Properties

Label 162.2.g.b.31.5
Level $162$
Weight $2$
Character 162.31
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 31.5
Character \(\chi\) \(=\) 162.31
Dual form 162.2.g.b.115.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.396080 + 0.918216i) q^{2} +(1.72468 + 0.159609i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(0.0350699 - 0.602127i) q^{5} +(0.536555 + 1.64685i) q^{6} +(0.510080 - 0.120891i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(2.94905 + 0.550550i) q^{9} +O(q^{10})\) \(q+(0.396080 + 0.918216i) q^{2} +(1.72468 + 0.159609i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(0.0350699 - 0.602127i) q^{5} +(0.536555 + 1.64685i) q^{6} +(0.510080 - 0.120891i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(2.94905 + 0.550550i) q^{9} +(0.566774 - 0.206289i) q^{10} +(-2.01981 + 1.32845i) q^{11} +(-1.29964 + 1.14496i) q^{12} +(-1.15841 + 0.135399i) q^{13} +(0.313036 + 0.420481i) q^{14} +(0.156590 - 1.03288i) q^{15} +(-0.0581448 - 0.998308i) q^{16} +(-4.35000 - 3.65009i) q^{17} +(0.662535 + 2.92593i) q^{18} +(1.35309 - 1.13538i) q^{19} +(0.413905 + 0.438714i) q^{20} +(0.899020 - 0.127085i) q^{21} +(-2.01981 - 1.32845i) q^{22} +(-4.95439 - 1.17421i) q^{23} +(-1.56608 - 0.739859i) q^{24} +(4.60486 + 0.538231i) q^{25} +(-0.583149 - 1.01004i) q^{26} +(4.99830 + 1.42022i) q^{27} +(-0.262105 + 0.453979i) q^{28} +(-3.44579 + 4.62851i) q^{29} +(1.01043 - 0.265320i) q^{30} +(-0.468359 - 1.56443i) q^{31} +(0.893633 - 0.448799i) q^{32} +(-3.69556 + 1.96877i) q^{33} +(1.62862 - 5.43997i) q^{34} +(-0.0549034 - 0.311373i) q^{35} +(-2.42422 + 1.76725i) q^{36} +(1.24273 - 7.04785i) q^{37} +(1.57846 + 0.792732i) q^{38} +(-2.01950 + 0.0486267i) q^{39} +(-0.238895 + 0.553820i) q^{40} +(3.14622 - 7.29375i) q^{41} +(0.472775 + 0.775159i) q^{42} +(2.30628 + 1.15826i) q^{43} +(0.419798 - 2.38079i) q^{44} +(0.434924 - 1.75640i) q^{45} +(-0.884154 - 5.01428i) q^{46} +(-1.76161 + 5.88420i) q^{47} +(0.0590580 - 1.73104i) q^{48} +(-6.00986 + 3.01827i) q^{49} +(1.32968 + 4.44144i) q^{50} +(-6.91978 - 6.98954i) q^{51} +(0.696465 - 0.935515i) q^{52} +(1.11214 - 1.92629i) q^{53} +(0.675656 + 5.15204i) q^{54} +(0.729061 + 1.26277i) q^{55} +(-0.520665 - 0.0608570i) q^{56} +(2.51487 - 1.74220i) q^{57} +(-5.61478 - 1.33073i) q^{58} +(4.64678 + 3.05623i) q^{59} +(0.643832 + 0.822704i) q^{60} +(-2.51525 - 2.66601i) q^{61} +(1.25098 - 1.04969i) q^{62} +(1.57081 - 0.0756894i) q^{63} +(0.766044 + 0.642788i) q^{64} +(0.0409020 + 0.702260i) q^{65} +(-3.27149 - 2.61353i) q^{66} +(9.01315 + 12.1068i) q^{67} +(5.64013 - 0.659237i) q^{68} +(-8.35733 - 2.81591i) q^{69} +(0.264161 - 0.173742i) q^{70} +(-5.71305 + 2.07938i) q^{71} +(-2.58290 - 1.52598i) q^{72} +(-10.8918 - 3.96429i) q^{73} +(6.96367 - 1.65042i) q^{74} +(7.85602 + 1.66326i) q^{75} +(-0.102703 + 1.76335i) q^{76} +(-0.869665 + 0.921792i) q^{77} +(-0.844534 - 1.83508i) q^{78} +(6.47803 + 15.0178i) q^{79} -0.603148 q^{80} +(8.39379 + 3.24720i) q^{81} +7.94339 q^{82} +(5.81950 + 13.4911i) q^{83} +(-0.524507 + 0.741135i) q^{84} +(-2.35037 + 2.49125i) q^{85} +(-0.150060 + 2.57643i) q^{86} +(-6.68165 + 7.43272i) q^{87} +(2.35235 - 0.557518i) q^{88} +(12.1445 + 4.42023i) q^{89} +(1.78502 - 0.296318i) q^{90} +(-0.574514 + 0.209106i) q^{91} +(4.25400 - 2.79790i) q^{92} +(-0.558073 - 2.77289i) q^{93} +(-6.10071 + 0.713071i) q^{94} +(-0.636191 - 0.854553i) q^{95} +(1.61286 - 0.631403i) q^{96} +(0.237977 + 4.08591i) q^{97} +(-5.15181 - 4.32288i) q^{98} +(-6.68789 + 2.80566i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{10}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396080 + 0.918216i 0.280071 + 0.649277i
\(3\) 1.72468 + 0.159609i 0.995745 + 0.0921505i
\(4\) −0.686242 + 0.727374i −0.343121 + 0.363687i
\(5\) 0.0350699 0.602127i 0.0156837 0.269280i −0.981345 0.192253i \(-0.938420\pi\)
0.997029 0.0770262i \(-0.0245425\pi\)
\(6\) 0.536555 + 1.64685i 0.219048 + 0.672323i
\(7\) 0.510080 0.120891i 0.192792 0.0456925i −0.133085 0.991105i \(-0.542488\pi\)
0.325877 + 0.945412i \(0.394340\pi\)
\(8\) −0.939693 0.342020i −0.332232 0.120922i
\(9\) 2.94905 + 0.550550i 0.983017 + 0.183517i
\(10\) 0.566774 0.206289i 0.179230 0.0652342i
\(11\) −2.01981 + 1.32845i −0.608995 + 0.400542i −0.816212 0.577753i \(-0.803930\pi\)
0.207217 + 0.978295i \(0.433559\pi\)
\(12\) −1.29964 + 1.14496i −0.375175 + 0.330521i
\(13\) −1.15841 + 0.135399i −0.321286 + 0.0375529i −0.275207 0.961385i \(-0.588746\pi\)
−0.0460785 + 0.998938i \(0.514672\pi\)
\(14\) 0.313036 + 0.420481i 0.0836625 + 0.112378i
\(15\) 0.156590 1.03288i 0.0404312 0.266689i
\(16\) −0.0581448 0.998308i −0.0145362 0.249577i
\(17\) −4.35000 3.65009i −1.05503 0.885276i −0.0614173 0.998112i \(-0.519562\pi\)
−0.993614 + 0.112836i \(0.964006\pi\)
\(18\) 0.662535 + 2.92593i 0.156161 + 0.689648i
\(19\) 1.35309 1.13538i 0.310421 0.260474i −0.474245 0.880393i \(-0.657279\pi\)
0.784666 + 0.619919i \(0.212834\pi\)
\(20\) 0.413905 + 0.438714i 0.0925520 + 0.0980994i
\(21\) 0.899020 0.127085i 0.196182 0.0277323i
\(22\) −2.01981 1.32845i −0.430625 0.283226i
\(23\) −4.95439 1.17421i −1.03306 0.244840i −0.321091 0.947048i \(-0.604049\pi\)
−0.711972 + 0.702208i \(0.752198\pi\)
\(24\) −1.56608 0.739859i −0.319675 0.151023i
\(25\) 4.60486 + 0.538231i 0.920973 + 0.107646i
\(26\) −0.583149 1.01004i −0.114365 0.198086i
\(27\) 4.99830 + 1.42022i 0.961923 + 0.273321i
\(28\) −0.262105 + 0.453979i −0.0495332 + 0.0857940i
\(29\) −3.44579 + 4.62851i −0.639868 + 0.859492i −0.997223 0.0744768i \(-0.976271\pi\)
0.357355 + 0.933969i \(0.383679\pi\)
\(30\) 1.01043 0.265320i 0.184478 0.0484406i
\(31\) −0.468359 1.56443i −0.0841197 0.280979i 0.905572 0.424192i \(-0.139442\pi\)
−0.989692 + 0.143213i \(0.954257\pi\)
\(32\) 0.893633 0.448799i 0.157973 0.0793372i
\(33\) −3.69556 + 1.96877i −0.643314 + 0.342719i
\(34\) 1.62862 5.43997i 0.279306 0.932947i
\(35\) −0.0549034 0.311373i −0.00928037 0.0526316i
\(36\) −2.42422 + 1.76725i −0.404036 + 0.294542i
\(37\) 1.24273 7.04785i 0.204303 1.15866i −0.694230 0.719753i \(-0.744255\pi\)
0.898533 0.438906i \(-0.144634\pi\)
\(38\) 1.57846 + 0.792732i 0.256060 + 0.128598i
\(39\) −2.01950 + 0.0486267i −0.323379 + 0.00778650i
\(40\) −0.238895 + 0.553820i −0.0377726 + 0.0875666i
\(41\) 3.14622 7.29375i 0.491357 1.13909i −0.474556 0.880225i \(-0.657391\pi\)
0.965913 0.258868i \(-0.0833493\pi\)
\(42\) 0.472775 + 0.775159i 0.0729508 + 0.119610i
\(43\) 2.30628 + 1.15826i 0.351705 + 0.176633i 0.615876 0.787843i \(-0.288802\pi\)
−0.264171 + 0.964476i \(0.585098\pi\)
\(44\) 0.419798 2.38079i 0.0632869 0.358918i
\(45\) 0.434924 1.75640i 0.0648347 0.261828i
\(46\) −0.884154 5.01428i −0.130361 0.739316i
\(47\) −1.76161 + 5.88420i −0.256958 + 0.858299i 0.728011 + 0.685566i \(0.240445\pi\)
−0.984969 + 0.172733i \(0.944740\pi\)
\(48\) 0.0590580 1.73104i 0.00852428 0.249855i
\(49\) −6.00986 + 3.01827i −0.858552 + 0.431181i
\(50\) 1.32968 + 4.44144i 0.188045 + 0.628115i
\(51\) −6.91978 6.98954i −0.968963 0.978731i
\(52\) 0.696465 0.935515i 0.0965823 0.129733i
\(53\) 1.11214 1.92629i 0.152764 0.264596i −0.779478 0.626429i \(-0.784516\pi\)
0.932243 + 0.361833i \(0.117849\pi\)
\(54\) 0.675656 + 5.15204i 0.0919452 + 0.701103i
\(55\) 0.729061 + 1.26277i 0.0983065 + 0.170272i
\(56\) −0.520665 0.0608570i −0.0695768 0.00813236i
\(57\) 2.51487 1.74220i 0.333103 0.230760i
\(58\) −5.61478 1.33073i −0.737256 0.174733i
\(59\) 4.64678 + 3.05623i 0.604959 + 0.397888i 0.814711 0.579867i \(-0.196895\pi\)
−0.209752 + 0.977755i \(0.567266\pi\)
\(60\) 0.643832 + 0.822704i 0.0831183 + 0.106211i
\(61\) −2.51525 2.66601i −0.322044 0.341347i 0.546044 0.837756i \(-0.316133\pi\)
−0.868089 + 0.496409i \(0.834652\pi\)
\(62\) 1.25098 1.04969i 0.158874 0.133311i
\(63\) 1.57081 0.0756894i 0.197903 0.00953597i
\(64\) 0.766044 + 0.642788i 0.0957556 + 0.0803485i
\(65\) 0.0409020 + 0.702260i 0.00507327 + 0.0871047i
\(66\) −3.27149 2.61353i −0.402693 0.321703i
\(67\) 9.01315 + 12.1068i 1.10113 + 1.47908i 0.861186 + 0.508289i \(0.169722\pi\)
0.239945 + 0.970787i \(0.422871\pi\)
\(68\) 5.64013 0.659237i 0.683966 0.0799442i
\(69\) −8.35733 2.81591i −1.00610 0.338996i
\(70\) 0.264161 0.173742i 0.0315733 0.0207661i
\(71\) −5.71305 + 2.07938i −0.678014 + 0.246777i −0.657995 0.753023i \(-0.728595\pi\)
−0.0200196 + 0.999800i \(0.506373\pi\)
\(72\) −2.58290 1.52598i −0.304398 0.179839i
\(73\) −10.8918 3.96429i −1.27479 0.463986i −0.386084 0.922464i \(-0.626173\pi\)
−0.888706 + 0.458478i \(0.848395\pi\)
\(74\) 6.96367 1.65042i 0.809510 0.191857i
\(75\) 7.85602 + 1.66326i 0.907135 + 0.192056i
\(76\) −0.102703 + 1.76335i −0.0117809 + 0.202270i
\(77\) −0.869665 + 0.921792i −0.0991076 + 0.105048i
\(78\) −0.844534 1.83508i −0.0956246 0.207782i
\(79\) 6.47803 + 15.0178i 0.728836 + 1.68963i 0.724150 + 0.689642i \(0.242232\pi\)
0.00468577 + 0.999989i \(0.498508\pi\)
\(80\) −0.603148 −0.0674340
\(81\) 8.39379 + 3.24720i 0.932643 + 0.360800i
\(82\) 7.94339 0.877201
\(83\) 5.81950 + 13.4911i 0.638773 + 1.48084i 0.862431 + 0.506175i \(0.168941\pi\)
−0.223658 + 0.974668i \(0.571800\pi\)
\(84\) −0.524507 + 0.741135i −0.0572284 + 0.0808644i
\(85\) −2.35037 + 2.49125i −0.254934 + 0.270214i
\(86\) −0.150060 + 2.57643i −0.0161814 + 0.277823i
\(87\) −6.68165 + 7.43272i −0.716348 + 0.796871i
\(88\) 2.35235 0.557518i 0.250762 0.0594317i
\(89\) 12.1445 + 4.42023i 1.28731 + 0.468544i 0.892844 0.450366i \(-0.148706\pi\)
0.394469 + 0.918909i \(0.370929\pi\)
\(90\) 1.78502 0.296318i 0.188157 0.0312347i
\(91\) −0.574514 + 0.209106i −0.0602254 + 0.0219203i
\(92\) 4.25400 2.79790i 0.443510 0.291701i
\(93\) −0.558073 2.77289i −0.0578694 0.287536i
\(94\) −6.10071 + 0.713071i −0.629240 + 0.0735476i
\(95\) −0.636191 0.854553i −0.0652718 0.0876753i
\(96\) 1.61286 0.631403i 0.164612 0.0644423i
\(97\) 0.237977 + 4.08591i 0.0241629 + 0.414861i 0.988602 + 0.150555i \(0.0481060\pi\)
−0.964439 + 0.264306i \(0.914857\pi\)
\(98\) −5.15181 4.32288i −0.520411 0.436677i
\(99\) −6.68789 + 2.80566i −0.672158 + 0.281979i
\(100\) −3.55155 + 2.98010i −0.355155 + 0.298010i
\(101\) −10.5659 11.1992i −1.05135 1.11437i −0.993243 0.116055i \(-0.962975\pi\)
−0.0581064 0.998310i \(-0.518506\pi\)
\(102\) 3.67712 9.12227i 0.364089 0.903239i
\(103\) 0.345880 + 0.227489i 0.0340805 + 0.0224151i 0.566435 0.824106i \(-0.308322\pi\)
−0.532354 + 0.846522i \(0.678693\pi\)
\(104\) 1.13486 + 0.268967i 0.111282 + 0.0263744i
\(105\) −0.0449929 0.545781i −0.00439086 0.0532628i
\(106\) 2.20924 + 0.258224i 0.214581 + 0.0250809i
\(107\) 0.571449 + 0.989778i 0.0552440 + 0.0956855i 0.892325 0.451394i \(-0.149073\pi\)
−0.837081 + 0.547079i \(0.815740\pi\)
\(108\) −4.46307 + 2.66102i −0.429459 + 0.256056i
\(109\) −4.46427 + 7.73235i −0.427600 + 0.740625i −0.996659 0.0816717i \(-0.973974\pi\)
0.569059 + 0.822296i \(0.307307\pi\)
\(110\) −0.870730 + 1.16959i −0.0830208 + 0.111516i
\(111\) 3.26821 11.9569i 0.310205 1.13490i
\(112\) −0.150345 0.502188i −0.0142063 0.0474523i
\(113\) 15.0553 7.56104i 1.41628 0.711282i 0.434388 0.900726i \(-0.356965\pi\)
0.981892 + 0.189443i \(0.0606683\pi\)
\(114\) 2.59581 + 1.61915i 0.243120 + 0.151647i
\(115\) −0.880776 + 2.94200i −0.0821328 + 0.274342i
\(116\) −1.00201 5.68265i −0.0930338 0.527621i
\(117\) −3.49076 0.238466i −0.322721 0.0220462i
\(118\) −0.965788 + 5.47726i −0.0889080 + 0.504222i
\(119\) −2.66011 1.33596i −0.243852 0.122467i
\(120\) −0.500412 + 0.917033i −0.0456811 + 0.0837133i
\(121\) −2.04203 + 4.73395i −0.185639 + 0.430359i
\(122\) 1.45173 3.36549i 0.131434 0.304697i
\(123\) 6.59037 12.0772i 0.594234 1.08897i
\(124\) 1.45933 + 0.732903i 0.131052 + 0.0658167i
\(125\) 1.00925 5.72376i 0.0902704 0.511949i
\(126\) 0.691664 + 1.41236i 0.0616183 + 0.125823i
\(127\) −3.02978 17.1827i −0.268850 1.52472i −0.757845 0.652435i \(-0.773747\pi\)
0.488995 0.872287i \(-0.337364\pi\)
\(128\) −0.286803 + 0.957990i −0.0253501 + 0.0846751i
\(129\) 3.79273 + 2.36573i 0.333931 + 0.208291i
\(130\) −0.628626 + 0.315708i −0.0551342 + 0.0276894i
\(131\) −2.12283 7.09074i −0.185472 0.619521i −0.999264 0.0383641i \(-0.987785\pi\)
0.813791 0.581157i \(-0.197400\pi\)
\(132\) 1.10401 4.03910i 0.0960921 0.351559i
\(133\) 0.552928 0.742712i 0.0479450 0.0644013i
\(134\) −7.54669 + 13.0713i −0.651935 + 1.12918i
\(135\) 1.03044 2.95980i 0.0886864 0.254739i
\(136\) 2.83926 + 4.91775i 0.243465 + 0.421693i
\(137\) −1.14322 0.133623i −0.0976715 0.0114162i 0.0671168 0.997745i \(-0.478620\pi\)
−0.164788 + 0.986329i \(0.552694\pi\)
\(138\) −0.724557 8.78916i −0.0616784 0.748183i
\(139\) 5.42884 + 1.28666i 0.460469 + 0.109133i 0.454302 0.890848i \(-0.349889\pi\)
0.00616691 + 0.999981i \(0.498037\pi\)
\(140\) 0.264161 + 0.173742i 0.0223257 + 0.0146838i
\(141\) −3.97740 + 9.86720i −0.334957 + 0.830968i
\(142\) −4.17214 4.42221i −0.350119 0.371104i
\(143\) 2.15990 1.81237i 0.180620 0.151558i
\(144\) 0.378147 2.97607i 0.0315122 0.248006i
\(145\) 2.66611 + 2.23713i 0.221408 + 0.185783i
\(146\) −0.673946 11.5712i −0.0557762 0.957640i
\(147\) −10.8468 + 4.24632i −0.894632 + 0.350230i
\(148\) 4.27361 + 5.74045i 0.351289 + 0.471862i
\(149\) 10.0534 1.17508i 0.823608 0.0962660i 0.306159 0.951980i \(-0.400956\pi\)
0.517449 + 0.855714i \(0.326882\pi\)
\(150\) 1.58438 + 7.87230i 0.129364 + 0.642771i
\(151\) −8.50922 + 5.59660i −0.692470 + 0.455445i −0.846338 0.532647i \(-0.821197\pi\)
0.153868 + 0.988091i \(0.450827\pi\)
\(152\) −1.65982 + 0.604124i −0.134629 + 0.0490009i
\(153\) −10.8188 13.1592i −0.874650 1.06386i
\(154\) −1.19086 0.433438i −0.0959623 0.0349274i
\(155\) −0.958410 + 0.227147i −0.0769813 + 0.0182449i
\(156\) 1.35050 1.50230i 0.108126 0.120280i
\(157\) 1.41088 24.2238i 0.112600 1.93327i −0.193172 0.981165i \(-0.561878\pi\)
0.305772 0.952105i \(-0.401085\pi\)
\(158\) −11.2237 + 11.8965i −0.892913 + 0.946432i
\(159\) 2.22554 3.14472i 0.176497 0.249393i
\(160\) −0.238895 0.553820i −0.0188863 0.0437833i
\(161\) −2.66909 −0.210354
\(162\) 0.342978 + 8.99346i 0.0269469 + 0.706593i
\(163\) −6.49707 −0.508890 −0.254445 0.967087i \(-0.581893\pi\)
−0.254445 + 0.967087i \(0.581893\pi\)
\(164\) 3.14622 + 7.29375i 0.245678 + 0.569546i
\(165\) 1.05585 + 2.29424i 0.0821976 + 0.178606i
\(166\) −10.0828 + 10.6871i −0.782575 + 0.829481i
\(167\) −0.148594 + 2.55126i −0.0114985 + 0.197422i 0.987667 + 0.156571i \(0.0500440\pi\)
−0.999165 + 0.0408513i \(0.986993\pi\)
\(168\) −0.888268 0.188062i −0.0685314 0.0145093i
\(169\) −11.3260 + 2.68431i −0.871231 + 0.206485i
\(170\) −3.21844 1.17142i −0.246843 0.0898435i
\(171\) 4.61543 2.60335i 0.352950 0.199083i
\(172\) −2.42515 + 0.882683i −0.184916 + 0.0673040i
\(173\) 11.6523 7.66386i 0.885910 0.582672i −0.0229671 0.999736i \(-0.507311\pi\)
0.908877 + 0.417064i \(0.136941\pi\)
\(174\) −9.47131 3.19125i −0.718018 0.241928i
\(175\) 2.41392 0.282146i 0.182475 0.0213282i
\(176\) 1.44364 + 1.93915i 0.108819 + 0.146169i
\(177\) 7.52641 + 6.01270i 0.565719 + 0.451942i
\(178\) 0.751457 + 12.9020i 0.0563241 + 0.967048i
\(179\) −5.53837 4.64725i −0.413957 0.347351i 0.411901 0.911228i \(-0.364865\pi\)
−0.825859 + 0.563877i \(0.809309\pi\)
\(180\) 0.979093 + 1.52166i 0.0729773 + 0.113418i
\(181\) −4.52209 + 3.79449i −0.336124 + 0.282042i −0.795190 0.606361i \(-0.792629\pi\)
0.459065 + 0.888403i \(0.348184\pi\)
\(182\) −0.419558 0.444705i −0.0310997 0.0329638i
\(183\) −3.91248 4.99947i −0.289219 0.369571i
\(184\) 4.25400 + 2.79790i 0.313609 + 0.206264i
\(185\) −4.20012 0.995447i −0.308799 0.0731867i
\(186\) 2.32507 1.61072i 0.170483 0.118104i
\(187\) 13.6351 + 1.59372i 0.997099 + 0.116544i
\(188\) −3.07112 5.31934i −0.223985 0.387953i
\(189\) 2.72122 + 0.120175i 0.197940 + 0.00874147i
\(190\) 0.532682 0.922632i 0.0386448 0.0669347i
\(191\) 0.821643 1.10366i 0.0594520 0.0798579i −0.771403 0.636347i \(-0.780445\pi\)
0.830855 + 0.556489i \(0.187852\pi\)
\(192\) 1.21859 + 1.23087i 0.0879440 + 0.0888305i
\(193\) −6.35654 21.2323i −0.457554 1.52834i −0.806524 0.591202i \(-0.798654\pi\)
0.348970 0.937134i \(-0.386531\pi\)
\(194\) −3.65749 + 1.83686i −0.262592 + 0.131879i
\(195\) −0.0415443 + 1.21770i −0.00297505 + 0.0872015i
\(196\) 1.92881 6.44267i 0.137772 0.460191i
\(197\) 2.83378 + 16.0712i 0.201898 + 1.14502i 0.902246 + 0.431221i \(0.141917\pi\)
−0.700348 + 0.713802i \(0.746972\pi\)
\(198\) −5.22514 5.02967i −0.371334 0.357443i
\(199\) 3.25591 18.4652i 0.230805 1.30896i −0.620466 0.784234i \(-0.713056\pi\)
0.851271 0.524727i \(-0.175833\pi\)
\(200\) −4.14307 2.08073i −0.292959 0.147130i
\(201\) 13.6125 + 22.3189i 0.960148 + 1.57425i
\(202\) 6.09836 14.1376i 0.429079 0.994718i
\(203\) −1.19808 + 2.77747i −0.0840891 + 0.194940i
\(204\) 9.83265 0.236756i 0.688423 0.0165762i
\(205\) −4.28143 2.15022i −0.299028 0.150178i
\(206\) −0.0718878 + 0.407696i −0.00500866 + 0.0284055i
\(207\) −13.9643 6.19045i −0.970585 0.430266i
\(208\) 0.202526 + 1.14858i 0.0140426 + 0.0796397i
\(209\) −1.22470 + 4.09077i −0.0847140 + 0.282964i
\(210\) 0.483325 0.257486i 0.0333526 0.0177682i
\(211\) 14.5024 7.28336i 0.998383 0.501407i 0.126944 0.991910i \(-0.459483\pi\)
0.871440 + 0.490503i \(0.163187\pi\)
\(212\) 0.637932 + 2.13084i 0.0438133 + 0.146347i
\(213\) −10.1851 + 2.67441i −0.697870 + 0.183248i
\(214\) −0.682491 + 0.916744i −0.0466541 + 0.0626674i
\(215\) 0.778300 1.34805i 0.0530796 0.0919366i
\(216\) −4.21112 3.04409i −0.286530 0.207124i
\(217\) −0.428026 0.741362i −0.0290563 0.0503270i
\(218\) −8.86818 1.03654i −0.600629 0.0702034i
\(219\) −18.1522 8.57558i −1.22661 0.579484i
\(220\) −1.41882 0.336266i −0.0956567 0.0226710i
\(221\) 5.53332 + 3.63932i 0.372211 + 0.244807i
\(222\) 12.2735 1.73498i 0.823745 0.116444i
\(223\) −7.90196 8.37559i −0.529154 0.560871i 0.406562 0.913623i \(-0.366727\pi\)
−0.935717 + 0.352752i \(0.885246\pi\)
\(224\) 0.401568 0.336956i 0.0268309 0.0225138i
\(225\) 13.2837 + 4.12248i 0.885577 + 0.274832i
\(226\) 12.9057 + 10.8292i 0.858478 + 0.720348i
\(227\) 0.209678 + 3.60003i 0.0139168 + 0.238942i 0.998092 + 0.0617442i \(0.0196663\pi\)
−0.984175 + 0.177198i \(0.943297\pi\)
\(228\) −0.458578 + 3.02483i −0.0303701 + 0.200324i
\(229\) 17.2562 + 23.1792i 1.14032 + 1.53172i 0.808613 + 0.588340i \(0.200218\pi\)
0.331711 + 0.943381i \(0.392374\pi\)
\(230\) −3.05025 + 0.356523i −0.201127 + 0.0235084i
\(231\) −1.64702 + 1.45099i −0.108366 + 0.0954681i
\(232\) 4.82103 3.17084i 0.316516 0.208176i
\(233\) −5.21578 + 1.89839i −0.341697 + 0.124367i −0.507168 0.861847i \(-0.669308\pi\)
0.165471 + 0.986215i \(0.447085\pi\)
\(234\) −1.16366 3.29972i −0.0760706 0.215710i
\(235\) 3.48126 + 1.26707i 0.227092 + 0.0826549i
\(236\) −5.41184 + 1.28263i −0.352281 + 0.0834920i
\(237\) 8.77557 + 26.9348i 0.570034 + 1.74960i
\(238\) 0.173082 2.97170i 0.0112192 0.192627i
\(239\) −6.87332 + 7.28529i −0.444598 + 0.471246i −0.910452 0.413615i \(-0.864266\pi\)
0.465854 + 0.884862i \(0.345747\pi\)
\(240\) −1.04024 0.0962680i −0.0671470 0.00621407i
\(241\) −4.59180 10.6450i −0.295784 0.685704i 0.703914 0.710285i \(-0.251434\pi\)
−0.999698 + 0.0245811i \(0.992175\pi\)
\(242\) −5.15560 −0.331414
\(243\) 13.9583 + 6.94011i 0.895427 + 0.445208i
\(244\) 3.66525 0.234644
\(245\) 1.60662 + 3.72455i 0.102643 + 0.237953i
\(246\) 13.6998 + 1.26784i 0.873469 + 0.0808345i
\(247\) −1.41371 + 1.49845i −0.0899523 + 0.0953439i
\(248\) −0.0949524 + 1.63027i −0.00602948 + 0.103522i
\(249\) 7.88347 + 24.1967i 0.499595 + 1.53340i
\(250\) 5.65540 1.34035i 0.357679 0.0847714i
\(251\) 26.1345 + 9.51218i 1.64960 + 0.600404i 0.988678 0.150055i \(-0.0479451\pi\)
0.660917 + 0.750459i \(0.270167\pi\)
\(252\) −1.02290 + 1.19450i −0.0644366 + 0.0752467i
\(253\) 11.5668 4.20997i 0.727199 0.264679i
\(254\) 14.5774 9.58773i 0.914670 0.601588i
\(255\) −4.45127 + 3.92147i −0.278749 + 0.245572i
\(256\) −0.993238 + 0.116093i −0.0620774 + 0.00725581i
\(257\) −7.49849 10.0722i −0.467743 0.628288i 0.504177 0.863601i \(-0.331796\pi\)
−0.971920 + 0.235313i \(0.924389\pi\)
\(258\) −0.670027 + 4.41956i −0.0417141 + 0.275150i
\(259\) −0.218133 3.74520i −0.0135541 0.232715i
\(260\) −0.538874 0.452169i −0.0334196 0.0280423i
\(261\) −12.7100 + 11.7526i −0.786732 + 0.727468i
\(262\) 5.67003 4.75772i 0.350295 0.293933i
\(263\) −16.5821 17.5760i −1.02250 1.08378i −0.996456 0.0841208i \(-0.973192\pi\)
−0.0260397 0.999661i \(-0.508290\pi\)
\(264\) 4.14605 0.586084i 0.255172 0.0360710i
\(265\) −1.12087 0.737206i −0.0688543 0.0452862i
\(266\) 0.900974 + 0.213535i 0.0552422 + 0.0130927i
\(267\) 20.2399 + 9.56186i 1.23866 + 0.585176i
\(268\) −14.9913 1.75224i −0.915741 0.107035i
\(269\) 12.0050 + 20.7933i 0.731958 + 1.26779i 0.956045 + 0.293219i \(0.0947266\pi\)
−0.224087 + 0.974569i \(0.571940\pi\)
\(270\) 3.12588 0.226150i 0.190235 0.0137630i
\(271\) −6.40272 + 11.0898i −0.388938 + 0.673660i −0.992307 0.123802i \(-0.960491\pi\)
0.603369 + 0.797462i \(0.293825\pi\)
\(272\) −3.39098 + 4.55488i −0.205608 + 0.276180i
\(273\) −1.02423 + 0.268943i −0.0619891 + 0.0162772i
\(274\) −0.330110 1.10264i −0.0199427 0.0666132i
\(275\) −10.0160 + 5.03020i −0.603985 + 0.303333i
\(276\) 7.78337 4.14651i 0.468504 0.249590i
\(277\) 4.54939 15.1960i 0.273346 0.913040i −0.705546 0.708664i \(-0.749298\pi\)
0.978892 0.204376i \(-0.0655166\pi\)
\(278\) 0.968824 + 5.49447i 0.0581062 + 0.329536i
\(279\) −0.519918 4.87143i −0.0311267 0.291645i
\(280\) −0.0549034 + 0.311373i −0.00328110 + 0.0186081i
\(281\) −3.42138 1.71828i −0.204103 0.102504i 0.343812 0.939039i \(-0.388282\pi\)
−0.547914 + 0.836534i \(0.684578\pi\)
\(282\) −10.6356 + 0.256090i −0.633340 + 0.0152499i
\(283\) 11.2108 25.9894i 0.666410 1.54491i −0.163215 0.986591i \(-0.552186\pi\)
0.829625 0.558321i \(-0.188554\pi\)
\(284\) 2.40805 5.58248i 0.142891 0.331259i
\(285\) −0.960832 1.57537i −0.0569148 0.0933170i
\(286\) 2.51964 + 1.26541i 0.148990 + 0.0748253i
\(287\) 0.723072 4.10074i 0.0426816 0.242059i
\(288\) 2.88245 0.831541i 0.169850 0.0489990i
\(289\) 2.64738 + 15.0141i 0.155728 + 0.883179i
\(290\) −0.998177 + 3.33414i −0.0586150 + 0.195788i
\(291\) −0.241714 + 7.08487i −0.0141695 + 0.415323i
\(292\) 10.3579 5.20195i 0.606152 0.304421i
\(293\) −0.429579 1.43489i −0.0250963 0.0838274i 0.944524 0.328442i \(-0.106524\pi\)
−0.969620 + 0.244615i \(0.921338\pi\)
\(294\) −8.19525 8.27786i −0.477957 0.482775i
\(295\) 2.00320 2.69077i 0.116631 0.156663i
\(296\) −3.57829 + 6.19777i −0.207984 + 0.360238i
\(297\) −11.9823 + 3.77141i −0.695283 + 0.218839i
\(298\) 5.06093 + 8.76579i 0.293172 + 0.507788i
\(299\) 5.89822 + 0.689403i 0.341103 + 0.0398692i
\(300\) −6.60093 + 4.57286i −0.381105 + 0.264014i
\(301\) 1.31641 + 0.311995i 0.0758766 + 0.0179831i
\(302\) −8.50922 5.59660i −0.489650 0.322048i
\(303\) −16.4354 21.0015i −0.944187 1.20651i
\(304\) −1.21214 1.28479i −0.0695207 0.0736877i
\(305\) −1.69348 + 1.42100i −0.0969686 + 0.0813664i
\(306\) 7.79786 15.1461i 0.445774 0.865845i
\(307\) 1.22369 + 1.02679i 0.0698394 + 0.0586022i 0.677039 0.735947i \(-0.263263\pi\)
−0.607200 + 0.794549i \(0.707707\pi\)
\(308\) −0.0736862 1.26514i −0.00419866 0.0720882i
\(309\) 0.560223 + 0.447551i 0.0318700 + 0.0254603i
\(310\) −0.588177 0.790059i −0.0334062 0.0448723i
\(311\) −27.4410 + 3.20739i −1.55603 + 0.181874i −0.850183 0.526487i \(-0.823509\pi\)
−0.705850 + 0.708361i \(0.749435\pi\)
\(312\) 1.91434 + 0.645016i 0.108378 + 0.0365169i
\(313\) −12.3621 + 8.13065i −0.698745 + 0.459572i −0.848530 0.529147i \(-0.822512\pi\)
0.149785 + 0.988719i \(0.452142\pi\)
\(314\) 22.8015 8.29907i 1.28676 0.468343i
\(315\) 0.00951343 0.948480i 0.000536021 0.0534408i
\(316\) −15.3690 5.59387i −0.864575 0.314680i
\(317\) −9.39219 + 2.22599i −0.527518 + 0.125024i −0.485741 0.874103i \(-0.661450\pi\)
−0.0417770 + 0.999127i \(0.513302\pi\)
\(318\) 3.76903 + 0.797969i 0.211357 + 0.0447479i
\(319\) 0.811112 13.9263i 0.0454136 0.779721i
\(320\) 0.413905 0.438714i 0.0231380 0.0245248i
\(321\) 0.827589 + 1.79826i 0.0461915 + 0.100369i
\(322\) −1.05717 2.45080i −0.0589139 0.136578i
\(323\) −10.0302 −0.558095
\(324\) −8.12210 + 3.87706i −0.451228 + 0.215392i
\(325\) −5.40721 −0.299938
\(326\) −2.57336 5.96572i −0.142525 0.330410i
\(327\) −8.93360 + 12.6233i −0.494029 + 0.698070i
\(328\) −5.45109 + 5.77782i −0.300986 + 0.319026i
\(329\) −0.187216 + 3.21438i −0.0103216 + 0.177214i
\(330\) −1.68841 + 1.87820i −0.0929439 + 0.103391i
\(331\) −12.8231 + 3.03914i −0.704823 + 0.167046i −0.567371 0.823462i \(-0.692039\pi\)
−0.137452 + 0.990508i \(0.543891\pi\)
\(332\) −13.8067 5.02522i −0.757739 0.275795i
\(333\) 7.54506 20.1003i 0.413467 1.10149i
\(334\) −2.40146 + 0.874060i −0.131402 + 0.0478265i
\(335\) 7.60590 5.00248i 0.415555 0.273315i
\(336\) −0.179144 0.890110i −0.00977308 0.0485595i
\(337\) −22.4706 + 2.62644i −1.22405 + 0.143071i −0.703461 0.710734i \(-0.748363\pi\)
−0.520593 + 0.853805i \(0.674289\pi\)
\(338\) −6.95078 9.33651i −0.378072 0.507839i
\(339\) 27.1723 10.6374i 1.47580 0.577745i
\(340\) −0.199146 3.41920i −0.0108002 0.185432i
\(341\) 3.02426 + 2.53765i 0.163773 + 0.137422i
\(342\) 4.21851 + 3.20683i 0.228111 + 0.173405i
\(343\) −5.51160 + 4.62478i −0.297599 + 0.249715i
\(344\) −1.77105 1.87720i −0.0954885 0.101212i
\(345\) −1.98863 + 4.93342i −0.107064 + 0.265607i
\(346\) 11.6523 + 7.66386i 0.626433 + 0.412011i
\(347\) −28.8673 6.84166i −1.54968 0.367280i −0.635338 0.772234i \(-0.719139\pi\)
−0.914337 + 0.404954i \(0.867287\pi\)
\(348\) −0.821135 9.96069i −0.0440175 0.533949i
\(349\) 10.7165 + 1.25258i 0.573643 + 0.0670493i 0.397969 0.917399i \(-0.369715\pi\)
0.175674 + 0.984448i \(0.443789\pi\)
\(350\) 1.21517 + 2.10474i 0.0649538 + 0.112503i
\(351\) −5.98239 0.968435i −0.319316 0.0516912i
\(352\) −1.20876 + 2.09363i −0.0644271 + 0.111591i
\(353\) 20.3884 27.3863i 1.08516 1.45763i 0.207569 0.978220i \(-0.433445\pi\)
0.877593 0.479406i \(-0.159148\pi\)
\(354\) −2.53990 + 9.29237i −0.134994 + 0.493884i
\(355\) 1.05170 + 3.51291i 0.0558182 + 0.186446i
\(356\) −11.5492 + 5.80023i −0.612107 + 0.307412i
\(357\) −4.37461 2.72868i −0.231529 0.144417i
\(358\) 2.07354 6.92610i 0.109590 0.366056i
\(359\) −2.51732 14.2765i −0.132859 0.753482i −0.976327 0.216302i \(-0.930600\pi\)
0.843467 0.537181i \(-0.180511\pi\)
\(360\) −1.00942 + 1.50172i −0.0532010 + 0.0791476i
\(361\) −2.75754 + 15.6388i −0.145134 + 0.823094i
\(362\) −5.27527 2.64934i −0.277262 0.139246i
\(363\) −4.27743 + 7.83863i −0.224507 + 0.411422i
\(364\) 0.242157 0.561384i 0.0126925 0.0294245i
\(365\) −2.76898 + 6.41923i −0.144935 + 0.335998i
\(366\) 3.04094 5.57269i 0.158952 0.291289i
\(367\) −22.0962 11.0971i −1.15341 0.579265i −0.233873 0.972267i \(-0.575140\pi\)
−0.919537 + 0.393002i \(0.871436\pi\)
\(368\) −0.884154 + 5.01428i −0.0460897 + 0.261388i
\(369\) 13.2939 19.7775i 0.692054 1.02957i
\(370\) −0.749547 4.25089i −0.0389671 0.220993i
\(371\) 0.334410 1.11701i 0.0173617 0.0579922i
\(372\) 2.39990 + 1.49695i 0.124429 + 0.0776131i
\(373\) −15.9685 + 8.01969i −0.826819 + 0.415244i −0.811296 0.584636i \(-0.801237\pi\)
−0.0155225 + 0.999880i \(0.504941\pi\)
\(374\) 3.93722 + 13.1512i 0.203589 + 0.680034i
\(375\) 2.65421 9.71058i 0.137063 0.501452i
\(376\) 3.66789 4.92683i 0.189157 0.254082i
\(377\) 3.36496 5.82828i 0.173304 0.300171i
\(378\) 0.967474 + 2.54627i 0.0497615 + 0.130966i
\(379\) 5.46182 + 9.46016i 0.280555 + 0.485936i 0.971522 0.236951i \(-0.0761481\pi\)
−0.690967 + 0.722887i \(0.742815\pi\)
\(380\) 1.05816 + 0.123681i 0.0542825 + 0.00634471i
\(381\) −2.48288 30.1183i −0.127202 1.54301i
\(382\) 1.33883 + 0.317309i 0.0685007 + 0.0162350i
\(383\) 19.1036 + 12.5646i 0.976148 + 0.642022i 0.934069 0.357092i \(-0.116232\pi\)
0.0420785 + 0.999114i \(0.486602\pi\)
\(384\) −0.647548 + 1.60645i −0.0330451 + 0.0819788i
\(385\) 0.524537 + 0.555977i 0.0267329 + 0.0283352i
\(386\) 16.9782 14.2464i 0.864165 0.725121i
\(387\) 6.16366 + 4.68548i 0.313316 + 0.238177i
\(388\) −3.13529 2.63082i −0.159170 0.133560i
\(389\) 0.570051 + 9.78739i 0.0289027 + 0.496240i 0.981434 + 0.191800i \(0.0614324\pi\)
−0.952531 + 0.304441i \(0.901531\pi\)
\(390\) −1.13457 + 0.444161i −0.0574512 + 0.0224910i
\(391\) 17.2656 + 23.1918i 0.873161 + 1.17286i
\(392\) 6.67973 0.780749i 0.337377 0.0394338i
\(393\) −2.52946 12.5681i −0.127594 0.633977i
\(394\) −13.6344 + 8.96748i −0.686891 + 0.451775i
\(395\) 9.26980 3.37393i 0.466414 0.169761i
\(396\) 2.54875 6.78995i 0.128080 0.341208i
\(397\) 28.9904 + 10.5516i 1.45499 + 0.529571i 0.943979 0.330006i \(-0.107051\pi\)
0.511006 + 0.859577i \(0.329273\pi\)
\(398\) 18.2446 4.32405i 0.914519 0.216745i
\(399\) 1.07217 1.19269i 0.0536756 0.0597091i
\(400\) 0.269572 4.62837i 0.0134786 0.231418i
\(401\) 5.19386 5.50517i 0.259369 0.274915i −0.584583 0.811334i \(-0.698742\pi\)
0.843952 + 0.536419i \(0.180223\pi\)
\(402\) −15.1019 + 21.3392i −0.753216 + 1.06430i
\(403\) 0.754375 + 1.74884i 0.0375781 + 0.0871158i
\(404\) 15.3968 0.766020
\(405\) 2.24960 4.94025i 0.111783 0.245483i
\(406\) −3.02486 −0.150121
\(407\) 6.85264 + 15.8862i 0.339673 + 0.787450i
\(408\) 4.11191 + 8.93472i 0.203570 + 0.442335i
\(409\) −11.7536 + 12.4581i −0.581177 + 0.616012i −0.949531 0.313674i \(-0.898440\pi\)
0.368354 + 0.929686i \(0.379922\pi\)
\(410\) 0.278574 4.78293i 0.0137578 0.236212i
\(411\) −1.95035 0.412924i −0.0962039 0.0203681i
\(412\) −0.402826 + 0.0954716i −0.0198458 + 0.00470355i
\(413\) 2.73970 + 0.997169i 0.134812 + 0.0490675i
\(414\) 0.153202 15.2741i 0.00752949 0.750683i
\(415\) 8.32746 3.03095i 0.408779 0.148783i
\(416\) −0.974428 + 0.640891i −0.0477753 + 0.0314223i
\(417\) 9.15766 + 3.08557i 0.448453 + 0.151101i
\(418\) −4.24129 + 0.495735i −0.207448 + 0.0242472i
\(419\) −3.93496 5.28557i −0.192235 0.258217i 0.695547 0.718481i \(-0.255162\pi\)
−0.887782 + 0.460264i \(0.847755\pi\)
\(420\) 0.427863 + 0.341811i 0.0208776 + 0.0166787i
\(421\) −0.936365 16.0768i −0.0456356 0.783533i −0.941043 0.338286i \(-0.890153\pi\)
0.895408 0.445247i \(-0.146884\pi\)
\(422\) 12.4318 + 10.4315i 0.605170 + 0.507798i
\(423\) −8.43464 + 16.3830i −0.410106 + 0.796566i
\(424\) −1.70390 + 1.42974i −0.0827487 + 0.0694344i
\(425\) −18.0666 19.1495i −0.876358 0.928885i
\(426\) −6.48979 8.29282i −0.314431 0.401789i
\(427\) −1.60527 1.05580i −0.0776846 0.0510940i
\(428\) −1.11209 0.263570i −0.0537549 0.0127401i
\(429\) 4.01441 2.78102i 0.193818 0.134269i
\(430\) 1.54607 + 0.180710i 0.0745583 + 0.00871462i
\(431\) −0.473396 0.819946i −0.0228027 0.0394954i 0.854399 0.519618i \(-0.173926\pi\)
−0.877202 + 0.480122i \(0.840592\pi\)
\(432\) 1.12719 5.07242i 0.0542320 0.244047i
\(433\) −6.44048 + 11.1552i −0.309510 + 0.536087i −0.978255 0.207405i \(-0.933498\pi\)
0.668745 + 0.743492i \(0.266832\pi\)
\(434\) 0.511198 0.686659i 0.0245383 0.0329607i
\(435\) 4.24112 + 4.28387i 0.203346 + 0.205396i
\(436\) −2.56074 8.55346i −0.122637 0.409636i
\(437\) −8.03694 + 4.03630i −0.384459 + 0.193083i
\(438\) 0.684530 20.0642i 0.0327081 0.958705i
\(439\) −9.83414 + 32.8483i −0.469358 + 1.56776i 0.316023 + 0.948751i \(0.397652\pi\)
−0.785381 + 0.619013i \(0.787533\pi\)
\(440\) −0.253200 1.43597i −0.0120708 0.0684572i
\(441\) −19.3851 + 5.59229i −0.923099 + 0.266299i
\(442\) −1.15005 + 6.52224i −0.0547022 + 0.310231i
\(443\) 16.6157 + 8.34471i 0.789435 + 0.396469i 0.797363 0.603499i \(-0.206227\pi\)
−0.00792842 + 0.999969i \(0.502524\pi\)
\(444\) 6.45438 + 10.5826i 0.306311 + 0.502226i
\(445\) 3.08745 7.15751i 0.146359 0.339298i
\(446\) 4.56079 10.5731i 0.215960 0.500651i
\(447\) 17.5265 0.422012i 0.828975 0.0199605i
\(448\) 0.468451 + 0.235265i 0.0221322 + 0.0111152i
\(449\) 1.42811 8.09924i 0.0673969 0.382227i −0.932387 0.361460i \(-0.882278\pi\)
0.999784 0.0207663i \(-0.00661059\pi\)
\(450\) 1.47606 + 13.8301i 0.0695820 + 0.651957i
\(451\) 3.33462 + 18.9116i 0.157021 + 0.890511i
\(452\) −4.83185 + 16.1395i −0.227271 + 0.759138i
\(453\) −15.5690 + 8.29420i −0.731493 + 0.389695i
\(454\) −3.22256 + 1.61843i −0.151242 + 0.0759566i
\(455\) 0.105760 + 0.353264i 0.00495812 + 0.0165613i
\(456\) −2.95908 + 0.776998i −0.138571 + 0.0363863i
\(457\) 7.94177 10.6676i 0.371500 0.499011i −0.576581 0.817040i \(-0.695613\pi\)
0.948081 + 0.318029i \(0.103021\pi\)
\(458\) −14.4486 + 25.0257i −0.675140 + 1.16938i
\(459\) −16.5587 24.4222i −0.772893 1.13993i
\(460\) −1.53551 2.65957i −0.0715933 0.124003i
\(461\) −1.03017 0.120409i −0.0479798 0.00560803i 0.0920692 0.995753i \(-0.470652\pi\)
−0.140049 + 0.990145i \(0.544726\pi\)
\(462\) −1.98467 0.937615i −0.0923354 0.0436218i
\(463\) 26.9384 + 6.38452i 1.25193 + 0.296714i 0.802528 0.596614i \(-0.203488\pi\)
0.449405 + 0.893328i \(0.351636\pi\)
\(464\) 4.82103 + 3.17084i 0.223811 + 0.147203i
\(465\) −1.68921 + 0.238786i −0.0783351 + 0.0110734i
\(466\) −3.80899 4.03730i −0.176448 0.187024i
\(467\) 7.21055 6.05037i 0.333664 0.279978i −0.460527 0.887646i \(-0.652339\pi\)
0.794191 + 0.607668i \(0.207895\pi\)
\(468\) 2.56896 2.37544i 0.118750 0.109805i
\(469\) 6.06102 + 5.08580i 0.279872 + 0.234841i
\(470\) 0.215408 + 3.69841i 0.00993603 + 0.170595i
\(471\) 6.29965 41.5531i 0.290273 1.91467i
\(472\) −3.32125 4.46121i −0.152873 0.205344i
\(473\) −6.19693 + 0.724317i −0.284935 + 0.0333042i
\(474\) −21.2562 + 18.7262i −0.976328 + 0.860123i
\(475\) 6.84191 4.50000i 0.313929 0.206474i
\(476\) 2.79722 1.01810i 0.128210 0.0466648i
\(477\) 4.34028 5.06843i 0.198728 0.232067i
\(478\) −9.41185 3.42563i −0.430488 0.156685i
\(479\) 22.1517 5.25005i 1.01214 0.239881i 0.309097 0.951031i \(-0.399973\pi\)
0.703041 + 0.711150i \(0.251825\pi\)
\(480\) −0.323622 0.993293i −0.0147713 0.0453374i
\(481\) −0.485317 + 8.33258i −0.0221286 + 0.379933i
\(482\) 7.95568 8.43253i 0.362371 0.384091i
\(483\) −4.60332 0.426011i −0.209458 0.0193842i
\(484\) −2.04203 4.73395i −0.0928195 0.215180i
\(485\) 2.46858 0.112093
\(486\) −0.843912 + 15.5656i −0.0382806 + 0.706070i
\(487\) −3.37255 −0.152825 −0.0764124 0.997076i \(-0.524347\pi\)
−0.0764124 + 0.997076i \(0.524347\pi\)
\(488\) 1.45173 + 3.36549i 0.0657168 + 0.152349i
\(489\) −11.2054 1.03699i −0.506725 0.0468944i
\(490\) −2.78360 + 2.95044i −0.125750 + 0.133287i
\(491\) −0.886715 + 15.2243i −0.0400169 + 0.687063i 0.917331 + 0.398125i \(0.130339\pi\)
−0.957348 + 0.288938i \(0.906698\pi\)
\(492\) 4.26207 + 13.0816i 0.192149 + 0.589762i
\(493\) 31.8837 7.55657i 1.43597 0.340331i
\(494\) −1.93584 0.704588i −0.0870976 0.0317009i
\(495\) 1.45482 + 4.12536i 0.0653892 + 0.185421i
\(496\) −1.53455 + 0.558530i −0.0689032 + 0.0250787i
\(497\) −2.66273 + 1.75131i −0.119440 + 0.0785568i
\(498\) −19.0953 + 16.8226i −0.855682 + 0.753837i
\(499\) −39.9026 + 4.66395i −1.78629 + 0.208787i −0.943933 0.330137i \(-0.892905\pi\)
−0.842354 + 0.538924i \(0.818831\pi\)
\(500\) 3.47072 + 4.66199i 0.155215 + 0.208490i
\(501\) −0.663482 + 4.37639i −0.0296422 + 0.195523i
\(502\) 1.61711 + 27.7647i 0.0721751 + 1.23920i
\(503\) 1.15131 + 0.966068i 0.0513346 + 0.0430748i 0.668094 0.744077i \(-0.267110\pi\)
−0.616759 + 0.787152i \(0.711555\pi\)
\(504\) −1.50196 0.466123i −0.0669028 0.0207628i
\(505\) −7.11391 + 5.96928i −0.316565 + 0.265629i
\(506\) 8.44704 + 8.95334i 0.375517 + 0.398025i
\(507\) −19.9622 + 2.82185i −0.886551 + 0.125323i
\(508\) 14.5774 + 9.58773i 0.646769 + 0.425387i
\(509\) 32.2705 + 7.64826i 1.43037 + 0.339003i 0.871557 0.490294i \(-0.163110\pi\)
0.558809 + 0.829297i \(0.311259\pi\)
\(510\) −5.36381 2.53401i −0.237514 0.112208i
\(511\) −6.03494 0.705383i −0.266970 0.0312043i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 8.37566 3.75328i 0.369794 0.165711i
\(514\) 6.27848 10.8746i 0.276932 0.479660i
\(515\) 0.149107 0.200286i 0.00657044 0.00882564i
\(516\) −4.32350 + 1.13527i −0.190331 + 0.0499775i
\(517\) −4.25874 14.2252i −0.187299 0.625623i
\(518\) 3.35250 1.68369i 0.147301 0.0739771i
\(519\) 21.3198 11.3579i 0.935834 0.498556i
\(520\) 0.201752 0.673898i 0.00884740 0.0295524i
\(521\) 0.751612 + 4.26260i 0.0329287 + 0.186748i 0.996836 0.0794919i \(-0.0253298\pi\)
−0.963907 + 0.266240i \(0.914219\pi\)
\(522\) −15.8256 7.01560i −0.692669 0.307064i
\(523\) 2.48169 14.0744i 0.108517 0.615429i −0.881240 0.472668i \(-0.843291\pi\)
0.989757 0.142761i \(-0.0455980\pi\)
\(524\) 6.61439 + 3.32187i 0.288951 + 0.145117i
\(525\) 4.20827 0.101329i 0.183664 0.00442236i
\(526\) 9.57072 22.1874i 0.417303 0.967418i
\(527\) −3.67293 + 8.51482i −0.159995 + 0.370911i
\(528\) 2.18032 + 3.57483i 0.0948861 + 0.155575i
\(529\) 2.61368 + 1.31264i 0.113638 + 0.0570712i
\(530\) 0.232962 1.32119i 0.0101192 0.0573889i
\(531\) 12.0210 + 11.5713i 0.521666 + 0.502150i
\(532\) 0.160786 + 0.911865i 0.00697098 + 0.0395344i
\(533\) −2.65705 + 8.87517i −0.115090 + 0.384426i
\(534\) −0.763259 + 22.3718i −0.0330294 + 0.968123i
\(535\) 0.616013 0.309373i 0.0266326 0.0133754i
\(536\) −4.32883 14.4593i −0.186977 0.624547i
\(537\) −8.81018 8.89899i −0.380187 0.384020i
\(538\) −14.3378 + 19.2590i −0.618146 + 0.830314i
\(539\) 8.12916 14.0801i 0.350148 0.606473i
\(540\) 1.44575 + 2.78066i 0.0622152 + 0.119660i
\(541\) −2.72610 4.72175i −0.117204 0.203004i 0.801454 0.598056i \(-0.204060\pi\)
−0.918659 + 0.395052i \(0.870727\pi\)
\(542\) −12.7189 1.48662i −0.546322 0.0638559i
\(543\) −8.40480 + 5.82251i −0.360685 + 0.249868i
\(544\) −5.52546 1.30956i −0.236902 0.0561469i
\(545\) 4.49930 + 2.95923i 0.192729 + 0.126760i
\(546\) −0.652624 0.833940i −0.0279297 0.0356894i
\(547\) 7.38735 + 7.83014i 0.315860 + 0.334792i 0.865780 0.500425i \(-0.166823\pi\)
−0.549919 + 0.835218i \(0.685342\pi\)
\(548\) 0.881716 0.739847i 0.0376650 0.0316047i
\(549\) −5.94982 9.24695i −0.253932 0.394650i
\(550\) −8.58593 7.20445i −0.366105 0.307199i
\(551\) 0.592632 + 10.1751i 0.0252470 + 0.433474i
\(552\) 6.89023 + 5.50446i 0.293267 + 0.234286i
\(553\) 5.11983 + 6.87712i 0.217717 + 0.292445i
\(554\) 15.7552 1.84151i 0.669372 0.0782384i
\(555\) −7.08499 2.38721i −0.300741 0.101331i
\(556\) −4.66138 + 3.06584i −0.197687 + 0.130021i
\(557\) −41.4633 + 15.0914i −1.75686 + 0.639443i −0.999902 0.0140247i \(-0.995536\pi\)
−0.756954 + 0.653468i \(0.773313\pi\)
\(558\) 4.26710 2.40687i 0.180641 0.101891i
\(559\) −2.82845 1.02947i −0.119631 0.0435420i
\(560\) −0.307653 + 0.0729152i −0.0130007 + 0.00308123i
\(561\) 23.2619 + 4.92495i 0.982117 + 0.207931i
\(562\) 0.222615 3.82215i 0.00939043 0.161228i
\(563\) 17.4517 18.4977i 0.735501 0.779586i −0.246362 0.969178i \(-0.579235\pi\)
0.981863 + 0.189592i \(0.0607166\pi\)
\(564\) −4.44769 9.66434i −0.187281 0.406942i
\(565\) −4.02472 9.33035i −0.169321 0.392531i
\(566\) 28.3043 1.18972
\(567\) 4.67406 + 0.641596i 0.196292 + 0.0269445i
\(568\) 6.07970 0.255099
\(569\) −13.5651 31.4473i −0.568677 1.31834i −0.923568 0.383434i \(-0.874741\pi\)
0.354891 0.934908i \(-0.384518\pi\)
\(570\) 1.06597 1.50622i 0.0446484 0.0630888i
\(571\) −14.1247 + 14.9713i −0.591099 + 0.626528i −0.952008 0.306073i \(-0.900985\pi\)
0.360909 + 0.932601i \(0.382466\pi\)
\(572\) −0.163942 + 2.81478i −0.00685477 + 0.117692i
\(573\) 1.59323 1.77232i 0.0665580 0.0740396i
\(574\) 4.05176 0.960286i 0.169117 0.0400816i
\(575\) −22.1823 8.07370i −0.925066 0.336697i
\(576\) 1.90522 + 2.31736i 0.0793840 + 0.0965566i
\(577\) 29.1695 10.6168i 1.21434 0.441984i 0.346133 0.938185i \(-0.387495\pi\)
0.868207 + 0.496202i \(0.165272\pi\)
\(578\) −12.7376 + 8.37763i −0.529813 + 0.348463i
\(579\) −7.57413 37.6335i −0.314770 1.56400i
\(580\) −3.45682 + 0.404044i −0.143537 + 0.0167770i
\(581\) 4.59936 + 6.17802i 0.190814 + 0.256307i
\(582\) −6.60118 + 2.58423i −0.273628 + 0.107120i
\(583\) 0.312659 + 5.36815i 0.0129490 + 0.222326i
\(584\) 8.87908 + 7.45044i 0.367419 + 0.308301i
\(585\) −0.266007 + 2.09352i −0.0109981 + 0.0865563i
\(586\) 1.14740 0.962779i 0.0473985 0.0397720i
\(587\) 14.4106 + 15.2744i 0.594790 + 0.630441i 0.952917 0.303232i \(-0.0980657\pi\)
−0.358126 + 0.933673i \(0.616584\pi\)
\(588\) 4.35489 10.8037i 0.179593 0.445537i
\(589\) −2.40995 1.58505i −0.0993005 0.0653109i
\(590\) 3.26414 + 0.773615i 0.134382 + 0.0318492i
\(591\) 2.32226 + 28.1699i 0.0955249 + 1.15876i
\(592\) −7.10818 0.830827i −0.292145 0.0341468i
\(593\) −0.0907517 0.157187i −0.00372672 0.00645488i 0.864156 0.503224i \(-0.167853\pi\)
−0.867883 + 0.496769i \(0.834520\pi\)
\(594\) −8.20891 9.50855i −0.336816 0.390141i
\(595\) −0.897707 + 1.55487i −0.0368024 + 0.0637436i
\(596\) −6.04435 + 8.11898i −0.247586 + 0.332566i
\(597\) 8.56261 31.3268i 0.350444 1.28212i
\(598\) 1.70314 + 5.68890i 0.0696467 + 0.232636i
\(599\) 15.8917 7.98110i 0.649316 0.326099i −0.0934754 0.995622i \(-0.529798\pi\)
0.742792 + 0.669523i \(0.233501\pi\)
\(600\) −6.81337 4.24987i −0.278155 0.173500i
\(601\) 0.917694 3.06531i 0.0374335 0.125037i −0.937231 0.348710i \(-0.886620\pi\)
0.974664 + 0.223674i \(0.0718049\pi\)
\(602\) 0.234925 + 1.33232i 0.00957481 + 0.0543015i
\(603\) 19.9148 + 40.6656i 0.810995 + 1.65603i
\(604\) 1.76856 10.0300i 0.0719617 0.408115i
\(605\) 2.77883 + 1.39558i 0.112975 + 0.0567384i
\(606\) 12.7742 23.4095i 0.518917 0.950945i
\(607\) 11.8721 27.5225i 0.481872 1.11710i −0.487858 0.872923i \(-0.662222\pi\)
0.969730 0.244181i \(-0.0785191\pi\)
\(608\) 0.699611 1.62188i 0.0283730 0.0657760i
\(609\) −2.50962 + 4.59903i −0.101695 + 0.186362i
\(610\) −1.97554 0.992155i −0.0799874 0.0401712i
\(611\) 1.24396 7.05485i 0.0503253 0.285409i
\(612\) 16.9960 + 1.16105i 0.687021 + 0.0469328i
\(613\) 3.35934 + 19.0517i 0.135682 + 0.769493i 0.974382 + 0.224899i \(0.0722052\pi\)
−0.838700 + 0.544594i \(0.816684\pi\)
\(614\) −0.458142 + 1.53030i −0.0184891 + 0.0617579i
\(615\) −7.04091 4.39179i −0.283917 0.177094i
\(616\) 1.13249 0.568758i 0.0456293 0.0229159i
\(617\) −3.59062 11.9935i −0.144553 0.482841i 0.854794 0.518967i \(-0.173683\pi\)
−0.999347 + 0.0361265i \(0.988498\pi\)
\(618\) −0.189056 + 0.691671i −0.00760493 + 0.0278231i
\(619\) 1.63583 2.19730i 0.0657495 0.0883169i −0.768032 0.640411i \(-0.778764\pi\)
0.833782 + 0.552095i \(0.186171\pi\)
\(620\) 0.492480 0.853000i 0.0197785 0.0342573i
\(621\) −23.0959 12.9054i −0.926806 0.517875i
\(622\) −13.8139 23.9263i −0.553886 0.959359i
\(623\) 6.72902 + 0.786510i 0.269593 + 0.0315109i
\(624\) 0.165968 + 2.01326i 0.00664404 + 0.0805948i
\(625\) 19.1452 + 4.53749i 0.765807 + 0.181500i
\(626\) −12.3621 8.13065i −0.494087 0.324966i
\(627\) −2.76513 + 6.85980i −0.110429 + 0.273954i
\(628\) 16.6516 + 17.6496i 0.664469 + 0.704296i
\(629\) −31.1311 + 26.1221i −1.24128 + 1.04156i
\(630\) 0.874678 0.366938i 0.0348480 0.0146192i
\(631\) −31.6227 26.5346i −1.25888 1.05633i −0.995800 0.0915516i \(-0.970817\pi\)
−0.263080 0.964774i \(-0.584738\pi\)
\(632\) −0.950981 16.3277i −0.0378280 0.649481i
\(633\) 26.1744 10.2468i 1.04034 0.407272i
\(634\) −5.76399 7.74239i −0.228917 0.307489i
\(635\) −10.4525 + 1.22172i −0.414793 + 0.0484823i
\(636\) 0.760127 + 3.77684i 0.0301410 + 0.149762i
\(637\) 6.55323 4.31013i 0.259648 0.170773i
\(638\) 13.1086 4.77113i 0.518974 0.188891i
\(639\) −17.9929 + 2.98687i −0.711787 + 0.118159i
\(640\) 0.566774 + 0.206289i 0.0224037 + 0.00815428i
\(641\) −11.3383 + 2.68724i −0.447838 + 0.106139i −0.448345 0.893860i \(-0.647987\pi\)
0.000507802 1.00000i \(0.499838\pi\)
\(642\) −1.32340 + 1.47216i −0.0522304 + 0.0581015i
\(643\) −0.425303 + 7.30216i −0.0167723 + 0.287969i 0.979484 + 0.201522i \(0.0645886\pi\)
−0.996256 + 0.0864477i \(0.972448\pi\)
\(644\) 1.83164 1.94142i 0.0721767 0.0765028i
\(645\) 1.55748 2.20074i 0.0613258 0.0866541i
\(646\) −3.97276 9.20989i −0.156306 0.362358i
\(647\) −49.7900 −1.95745 −0.978723 0.205185i \(-0.934220\pi\)
−0.978723 + 0.205185i \(0.934220\pi\)
\(648\) −6.77697 5.92221i −0.266225 0.232647i
\(649\) −13.4456 −0.527788
\(650\) −2.14169 4.96499i −0.0840038 0.194743i
\(651\) −0.619880 1.34693i −0.0242950 0.0527904i
\(652\) 4.45856 4.72580i 0.174611 0.185077i
\(653\) −0.128004 + 2.19775i −0.00500920 + 0.0860046i −0.999886 0.0150886i \(-0.995197\pi\)
0.994877 + 0.101093i \(0.0322340\pi\)
\(654\) −15.1293 3.20315i −0.591604 0.125253i
\(655\) −4.34398 + 1.02954i −0.169733 + 0.0402275i
\(656\) −7.46435 2.71680i −0.291434 0.106073i
\(657\) −29.9379 17.6874i −1.16799 0.690051i
\(658\) −3.02564 + 1.10124i −0.117952 + 0.0429310i
\(659\) −28.8035 + 18.9443i −1.12202 + 0.737966i −0.968211 0.250134i \(-0.919525\pi\)
−0.153812 + 0.988100i \(0.549155\pi\)
\(660\) −2.39334 0.806408i −0.0931605 0.0313894i
\(661\) −35.4857 + 4.14768i −1.38023 + 0.161326i −0.773609 0.633663i \(-0.781551\pi\)
−0.606624 + 0.794989i \(0.707477\pi\)
\(662\) −7.86956 10.5707i −0.305859 0.410840i
\(663\) 8.96234 + 7.15983i 0.348068 + 0.278065i
\(664\) −0.854307 14.6679i −0.0331536 0.569225i
\(665\) −0.427816 0.358980i −0.0165900 0.0139207i
\(666\) 21.4448 1.03332i 0.830971 0.0400404i
\(667\) 22.5067 18.8853i 0.871462 0.731243i
\(668\) −1.75375 1.85886i −0.0678545 0.0719216i
\(669\) −12.2915 15.7064i −0.475218 0.607246i
\(670\) 7.60590 + 5.00248i 0.293842 + 0.193263i
\(671\) 8.62197 + 2.04344i 0.332847 + 0.0788863i
\(672\) 0.746358 0.517047i 0.0287914 0.0199455i
\(673\) 2.35360 + 0.275097i 0.0907247 + 0.0106042i 0.161334 0.986900i \(-0.448420\pi\)
−0.0706094 + 0.997504i \(0.522494\pi\)
\(674\) −11.3118 19.5926i −0.435715 0.754680i
\(675\) 22.2521 + 9.23016i 0.856483 + 0.355269i
\(676\) 5.81987 10.0803i 0.223841 0.387705i
\(677\) 2.08069 2.79485i 0.0799675 0.107415i −0.760339 0.649526i \(-0.774967\pi\)
0.840307 + 0.542111i \(0.182375\pi\)
\(678\) 20.5299 + 20.7368i 0.788444 + 0.796392i
\(679\) 0.615337 + 2.05537i 0.0236145 + 0.0788778i
\(680\) 3.06068 1.53713i 0.117372 0.0589464i
\(681\) −0.212971 + 6.24237i −0.00816106 + 0.239208i
\(682\) −1.13227 + 3.78203i −0.0433567 + 0.144822i
\(683\) −5.63583 31.9624i −0.215649 1.22301i −0.879777 0.475387i \(-0.842308\pi\)
0.664127 0.747619i \(-0.268803\pi\)
\(684\) −1.27369 + 5.14367i −0.0487008 + 0.196673i
\(685\) −0.120550 + 0.683675i −0.00460599 + 0.0261219i
\(686\) −6.42959 3.22906i −0.245483 0.123286i
\(687\) 26.0619 + 42.7309i 0.994324 + 1.63029i
\(688\) 1.02220 2.36973i 0.0389710 0.0903450i
\(689\) −1.02750 + 2.38202i −0.0391447 + 0.0907476i
\(690\) −5.31760 + 0.128040i −0.202438 + 0.00487441i
\(691\) 4.97481 + 2.49844i 0.189251 + 0.0950453i 0.540901 0.841086i \(-0.318083\pi\)
−0.351651 + 0.936131i \(0.614380\pi\)
\(692\) −2.42182 + 13.7349i −0.0920640 + 0.522121i
\(693\) −3.07218 + 2.23961i −0.116702 + 0.0850759i
\(694\) −5.15161 29.2162i −0.195552 1.10903i
\(695\) 0.965122 3.22373i 0.0366092 0.122283i
\(696\) 8.82084 4.69921i 0.334353 0.178123i
\(697\) −40.3089 + 20.2439i −1.52681 + 0.766792i
\(698\) 3.09446 + 10.3362i 0.117127 + 0.391232i
\(699\) −9.29855 + 2.44163i −0.351703 + 0.0923508i
\(700\) −1.45130 + 1.94944i −0.0548541 + 0.0736819i
\(701\) 15.5570 26.9455i 0.587580 1.01772i −0.406969 0.913442i \(-0.633414\pi\)
0.994548 0.104276i \(-0.0332524\pi\)
\(702\) −1.48027 5.87670i −0.0558692 0.221802i
\(703\) −6.32047 10.9474i −0.238381 0.412888i
\(704\) −2.40117 0.280657i −0.0904976 0.0105777i
\(705\) 5.80183 + 2.74094i 0.218509 + 0.103230i
\(706\) 33.2220 + 7.87375i 1.25032 + 0.296332i
\(707\) −6.74335 4.43517i −0.253610 0.166802i
\(708\) −9.53841 + 1.34835i −0.358475 + 0.0506739i
\(709\) 21.7672 + 23.0719i 0.817485 + 0.866483i 0.993015 0.117991i \(-0.0376453\pi\)
−0.175530 + 0.984474i \(0.556164\pi\)
\(710\) −2.80905 + 2.35708i −0.105422 + 0.0884594i
\(711\) 10.8360 + 47.8546i 0.406382 + 1.79469i
\(712\) −9.90028 8.30732i −0.371029 0.311330i
\(713\) 0.483463 + 8.30074i 0.0181058 + 0.310865i
\(714\) 0.772823 5.09762i 0.0289222 0.190773i
\(715\) −1.01553 1.36409i −0.0379787 0.0510142i
\(716\) 7.18095 0.839332i 0.268365 0.0313673i
\(717\) −13.0171 + 11.4678i −0.486132 + 0.428271i
\(718\) 12.1118 7.96606i 0.452009 0.297291i
\(719\) −9.36299 + 3.40785i −0.349180 + 0.127091i −0.510655 0.859786i \(-0.670597\pi\)
0.161475 + 0.986877i \(0.448375\pi\)
\(720\) −1.77871 0.332063i −0.0662887 0.0123753i
\(721\) 0.203928 + 0.0742235i 0.00759466 + 0.00276423i
\(722\) −15.4520 + 3.66219i −0.575064 + 0.136293i
\(723\) −6.22035 19.0921i −0.231337 0.710043i
\(724\) 0.343239 5.89318i 0.0127564 0.219018i
\(725\) −18.3586 + 19.4590i −0.681822 + 0.722689i
\(726\) −8.89176 0.822882i −0.330004 0.0305400i
\(727\) 8.21648 + 19.0479i 0.304732 + 0.706449i 0.999923 0.0123759i \(-0.00393949\pi\)
−0.695191 + 0.718825i \(0.744680\pi\)
\(728\) 0.611385 0.0226594
\(729\) 22.9660 + 14.1974i 0.850591 + 0.525828i
\(730\) −6.99098 −0.258748
\(731\) −5.80459 13.4566i −0.214691 0.497709i
\(732\) 6.32139 + 0.585008i 0.233645 + 0.0216225i
\(733\) 16.5845 17.5786i 0.612563 0.649279i −0.344627 0.938740i \(-0.611994\pi\)
0.957190 + 0.289461i \(0.0934760\pi\)
\(734\) 1.43770 24.6844i 0.0530666 0.911118i
\(735\) 2.17643 + 6.68010i 0.0802787 + 0.246399i
\(736\) −4.95439 + 1.17421i −0.182621 + 0.0432820i
\(737\) −34.2880 12.4798i −1.26302 0.459700i
\(738\) 23.4255 + 4.37324i 0.862303 + 0.160981i
\(739\) −33.0042 + 12.0126i −1.21408 + 0.441889i −0.868117 0.496359i \(-0.834670\pi\)
−0.345963 + 0.938248i \(0.612448\pi\)
\(740\) 3.60636 2.37194i 0.132572 0.0871942i
\(741\) −2.67737 + 2.35870i −0.0983556 + 0.0866491i
\(742\) 1.15811 0.135363i 0.0425155 0.00496935i
\(743\) 23.7154 + 31.8553i 0.870034 + 1.16866i 0.984527 + 0.175234i \(0.0560682\pi\)
−0.114493 + 0.993424i \(0.536524\pi\)
\(744\) −0.423969 + 2.79654i −0.0155434 + 0.102526i
\(745\) −0.354973 6.09465i −0.0130052 0.223291i
\(746\) −13.6886 11.4861i −0.501176 0.420536i
\(747\) 9.73446 + 42.9899i 0.356165 + 1.57292i
\(748\) −10.5162 + 8.82416i −0.384511 + 0.322643i
\(749\) 0.411140 + 0.435783i 0.0150227 + 0.0159231i
\(750\) 9.96769 1.40903i 0.363968 0.0514504i
\(751\) 29.7283 + 19.5526i 1.08480 + 0.713484i 0.960365 0.278744i \(-0.0899181\pi\)
0.124434 + 0.992228i \(0.460288\pi\)
\(752\) 5.97668 + 1.41650i 0.217947 + 0.0516544i
\(753\) 43.5554 + 20.5768i 1.58725 + 0.749860i
\(754\) 6.68441 + 0.781295i 0.243432 + 0.0284531i
\(755\) 3.07145 + 5.31990i 0.111781 + 0.193611i
\(756\) −1.95483 + 1.89688i −0.0710964 + 0.0689887i
\(757\) 26.5049 45.9078i 0.963336 1.66855i 0.249314 0.968423i \(-0.419795\pi\)
0.714022 0.700123i \(-0.246872\pi\)
\(758\) −6.52315 + 8.76211i −0.236931 + 0.318254i
\(759\) 20.6210 5.41469i 0.748495 0.196541i
\(760\) 0.305550 + 1.02061i 0.0110835 + 0.0370213i
\(761\) 1.09219 0.548520i 0.0395920 0.0198838i −0.428893 0.903355i \(-0.641096\pi\)
0.468485 + 0.883471i \(0.344800\pi\)
\(762\) 26.6717 14.2091i 0.966214 0.514741i
\(763\) −1.34236 + 4.48381i −0.0485968 + 0.162325i
\(764\) 0.238926 + 1.35502i 0.00864405 + 0.0490228i
\(765\) −8.30292 + 6.05282i −0.300193 + 0.218840i
\(766\) −3.97050 + 22.5178i −0.143460 + 0.813602i
\(767\) −5.79669