 11.7335i −0.0183704 + 0.0173316i −0.695372 0.718650i \(-0.744760\pi\)
0.677002 + 0.735981i \(0.263279\pi\)
\(678\) 113.313 333.701i 0.167128 0.492184i
\(679\) 13.8294 237.442i 0.0203674 0.349694i
\(680\) −156.202 67.3789i −0.229709 0.0990867i
\(681\) −488.015 495.263i −0.716615 0.727258i
\(682\) 22.7536 + 390.665i 0.0333631 + 0.572823i
\(683\) 428.629 1177.65i 0.627568 1.72423i −0.0600898 0.998193i \(-0.519139\pi\)
0.687658 0.726035i \(-0.258639\pi\)
\(684\) −59.3337 170.812i −0.0867452 0.249725i
\(685\) 57.2868 20.8507i 0.0836304 0.0304390i
\(686\) 220.081 94.9337i 0.320818 0.138387i
\(687\) −710.132 + 553.041i −1.03367 + 0.805009i
\(688\) −53.9264 12.7808i −0.0783814 0.0185767i
\(689\) −349.505 + 1474.68i −0.507264 + 2.14031i
\(690\) 403.140 56.0191i 0.584261 0.0811871i
\(691\) −209.998 486.830i −0.303904 0.704529i 0.696004 0.718037i \(-0.254959\pi\)
−0.999909 + 0.0135081i \(0.995700\pi\)
\(692\) −110.756 304.299i −0.160051 0.439738i
\(693\) 52.3770 + 324.991i 0.0755801 + 0.468963i
\(694\) −172.003 62.6038i −0.247842 0.0902072i
\(695\) 40.5394 2.36115i 0.0583301 0.00339734i
\(696\) −391.382 107.969i −0.562331 0.155128i
\(697\) −401.940 + 931.802i −0.576672 + 1.33688i
\(698\) 595.911 + 34.7079i 0.853741 + 0.0497247i
\(699\) 947.219 830.523i 1.35511 1.18816i
\(700\) 48.7708 + 51.6941i 0.0696726 + 0.0738487i
\(701\) −977.150 564.158i −1.39394 0.804790i −0.400189 0.916432i \(-0.631056\pi\)
−0.993748 + 0.111642i \(0.964389\pi\)
\(702\) −663.471 + 43.2882i −0.945116 + 0.0616641i
\(703\) 186.951 + 323.808i 0.265933 + 0.460609i
\(704\) 156.802 + 46.9435i 0.222731 + 0.0666812i
\(705\) −299.054 + 181.430i −0.424191 + 0.257348i
\(706\) 112.020 + 73.6765i 0.158668 + 0.104358i
\(707\) −4.25496 36.4035i −0.00601834 0.0514902i
\(708\) −82.4931 180.366i −0.116516 0.254755i
\(709\) −295.190 148.250i −0.416347 0.209098i 0.228278 0.973596i \(-0.426690\pi\)
−0.644626 + 0.764498i \(0.722987\pi\)
\(710\) 147.242 25.9627i 0.207383 0.0365671i
\(711\) 279.544 + 20.4206i 0.393170 + 0.0287209i
\(712\) 23.5084 133.323i 0.0330174 0.187251i
\(713\) 459.820 + 342.323i 0.644909 + 0.480117i
\(714\) −94.3447 178.103i −0.132135 0.249445i
\(715\) 553.342 586.508i 0.773905 0.820291i
\(716\) 44.0663 13.1926i 0.0615451 0.0184254i
\(717\) −110.957 343.303i −0.154751 0.478805i
\(718\) −256.413 29.9704i −0.357121 0.0417415i
\(719\) 411.918 490.904i 0.572903 0.682760i −0.399321 0.916811i \(-0.630754\pi\)
0.972224 + 0.234052i \(0.0751985\pi\)
\(720\) −24.5169 + 77.7040i −0.0340513 + 0.107922i
\(721\) −72.3777 + 60.7321i −0.100385 + 0.0842332i
\(722\) 202.116 + 307.303i 0.279939 + 0.425627i
\(723\) −928.132 + 74.3115i −1.28372 + 0.102782i
\(724\) −305.358 410.167i −0.421765 0.566529i
\(725\) −426.846 849.921i −0.588754 1.17230i
\(726\) −192.199 + 1247.91i −0.264737 + 1.71889i
\(727\) 303.108 71.8379i 0.416930 0.0988142i −0.0167964 0.999859i \(-0.505347\pi\)
0.433726 + 0.901045i \(0.357199\pi\)
\(728\) 88.0453i 0.120941i
\(729\) 443.443 + 578.618i 0.608290 + 0.793715i
\(730\) −144.749 −0.198286
\(731\) 84.9073 + 358.252i 0.116152 + 0.490085i
\(732\) −178.219 27.4485i −0.243468 0.0374980i
\(733\) −342.988 + 172.255i −0.467923 + 0.235000i −0.667106 0.744962i \(-0.732467\pi\)
0.199183 + 0.979962i \(0.436171\pi\)
\(734\) −225.812 + 168.111i −0.307645 + 0.229034i
\(735\) 24.8218 + 310.018i 0.0337712 + 0.421793i
\(736\) 200.327 131.757i 0.272183 0.179018i
\(737\) −661.572 788.431i −0.897655 1.06978i
\(738\) 463.533 + 146.252i 0.628094 + 0.198174i
\(739\) −59.4354 49.8722i −0.0804267 0.0674860i 0.601688 0.798731i \(-0.294495\pi\)
−0.682115 + 0.731245i \(0.738940\pi\)
\(740\) 19.5595 167.343i 0.0264318 0.226139i
\(741\) −499.338 + 161.388i −0.673871 + 0.217797i
\(742\) 63.1092 + 210.799i 0.0850528 + 0.284096i
\(743\) −385.924 364.101i −0.519414 0.490042i 0.381302 0.924451i \(-0.375476\pi\)
−0.900716 + 0.434409i \(0.856957\pi\)
\(744\) −101.410 + 53.7189i −0.136304 + 0.0722028i
\(745\) −360.949 + 484.838i −0.484495 + 0.650789i
\(746\) 157.331 + 27.7416i 0.210899 + 0.0371872i
\(747\) 23.8937 327.088i 0.0319862 0.437869i
\(748\) −188.821 1070.86i −0.252434 1.43163i
\(749\) −146.281 + 291.269i −0.195302 + 0.388878i
\(750\) −391.892 + 179.237i −0.522522 + 0.238983i
\(751\) 912.006 106.598i 1.21439 0.141942i 0.515321 0.856997i \(-0.327673\pi\)
0.699068 + 0.715056i \(0.253599\pi\)
\(752\) −113.232 + 172.160i −0.150574 + 0.228937i
\(753\) 521.349 + 859.348i 0.692362 + 1.14123i
\(754\) −337.930 + 1128.76i −0.448183 + 1.49703i
\(755\) 251.829 145.394i 0.333549 0.192574i
\(756\) −80.2826 + 53.6087i −0.106194 + 0.0709109i
\(757\) −480.489 + 832.231i −0.634728 + 1.09938i 0.351845 + 0.936058i \(0.385554\pi\)
−0.986573 + 0.163323i \(0.947779\pi\)
\(758\) 218.379 206.030i 0.288099 0.271807i
\(759\) 1715.19 + 1956.18i 2.25980 + 2.57732i
\(760\) −3.73928 + 64.2009i −0.00492010 + 0.0844749i
\(761\) 636.964 + 274.760i 0.837010 + 0.361051i 0.771052 0.636772i \(-0.219731\pi\)
0.0659573 + 0.997822i \(0.478990\pi\)
\(762\) −6.75503 + 24.4867i −0.00886487 + 0.0321347i
\(763\) 0.550051 + 9.44401i 0.000720905 + 0.0123775i
\(764\) 27.9741 76.8583i 0.0366154 0.100600i
\(765\) 534.405 86.1271i 0.698569 0.112584i
\(766\) 303.781 110.567i 0.396582 0.144344i
\(767\) −528.519 + 227.981i −0.689073 + 0.297237i
\(768\) 6.60646 + 47.5432i 0.00860216 + 0.0619052i
\(769\) −756.894 179.387i −0.984257 0.233273i −0.293182 0.956057i \(-0.594714\pi\)
−0.691075 + 0.722783i \(0.742862\pi\)
\(770\) 26.9992 113.918i 0.0350638 0.147946i
\(771\) 731.171 + 938.859i 0.948342 + 1.21772i