Newspace parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.41418028264\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{25}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 18) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\) | \(83\) |
\(\chi(n)\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
−1.22474 | + | 0.707107i | 0 | 1.00000 | − | 1.73205i | −3.67423 | − | 2.12132i | 0 | 2.00000 | + | 3.46410i | 2.82843i | 0 | 6.00000 | ||||||||||||||||||||||
53.2 | 1.22474 | − | 0.707107i | 0 | 1.00000 | − | 1.73205i | 3.67423 | + | 2.12132i | 0 | 2.00000 | + | 3.46410i | − | 2.82843i | 0 | 6.00000 | ||||||||||||||||||||||
107.1 | −1.22474 | − | 0.707107i | 0 | 1.00000 | + | 1.73205i | −3.67423 | + | 2.12132i | 0 | 2.00000 | − | 3.46410i | − | 2.82843i | 0 | 6.00000 | ||||||||||||||||||||||
107.2 | 1.22474 | + | 0.707107i | 0 | 1.00000 | + | 1.73205i | 3.67423 | − | 2.12132i | 0 | 2.00000 | − | 3.46410i | 2.82843i | 0 | 6.00000 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 18T_{5}^{2} + 324 \)
acting on \(S_{3}^{\mathrm{new}}(162, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 2T^{2} + 4 \)
$3$
\( T^{4} \)
$5$
\( T^{4} - 18T^{2} + 324 \)
$7$
\( (T^{2} - 4 T + 16)^{2} \)
$11$
\( T^{4} - 288 T^{2} + 82944 \)
$13$
\( (T^{2} + 8 T + 64)^{2} \)
$17$
\( (T^{2} + 162)^{2} \)
$19$
\( (T + 16)^{4} \)
$23$
\( T^{4} - 288 T^{2} + 82944 \)
$29$
\( T^{4} - 18T^{2} + 324 \)
$31$
\( (T^{2} + 44 T + 1936)^{2} \)
$37$
\( (T + 34)^{4} \)
$41$
\( T^{4} - 2178 T^{2} + \cdots + 4743684 \)
$43$
\( (T^{2} - 40 T + 1600)^{2} \)
$47$
\( T^{4} - 7200 T^{2} + \cdots + 51840000 \)
$53$
\( (T^{2} + 1458)^{2} \)
$59$
\( T^{4} - 1152 T^{2} + \cdots + 1327104 \)
$61$
\( (T^{2} + 50 T + 2500)^{2} \)
$67$
\( (T^{2} + 8 T + 64)^{2} \)
$71$
\( (T^{2} + 2592)^{2} \)
$73$
\( (T + 16)^{4} \)
$79$
\( (T^{2} - 76 T + 5776)^{2} \)
$83$
\( T^{4} - 14112 T^{2} + \cdots + 199148544 \)
$89$
\( (T^{2} + 162)^{2} \)
$97$
\( (T^{2} + 176 T + 30976)^{2} \)
show more
show less