Properties

Label 162.2.g.b.31.4
Level $162$
Weight $2$
Character 162.31
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 31.4
Character \(\chi\) \(=\) 162.31
Dual form 162.2.g.b.115.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.396080 + 0.918216i) q^{2} +(0.360138 + 1.69420i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(-0.0437737 + 0.751566i) q^{5} +(-1.41299 + 1.00172i) q^{6} +(-2.40536 + 0.570080i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(-2.74060 + 1.22029i) q^{9} +O(q^{10})\) \(q+(0.396080 + 0.918216i) q^{2} +(0.360138 + 1.69420i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(-0.0437737 + 0.751566i) q^{5} +(-1.41299 + 1.00172i) q^{6} +(-2.40536 + 0.570080i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(-2.74060 + 1.22029i) q^{9} +(-0.707437 + 0.257486i) q^{10} +(5.40006 - 3.55167i) q^{11} +(-1.47946 - 0.900673i) q^{12} +(3.28090 - 0.383482i) q^{13} +(-1.47617 - 1.98284i) q^{14} +(-1.28906 + 0.196506i) q^{15} +(-0.0581448 - 0.998308i) q^{16} +(2.19427 + 1.84121i) q^{17} +(-2.20598 - 2.03313i) q^{18} +(-6.15342 + 5.16333i) q^{19} +(-0.516630 - 0.547595i) q^{20} +(-1.83209 - 3.86984i) q^{21} +(5.40006 + 3.55167i) q^{22} +(0.848522 + 0.201103i) q^{23} +(0.241030 - 1.71520i) q^{24} +(4.40326 + 0.514667i) q^{25} +(1.65162 + 2.86068i) q^{26} +(-3.05440 - 4.20365i) q^{27} +(1.23600 - 2.14081i) q^{28} +(4.55741 - 6.12166i) q^{29} +(-0.691007 - 1.10581i) q^{30} +(-0.595377 - 1.98870i) q^{31} +(0.893633 - 0.448799i) q^{32} +(7.96200 + 7.86966i) q^{33} +(-0.821524 + 2.74408i) q^{34} +(-0.323161 - 1.83274i) q^{35} +(0.993110 - 2.83085i) q^{36} +(0.250792 - 1.42231i) q^{37} +(-7.17830 - 3.60508i) q^{38} +(1.83127 + 5.42038i) q^{39} +(0.298184 - 0.691269i) q^{40} +(0.924810 - 2.14395i) q^{41} +(2.82770 - 3.21502i) q^{42} +(-2.95224 - 1.48267i) q^{43} +(-1.12235 + 6.36517i) q^{44} +(-0.797160 - 2.11316i) q^{45} +(0.151426 + 0.858779i) q^{46} +(1.12797 - 3.76767i) q^{47} +(1.67039 - 0.458037i) q^{48} +(-0.794670 + 0.399098i) q^{49} +(1.27147 + 4.24699i) q^{50} +(-2.32913 + 4.38061i) q^{51} +(-1.97255 + 2.64960i) q^{52} +(1.31352 - 2.27508i) q^{53} +(2.65007 - 4.46958i) q^{54} +(2.43293 + 4.21397i) q^{55} +(2.45528 + 0.286981i) q^{56} +(-10.9638 - 8.56559i) q^{57} +(7.42611 + 1.76002i) q^{58} +(-5.98538 - 3.93664i) q^{59} +(0.741676 - 1.07248i) q^{60} +(-6.33431 - 6.71397i) q^{61} +(1.59024 - 1.33437i) q^{62} +(5.89647 - 4.49759i) q^{63} +(0.766044 + 0.642788i) q^{64} +(0.144595 + 2.48260i) q^{65} +(-4.07247 + 10.4278i) q^{66} +(5.81744 + 7.81417i) q^{67} +(-2.84505 + 0.332538i) q^{68} +(-0.0351238 + 1.50999i) q^{69} +(1.55485 - 1.02264i) q^{70} +(-14.3396 + 5.21918i) q^{71} +(2.99269 - 0.209355i) q^{72} +(-0.790323 - 0.287654i) q^{73} +(1.40532 - 0.333067i) q^{74} +(0.713832 + 7.64533i) q^{75} +(0.467061 - 8.01913i) q^{76} +(-10.9643 + 11.6215i) q^{77} +(-4.25175 + 3.82840i) q^{78} +(-5.40670 - 12.5341i) q^{79} +0.752839 q^{80} +(6.02179 - 6.68865i) q^{81} +2.33491 q^{82} +(4.33897 + 10.0589i) q^{83} +(4.07208 + 1.32303i) q^{84} +(-1.47984 + 1.56854i) q^{85} +(0.192090 - 3.29805i) q^{86} +(12.0126 + 5.51650i) q^{87} +(-6.28914 + 1.49055i) q^{88} +(5.63087 + 2.04947i) q^{89} +(1.62460 - 1.56894i) q^{90} +(-7.67312 + 2.79279i) q^{91} +(-0.728568 + 0.479187i) q^{92} +(3.15483 - 1.72489i) q^{93} +(3.90630 - 0.456581i) q^{94} +(-3.61122 - 4.85072i) q^{95} +(1.08218 + 1.35236i) q^{96} +(0.314846 + 5.40570i) q^{97} +(-0.681211 - 0.571604i) q^{98} +(-10.4653 + 16.3233i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{10}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396080 + 0.918216i 0.280071 + 0.649277i
\(3\) 0.360138 + 1.69420i 0.207926 + 0.978145i
\(4\) −0.686242 + 0.727374i −0.343121 + 0.363687i
\(5\) −0.0437737 + 0.751566i −0.0195762 + 0.336110i 0.974273 + 0.225370i \(0.0723592\pi\)
−0.993849 + 0.110740i \(0.964678\pi\)
\(6\) −1.41299 + 1.00172i −0.576853 + 0.408951i
\(7\) −2.40536 + 0.570080i −0.909140 + 0.215470i −0.658474 0.752603i \(-0.728798\pi\)
−0.250666 + 0.968074i \(0.580650\pi\)
\(8\) −0.939693 0.342020i −0.332232 0.120922i
\(9\) −2.74060 + 1.22029i −0.913534 + 0.406763i
\(10\) −0.707437 + 0.257486i −0.223711 + 0.0814243i
\(11\) 5.40006 3.55167i 1.62818 1.07087i 0.690519 0.723314i \(-0.257382\pi\)
0.937659 0.347556i \(-0.112988\pi\)
\(12\) −1.47946 0.900673i −0.427082 0.260002i
\(13\) 3.28090 0.383482i 0.909957 0.106359i 0.351782 0.936082i \(-0.385576\pi\)
0.558175 + 0.829723i \(0.311502\pi\)
\(14\) −1.47617 1.98284i −0.394523 0.529937i
\(15\) −1.28906 + 0.196506i −0.332835 + 0.0507376i
\(16\) −0.0581448 0.998308i −0.0145362 0.249577i
\(17\) 2.19427 + 1.84121i 0.532189 + 0.446559i 0.868856 0.495064i \(-0.164855\pi\)
−0.336668 + 0.941623i \(0.609300\pi\)
\(18\) −2.20598 2.03313i −0.519956 0.479214i
\(19\) −6.15342 + 5.16333i −1.41169 + 1.18455i −0.456073 + 0.889943i \(0.650744\pi\)
−0.955619 + 0.294607i \(0.904811\pi\)
\(20\) −0.516630 0.547595i −0.115522 0.122446i
\(21\) −1.83209 3.86984i −0.399795 0.844469i
\(22\) 5.40006 + 3.55167i 1.15130 + 0.757219i
\(23\) 0.848522 + 0.201103i 0.176929 + 0.0419329i 0.318125 0.948049i \(-0.396947\pi\)
−0.141196 + 0.989982i \(0.545095\pi\)
\(24\) 0.241030 1.71520i 0.0492001 0.350113i
\(25\) 4.40326 + 0.514667i 0.880651 + 0.102933i
\(26\) 1.65162 + 2.86068i 0.323909 + 0.561026i
\(27\) −3.05440 4.20365i −0.587820 0.808992i
\(28\) 1.23600 2.14081i 0.233581 0.404575i
\(29\) 4.55741 6.12166i 0.846290 1.13676i −0.142844 0.989745i \(-0.545625\pi\)
0.989134 0.147019i \(-0.0469679\pi\)
\(30\) −0.691007 1.10581i −0.126160 0.201892i
\(31\) −0.595377 1.98870i −0.106933 0.357181i 0.887729 0.460366i \(-0.152282\pi\)
−0.994662 + 0.103185i \(0.967097\pi\)
\(32\) 0.893633 0.448799i 0.157973 0.0793372i
\(33\) 7.96200 + 7.86966i 1.38601 + 1.36993i
\(34\) −0.821524 + 2.74408i −0.140890 + 0.470606i
\(35\) −0.323161 1.83274i −0.0546242 0.309789i
\(36\) 0.993110 2.83085i 0.165518 0.471809i
\(37\) 0.250792 1.42231i 0.0412299 0.233826i −0.957228 0.289333i \(-0.906566\pi\)
0.998458 + 0.0555070i \(0.0176775\pi\)
\(38\) −7.17830 3.60508i −1.16447 0.584821i
\(39\) 1.83127 + 5.42038i 0.293238 + 0.867955i
\(40\) 0.298184 0.691269i 0.0471471 0.109299i
\(41\) 0.924810 2.14395i 0.144431 0.334829i −0.830610 0.556855i \(-0.812008\pi\)
0.975041 + 0.222026i \(0.0712671\pi\)
\(42\) 2.82770 3.21502i 0.436323 0.496088i
\(43\) −2.95224 1.48267i −0.450213 0.226105i 0.209220 0.977869i \(-0.432907\pi\)
−0.659433 + 0.751763i \(0.729204\pi\)
\(44\) −1.12235 + 6.36517i −0.169201 + 0.959585i
\(45\) −0.797160 2.11316i −0.118834 0.315011i
\(46\) 0.151426 + 0.858779i 0.0223265 + 0.126620i
\(47\) 1.12797 3.76767i 0.164531 0.549571i −0.835469 0.549537i \(-0.814804\pi\)
1.00000 3.36408e-5i \(-1.07082e-5\pi\)
\(48\) 1.67039 0.458037i 0.241100 0.0661120i
\(49\) −0.794670 + 0.399098i −0.113524 + 0.0570140i
\(50\) 1.27147 + 4.24699i 0.179812 + 0.600615i
\(51\) −2.32913 + 4.38061i −0.326144 + 0.613408i
\(52\) −1.97255 + 2.64960i −0.273544 + 0.367433i
\(53\) 1.31352 2.27508i 0.180425 0.312506i −0.761600 0.648047i \(-0.775586\pi\)
0.942025 + 0.335541i \(0.108919\pi\)
\(54\) 2.65007 4.46958i 0.360629 0.608233i
\(55\) 2.43293 + 4.21397i 0.328057 + 0.568211i
\(56\) 2.45528 + 0.286981i 0.328100 + 0.0383494i
\(57\) −10.9638 8.56559i −1.45219 1.13454i
\(58\) 7.42611 + 1.76002i 0.975096 + 0.231102i
\(59\) −5.98538 3.93664i −0.779230 0.512507i 0.0964862 0.995334i \(-0.469240\pi\)
−0.875716 + 0.482827i \(0.839610\pi\)
\(60\) 0.741676 1.07248i 0.0957500 0.138457i
\(61\) −6.33431 6.71397i −0.811025 0.859636i 0.181283 0.983431i \(-0.441975\pi\)
−0.992308 + 0.123795i \(0.960493\pi\)
\(62\) 1.59024 1.33437i 0.201960 0.169465i
\(63\) 5.89647 4.49759i 0.742885 0.566644i
\(64\) 0.766044 + 0.642788i 0.0957556 + 0.0803485i
\(65\) 0.144595 + 2.48260i 0.0179348 + 0.307928i
\(66\) −4.07247 + 10.4278i −0.501286 + 1.28358i
\(67\) 5.81744 + 7.81417i 0.710713 + 0.954653i 0.999997 0.00259034i \(-0.000824532\pi\)
−0.289284 + 0.957243i \(0.593417\pi\)
\(68\) −2.84505 + 0.332538i −0.345013 + 0.0403262i
\(69\) −0.0351238 + 1.50999i −0.00422841 + 0.181781i
\(70\) 1.55485 1.02264i 0.185840 0.122229i
\(71\) −14.3396 + 5.21918i −1.70180 + 0.619403i −0.996028 0.0890401i \(-0.971620\pi\)
−0.705768 + 0.708443i \(0.749398\pi\)
\(72\) 2.99269 0.209355i 0.352691 0.0246727i
\(73\) −0.790323 0.287654i −0.0925003 0.0336674i 0.295355 0.955387i \(-0.404562\pi\)
−0.387856 + 0.921720i \(0.626784\pi\)
\(74\) 1.40532 0.333067i 0.163365 0.0387183i
\(75\) 0.713832 + 7.64533i 0.0824263 + 0.882807i
\(76\) 0.467061 8.01913i 0.0535756 0.919857i
\(77\) −10.9643 + 11.6215i −1.24950 + 1.32439i
\(78\) −4.25175 + 3.82840i −0.481416 + 0.433481i
\(79\) −5.40670 12.5341i −0.608302 1.41020i −0.892329 0.451386i \(-0.850930\pi\)
0.284027 0.958816i \(-0.408329\pi\)
\(80\) 0.752839 0.0841700
\(81\) 6.02179 6.68865i 0.669088 0.743183i
\(82\) 2.33491 0.257848
\(83\) 4.33897 + 10.0589i 0.476264 + 1.10410i 0.971862 + 0.235552i \(0.0756897\pi\)
−0.495598 + 0.868552i \(0.665051\pi\)
\(84\) 4.07208 + 1.32303i 0.444300 + 0.144355i
\(85\) −1.47984 + 1.56854i −0.160511 + 0.170132i
\(86\) 0.192090 3.29805i 0.0207136 0.355638i
\(87\) 12.0126 + 5.51650i 1.28789 + 0.591431i
\(88\) −6.28914 + 1.49055i −0.670424 + 0.158893i
\(89\) 5.63087 + 2.04947i 0.596871 + 0.217243i 0.622749 0.782422i \(-0.286016\pi\)
−0.0258778 + 0.999665i \(0.508238\pi\)
\(90\) 1.62460 1.56894i 0.171248 0.165381i
\(91\) −7.67312 + 2.79279i −0.804362 + 0.292764i
\(92\) −0.728568 + 0.479187i −0.0759585 + 0.0499587i
\(93\) 3.15483 1.72489i 0.327140 0.178863i
\(94\) 3.90630 0.456581i 0.402904 0.0470927i
\(95\) −3.61122 4.85072i −0.370504 0.497673i
\(96\) 1.08218 + 1.35236i 0.110450 + 0.138025i
\(97\) 0.314846 + 5.40570i 0.0319678 + 0.548866i 0.975831 + 0.218528i \(0.0701256\pi\)
−0.943863 + 0.330338i \(0.892837\pi\)
\(98\) −0.681211 0.571604i −0.0688127 0.0577407i
\(99\) −10.4653 + 16.3233i −1.05181 + 1.64056i
\(100\) −3.39605 + 2.84963i −0.339605 + 0.284963i
\(101\) −1.59205 1.68748i −0.158415 0.167910i 0.643305 0.765610i \(-0.277563\pi\)
−0.801720 + 0.597700i \(0.796081\pi\)
\(102\) −4.94487 0.403575i −0.489615 0.0399599i
\(103\) −13.1592 8.65495i −1.29662 0.852797i −0.301689 0.953406i \(-0.597551\pi\)
−0.994926 + 0.100609i \(0.967921\pi\)
\(104\) −3.21419 0.761778i −0.315178 0.0746985i
\(105\) 2.98864 1.20754i 0.291661 0.117844i
\(106\) 2.60927 + 0.304980i 0.253435 + 0.0296223i
\(107\) 2.27898 + 3.94731i 0.220317 + 0.381601i 0.954904 0.296914i \(-0.0959573\pi\)
−0.734587 + 0.678515i \(0.762624\pi\)
\(108\) 5.15368 + 0.663025i 0.495913 + 0.0637996i
\(109\) −1.42487 + 2.46795i −0.136478 + 0.236387i −0.926161 0.377128i \(-0.876912\pi\)
0.789683 + 0.613515i \(0.210245\pi\)
\(110\) −2.90570 + 3.90303i −0.277047 + 0.372139i
\(111\) 2.49999 0.0873373i 0.237289 0.00828969i
\(112\) 0.708975 + 2.36814i 0.0669919 + 0.223768i
\(113\) 4.81742 2.41940i 0.453185 0.227598i −0.207540 0.978227i \(-0.566546\pi\)
0.660724 + 0.750629i \(0.270249\pi\)
\(114\) 3.52253 13.4598i 0.329915 1.26062i
\(115\) −0.188285 + 0.628917i −0.0175577 + 0.0586468i
\(116\) 1.32525 + 7.51588i 0.123047 + 0.697832i
\(117\) −8.52368 + 5.05461i −0.788014 + 0.467299i
\(118\) 1.24400 7.05509i 0.114520 0.649474i
\(119\) −6.32764 3.17786i −0.580054 0.291314i
\(120\) 1.27853 + 0.256231i 0.116714 + 0.0233906i
\(121\) 12.1894 28.2581i 1.10812 2.56892i
\(122\) 3.65599 8.47553i 0.330997 0.767338i
\(123\) 3.96533 + 0.794692i 0.357542 + 0.0716550i
\(124\) 1.85510 + 0.931666i 0.166593 + 0.0836661i
\(125\) −1.23320 + 6.99382i −0.110301 + 0.625546i
\(126\) 6.46523 + 3.63283i 0.575969 + 0.323638i
\(127\) 1.58776 + 9.00462i 0.140891 + 0.799031i 0.970575 + 0.240798i \(0.0774092\pi\)
−0.829685 + 0.558233i \(0.811480\pi\)
\(128\) −0.286803 + 0.957990i −0.0253501 + 0.0846751i
\(129\) 1.44872 5.53565i 0.127553 0.487386i
\(130\) −2.22229 + 1.11608i −0.194908 + 0.0978863i
\(131\) 3.92922 + 13.1245i 0.343297 + 1.14669i 0.939124 + 0.343579i \(0.111639\pi\)
−0.595826 + 0.803113i \(0.703175\pi\)
\(132\) −11.1880 + 0.390854i −0.973794 + 0.0340195i
\(133\) 11.8577 15.9276i 1.02819 1.38110i
\(134\) −4.87093 + 8.43670i −0.420784 + 0.728820i
\(135\) 3.29302 2.11157i 0.283418 0.181735i
\(136\) −1.43221 2.48066i −0.122811 0.212715i
\(137\) 10.9828 + 1.28370i 0.938323 + 0.109674i 0.571487 0.820611i \(-0.306367\pi\)
0.366836 + 0.930286i \(0.380441\pi\)
\(138\) −1.40041 + 0.565824i −0.119210 + 0.0481661i
\(139\) −4.26054 1.00977i −0.361374 0.0856472i 0.0459180 0.998945i \(-0.485379\pi\)
−0.407292 + 0.913298i \(0.633527\pi\)
\(140\) 1.55485 + 1.02264i 0.131409 + 0.0864291i
\(141\) 6.78939 + 0.554116i 0.571770 + 0.0466650i
\(142\) −10.4720 11.0996i −0.878787 0.931460i
\(143\) 16.3550 13.7235i 1.36768 1.14762i
\(144\) 1.37758 + 2.66501i 0.114798 + 0.222084i
\(145\) 4.40134 + 3.69316i 0.365511 + 0.306700i
\(146\) −0.0489024 0.839621i −0.00404719 0.0694875i
\(147\) −0.962341 1.20260i −0.0793726 0.0991885i
\(148\) 0.862447 + 1.15847i 0.0708927 + 0.0952255i
\(149\) −15.8440 + 1.85189i −1.29799 + 0.151713i −0.736877 0.676027i \(-0.763700\pi\)
−0.561112 + 0.827740i \(0.689626\pi\)
\(150\) −6.73733 + 3.68361i −0.550101 + 0.300766i
\(151\) 5.99091 3.94028i 0.487533 0.320656i −0.281833 0.959463i \(-0.590942\pi\)
0.769366 + 0.638808i \(0.220572\pi\)
\(152\) 7.54829 2.74735i 0.612247 0.222840i
\(153\) −8.26043 2.36838i −0.667816 0.191473i
\(154\) −15.0138 5.46458i −1.20985 0.440349i
\(155\) 1.52070 0.360412i 0.122146 0.0289490i
\(156\) −5.19933 2.38767i −0.416280 0.191167i
\(157\) −0.911131 + 15.6435i −0.0727162 + 1.24849i 0.742704 + 0.669619i \(0.233543\pi\)
−0.815421 + 0.578869i \(0.803494\pi\)
\(158\) 9.36757 9.92905i 0.745244 0.789912i
\(159\) 4.32748 + 1.40601i 0.343191 + 0.111504i
\(160\) 0.298184 + 0.691269i 0.0235735 + 0.0546496i
\(161\) −2.15564 −0.169889
\(162\) 8.52673 + 2.88007i 0.669923 + 0.226280i
\(163\) 15.3379 1.20136 0.600680 0.799490i \(-0.294897\pi\)
0.600680 + 0.799490i \(0.294897\pi\)
\(164\) 0.924810 + 2.14395i 0.0722156 + 0.167414i
\(165\) −6.26310 + 5.63948i −0.487581 + 0.439033i
\(166\) −7.51763 + 7.96822i −0.583481 + 0.618454i
\(167\) 0.722182 12.3994i 0.0558841 0.959493i −0.847536 0.530737i \(-0.821915\pi\)
0.903421 0.428756i \(-0.141048\pi\)
\(168\) 0.398036 + 4.26307i 0.0307092 + 0.328903i
\(169\) −2.03235 + 0.481676i −0.156335 + 0.0370520i
\(170\) −2.02639 0.737547i −0.155417 0.0565673i
\(171\) 10.5633 21.6596i 0.807797 1.65635i
\(172\) 3.10441 1.12991i 0.236709 0.0861550i
\(173\) −3.28114 + 2.15804i −0.249460 + 0.164073i −0.668081 0.744089i \(-0.732884\pi\)
0.418621 + 0.908161i \(0.362514\pi\)
\(174\) −0.307397 + 13.2151i −0.0233037 + 1.00184i
\(175\) −10.8848 + 1.27225i −0.822815 + 0.0961732i
\(176\) −3.85965 5.18441i −0.290932 0.390790i
\(177\) 4.51389 11.5581i 0.339285 0.868763i
\(178\) 0.348418 + 5.98211i 0.0261150 + 0.448378i
\(179\) −6.40233 5.37219i −0.478533 0.401537i 0.371363 0.928488i \(-0.378891\pi\)
−0.849895 + 0.526951i \(0.823335\pi\)
\(180\) 2.08410 + 0.870304i 0.155340 + 0.0648686i
\(181\) −1.40040 + 1.17507i −0.104091 + 0.0873425i −0.693348 0.720603i \(-0.743865\pi\)
0.589257 + 0.807946i \(0.299421\pi\)
\(182\) −5.60355 5.93942i −0.415363 0.440259i
\(183\) 9.09356 13.1495i 0.672216 0.972040i
\(184\) −0.728568 0.479187i −0.0537108 0.0353261i
\(185\) 1.05798 + 0.250746i 0.0777843 + 0.0184352i
\(186\) 2.83339 + 2.21362i 0.207754 + 0.162310i
\(187\) 18.3886 + 2.14931i 1.34470 + 0.157173i
\(188\) 1.96644 + 3.40598i 0.143418 + 0.248407i
\(189\) 9.74335 + 8.37002i 0.708724 + 0.608829i
\(190\) 3.02367 5.23715i 0.219360 0.379943i
\(191\) 11.9595 16.0644i 0.865360 1.16238i −0.120149 0.992756i \(-0.538337\pi\)
0.985509 0.169624i \(-0.0542553\pi\)
\(192\) −0.813127 + 1.52932i −0.0586824 + 0.110369i
\(193\) −0.952811 3.18261i −0.0685849 0.229089i 0.916824 0.399290i \(-0.130743\pi\)
−0.985409 + 0.170201i \(0.945558\pi\)
\(194\) −4.83890 + 2.43019i −0.347413 + 0.174477i
\(195\) −4.15393 + 1.13905i −0.297469 + 0.0815690i
\(196\) 0.255042 0.851900i 0.0182173 0.0608500i
\(197\) −2.82045 15.9956i −0.200949 1.13964i −0.903689 0.428190i \(-0.859151\pi\)
0.702740 0.711447i \(-0.251960\pi\)
\(198\) −19.1335 3.14410i −1.35976 0.223441i
\(199\) 0.723023 4.10047i 0.0512538 0.290675i −0.948397 0.317084i \(-0.897296\pi\)
0.999651 + 0.0264095i \(0.00840738\pi\)
\(200\) −3.96168 1.98963i −0.280133 0.140688i
\(201\) −11.1437 + 12.6701i −0.786013 + 0.893677i
\(202\) 0.918888 2.13022i 0.0646528 0.149882i
\(203\) −7.47236 + 17.3229i −0.524457 + 1.21583i
\(204\) −1.58799 4.70031i −0.111182 0.329087i
\(205\) 1.57084 + 0.788904i 0.109712 + 0.0550995i
\(206\) 2.73502 15.5110i 0.190558 1.08071i
\(207\) −2.57086 + 0.484297i −0.178687 + 0.0336609i
\(208\) −0.573600 3.25305i −0.0397720 0.225558i
\(209\) −14.8903 + 49.7372i −1.02999 + 3.44040i
\(210\) 2.29252 + 2.26593i 0.158199 + 0.156364i
\(211\) −15.3028 + 7.68535i −1.05349 + 0.529081i −0.889289 0.457346i \(-0.848800\pi\)
−0.164199 + 0.986427i \(0.552504\pi\)
\(212\) 0.753442 + 2.51667i 0.0517466 + 0.172846i
\(213\) −14.0065 22.4144i −0.959713 1.53581i
\(214\) −2.72183 + 3.65605i −0.186060 + 0.249922i
\(215\) 1.24356 2.15390i 0.0848098 0.146895i
\(216\) 1.43247 + 4.99480i 0.0974670 + 0.339853i
\(217\) 2.56581 + 4.44412i 0.174179 + 0.301687i
\(218\) −2.83048 0.330835i −0.191704 0.0224070i
\(219\) 0.202717 1.44256i 0.0136984 0.0974790i
\(220\) −4.73471 1.12215i −0.319214 0.0756551i
\(221\) 7.90525 + 5.19936i 0.531764 + 0.349747i
\(222\) 1.07039 + 2.26094i 0.0718399 + 0.151744i
\(223\) 17.8408 + 18.9101i 1.19471 + 1.26631i 0.955381 + 0.295375i \(0.0954446\pi\)
0.239325 + 0.970940i \(0.423074\pi\)
\(224\) −1.89366 + 1.58897i −0.126525 + 0.106167i
\(225\) −12.6956 + 3.96274i −0.846374 + 0.264183i
\(226\) 4.12961 + 3.46516i 0.274698 + 0.230499i
\(227\) −0.874765 15.0191i −0.0580602 0.996855i −0.894009 0.448048i \(-0.852119\pi\)
0.835949 0.548807i \(-0.184918\pi\)
\(228\) 13.7542 2.09670i 0.910893 0.138857i
\(229\) 17.1959 + 23.0981i 1.13634 + 1.52637i 0.815057 + 0.579381i \(0.196706\pi\)
0.321280 + 0.946984i \(0.395887\pi\)
\(230\) −0.652057 + 0.0762146i −0.0429954 + 0.00502544i
\(231\) −23.6378 14.3904i −1.55525 0.946818i
\(232\) −6.37630 + 4.19376i −0.418624 + 0.275334i
\(233\) −8.70800 + 3.16945i −0.570480 + 0.207638i −0.611123 0.791536i \(-0.709282\pi\)
0.0406425 + 0.999174i \(0.487060\pi\)
\(234\) −8.01728 5.82455i −0.524106 0.380763i
\(235\) 2.78227 + 1.01266i 0.181496 + 0.0660590i
\(236\) 6.97083 1.65212i 0.453762 0.107544i
\(237\) 19.2881 13.6740i 1.25290 0.888224i
\(238\) 0.411713 7.06883i 0.0266874 0.458204i
\(239\) −1.60822 + 1.70461i −0.104027 + 0.110262i −0.777295 0.629137i \(-0.783409\pi\)
0.673268 + 0.739399i \(0.264890\pi\)
\(240\) 0.271126 + 1.27546i 0.0175011 + 0.0823304i
\(241\) 4.08841 + 9.47800i 0.263358 + 0.610531i 0.997666 0.0682847i \(-0.0217526\pi\)
−0.734308 + 0.678816i \(0.762493\pi\)
\(242\) 30.7750 1.97829
\(243\) 13.5006 + 7.79327i 0.866061 + 0.499938i
\(244\) 9.23043 0.590918
\(245\) −0.265163 0.614716i −0.0169406 0.0392728i
\(246\) 0.840889 + 3.95579i 0.0536131 + 0.252212i
\(247\) −18.2087 + 19.3001i −1.15859 + 1.22804i
\(248\) −0.120703 + 2.07240i −0.00766467 + 0.131597i
\(249\) −15.4791 + 10.9736i −0.980946 + 0.695426i
\(250\) −6.91028 + 1.63777i −0.437045 + 0.103581i
\(251\) −5.31647 1.93504i −0.335572 0.122138i 0.168738 0.985661i \(-0.446031\pi\)
−0.504310 + 0.863523i \(0.668253\pi\)
\(252\) −0.774970 + 7.37537i −0.0488185 + 0.464605i
\(253\) 5.29632 1.92770i 0.332977 0.121194i
\(254\) −7.63931 + 5.02445i −0.479333 + 0.315262i
\(255\) −3.19036 1.94225i −0.199788 0.121629i
\(256\) −0.993238 + 0.116093i −0.0620774 + 0.00725581i
\(257\) −0.549578 0.738211i −0.0342817 0.0460483i 0.784652 0.619937i \(-0.212842\pi\)
−0.818934 + 0.573888i \(0.805434\pi\)
\(258\) 5.65673 0.862316i 0.352173 0.0536854i
\(259\) 0.207587 + 3.56414i 0.0128989 + 0.221465i
\(260\) −1.90500 1.59849i −0.118143 0.0991339i
\(261\) −5.01985 + 22.3384i −0.310721 + 1.38271i
\(262\) −10.4948 + 8.80622i −0.648373 + 0.544050i
\(263\) −17.1617 18.1903i −1.05824 1.12166i −0.992302 0.123840i \(-0.960479\pi\)
−0.0659335 0.997824i \(-0.521003\pi\)
\(264\) −4.79025 10.1182i −0.294819 0.622734i
\(265\) 1.65237 + 1.08678i 0.101504 + 0.0667605i
\(266\) 19.3216 + 4.57930i 1.18468 + 0.280775i
\(267\) −1.44431 + 10.2779i −0.0883906 + 0.628997i
\(268\) −9.67599 1.13096i −0.591055 0.0690844i
\(269\) 0.263878 + 0.457050i 0.0160889 + 0.0278668i 0.873958 0.486002i \(-0.161545\pi\)
−0.857869 + 0.513869i \(0.828212\pi\)
\(270\) 3.24318 + 2.18735i 0.197374 + 0.133118i
\(271\) −10.0670 + 17.4365i −0.611524 + 1.05919i 0.379460 + 0.925208i \(0.376110\pi\)
−0.990984 + 0.133982i \(0.957224\pi\)
\(272\) 1.71051 2.29761i 0.103715 0.139313i
\(273\) −7.49491 11.9940i −0.453613 0.725909i
\(274\) 3.17134 + 10.5930i 0.191588 + 0.639948i
\(275\) 25.6058 12.8597i 1.54409 0.775469i
\(276\) −1.07422 1.06176i −0.0646605 0.0639107i
\(277\) −6.18487 + 20.6589i −0.371613 + 1.24127i 0.543957 + 0.839113i \(0.316925\pi\)
−0.915570 + 0.402159i \(0.868260\pi\)
\(278\) −0.760329 4.31204i −0.0456015 0.258619i
\(279\) 4.05848 + 4.72370i 0.242975 + 0.282800i
\(280\) −0.323161 + 1.83274i −0.0193126 + 0.109527i
\(281\) 13.4228 + 6.74121i 0.800740 + 0.402147i 0.801606 0.597853i \(-0.203979\pi\)
−0.000865851 1.00000i \(0.500276\pi\)
\(282\) 2.18034 + 6.45360i 0.129837 + 0.384306i
\(283\) 3.86228 8.95378i 0.229589 0.532247i −0.764011 0.645203i \(-0.776773\pi\)
0.993600 + 0.112956i \(0.0360320\pi\)
\(284\) 6.04413 14.0119i 0.358653 0.831451i
\(285\) 6.91753 7.86505i 0.409759 0.465885i
\(286\) 19.0790 + 9.58185i 1.12817 + 0.566587i
\(287\) −1.00228 + 5.68419i −0.0591625 + 0.335527i
\(288\) −1.90143 + 2.32047i −0.112043 + 0.136735i
\(289\) −1.52726 8.66151i −0.0898387 0.509500i
\(290\) −1.64784 + 5.50416i −0.0967644 + 0.323216i
\(291\) −9.04493 + 2.48021i −0.530223 + 0.145392i
\(292\) 0.751585 0.377460i 0.0439832 0.0220892i
\(293\) −3.86265 12.9022i −0.225658 0.753752i −0.993572 0.113199i \(-0.963890\pi\)
0.767914 0.640553i \(-0.221295\pi\)
\(294\) 0.723079 1.35996i 0.0421708 0.0793146i
\(295\) 3.22065 4.32608i 0.187513 0.251874i
\(296\) −0.722126 + 1.25076i −0.0419727 + 0.0726989i
\(297\) −31.4239 11.8517i −1.82340 0.687705i
\(298\) −7.97592 13.8147i −0.462032 0.800264i
\(299\) 2.86103 + 0.334407i 0.165458 + 0.0193392i
\(300\) −6.05087 4.72732i −0.349347 0.272932i
\(301\) 7.94645 + 1.88334i 0.458026 + 0.108554i
\(302\) 5.99091 + 3.94028i 0.344738 + 0.226738i
\(303\) 2.28556 3.30497i 0.131302 0.189866i
\(304\) 5.51239 + 5.84279i 0.316157 + 0.335107i
\(305\) 5.32327 4.46675i 0.304809 0.255765i
\(306\) −1.09710 8.52293i −0.0627170 0.487223i
\(307\) −23.1294 19.4079i −1.32007 1.10767i −0.986291 0.165013i \(-0.947233\pi\)
−0.333774 0.942653i \(-0.608322\pi\)
\(308\) −0.929001 15.9503i −0.0529348 0.908855i
\(309\) 9.92405 25.4113i 0.564560 1.44560i
\(310\) 0.933255 + 1.25358i 0.0530053 + 0.0711985i
\(311\) 29.5360 3.45226i 1.67483 0.195760i 0.774989 0.631975i \(-0.217756\pi\)
0.899842 + 0.436215i \(0.143681\pi\)
\(312\) 0.133049 5.71982i 0.00753241 0.323821i
\(313\) −5.66875 + 3.72839i −0.320416 + 0.210741i −0.699520 0.714613i \(-0.746603\pi\)
0.379104 + 0.925354i \(0.376232\pi\)
\(314\) −14.7250 + 5.35946i −0.830980 + 0.302452i
\(315\) 3.12213 + 4.62846i 0.175912 + 0.260784i
\(316\) 12.8273 + 4.66876i 0.721593 + 0.262638i
\(317\) 2.66487 0.631586i 0.149674 0.0354734i −0.155096 0.987899i \(-0.549569\pi\)
0.304770 + 0.952426i \(0.401420\pi\)
\(318\) 0.423001 + 4.53045i 0.0237207 + 0.254055i
\(319\) 2.86812 49.2438i 0.160584 2.75712i
\(320\) −0.516630 + 0.547595i −0.0288805 + 0.0306115i
\(321\) −5.86677 + 5.28262i −0.327451 + 0.294847i
\(322\) −0.853807 1.97935i −0.0475808 0.110305i
\(323\) −23.0090 −1.28026
\(324\) 0.732739 + 8.97012i 0.0407077 + 0.498340i
\(325\) 14.6440 0.812303
\(326\) 6.07504 + 14.0835i 0.336465 + 0.780015i
\(327\) −4.69435 1.52521i −0.259598 0.0843444i
\(328\) −1.60231 + 1.69835i −0.0884729 + 0.0937758i
\(329\) −0.565288 + 9.70562i −0.0311653 + 0.535088i
\(330\) −7.65894 3.51719i −0.421611 0.193615i
\(331\) −13.3505 + 3.16413i −0.733811 + 0.173916i −0.580498 0.814261i \(-0.697142\pi\)
−0.153313 + 0.988178i \(0.548994\pi\)
\(332\) −10.2941 3.74676i −0.564964 0.205630i
\(333\) 1.04831 + 4.20402i 0.0574469 + 0.230379i
\(334\) 11.6714 4.24802i 0.638628 0.232442i
\(335\) −6.12751 + 4.03013i −0.334782 + 0.220189i
\(336\) −3.75677 + 2.05400i −0.204949 + 0.112055i
\(337\) −1.17950 + 0.137864i −0.0642515 + 0.00750993i −0.148158 0.988964i \(-0.547334\pi\)
0.0839064 + 0.996474i \(0.473260\pi\)
\(338\) −1.24726 1.67536i −0.0678418 0.0911273i
\(339\) 5.83387 + 7.29033i 0.316852 + 0.395957i
\(340\) −0.125386 2.15280i −0.00680002 0.116752i
\(341\) −10.2783 8.62450i −0.556600 0.467043i
\(342\) 24.0721 + 1.12049i 1.30167 + 0.0605891i
\(343\) 14.9395 12.5358i 0.806659 0.676867i
\(344\) 2.26710 + 2.40298i 0.122234 + 0.129560i
\(345\) −1.13332 0.0924956i −0.0610157 0.00497980i
\(346\) −3.28114 2.15804i −0.176395 0.116017i
\(347\) −4.86042 1.15194i −0.260921 0.0618394i 0.0980732 0.995179i \(-0.468732\pi\)
−0.358994 + 0.933340i \(0.616880\pi\)
\(348\) −12.2561 + 4.95199i −0.656996 + 0.265454i
\(349\) −30.0872 3.51669i −1.61053 0.188244i −0.737304 0.675561i \(-0.763901\pi\)
−0.873225 + 0.487317i \(0.837976\pi\)
\(350\) −5.47946 9.49070i −0.292889 0.507299i
\(351\) −11.6332 12.6204i −0.620934 0.673628i
\(352\) 3.23168 5.59743i 0.172249 0.298344i
\(353\) −11.4732 + 15.4112i −0.610659 + 0.820258i −0.994674 0.103069i \(-0.967134\pi\)
0.384015 + 0.923327i \(0.374541\pi\)
\(354\) 12.4007 0.433220i 0.659091 0.0230254i
\(355\) −3.29486 11.0056i −0.174873 0.584117i
\(356\) −5.35487 + 2.68931i −0.283807 + 0.142533i
\(357\) 3.10510 11.8647i 0.164339 0.627949i
\(358\) 2.39700 8.00654i 0.126685 0.423159i
\(359\) −1.66314 9.43215i −0.0877773 0.497810i −0.996723 0.0808946i \(-0.974222\pi\)
0.908945 0.416915i \(-0.136889\pi\)
\(360\) 0.0263428 + 2.25836i 0.00138839 + 0.119026i
\(361\) 7.90526 44.8329i 0.416066 2.35963i
\(362\) −1.63364 0.820445i −0.0858622 0.0431216i
\(363\) 52.2646 + 10.4744i 2.74318 + 0.549761i
\(364\) 3.23421 7.49775i 0.169519 0.392989i
\(365\) 0.250786 0.581388i 0.0131268 0.0304312i
\(366\) 15.6759 + 3.14160i 0.819391 + 0.164214i
\(367\) 19.1592 + 9.62212i 1.00010 + 0.502271i 0.872008 0.489491i \(-0.162817\pi\)
0.128095 + 0.991762i \(0.459114\pi\)
\(368\) 0.151426 0.858779i 0.00789362 0.0447670i
\(369\) 0.0817014 + 7.00425i 0.00425320 + 0.364627i
\(370\) 0.188806 + 1.07077i 0.00981555 + 0.0556667i
\(371\) −1.86250 + 6.22119i −0.0966963 + 0.322988i
\(372\) −0.910334 + 3.47843i −0.0471986 + 0.180348i
\(373\) −24.6525 + 12.3810i −1.27646 + 0.641062i −0.952364 0.304963i \(-0.901356\pi\)
−0.324095 + 0.946025i \(0.605060\pi\)
\(374\) 5.30980 + 17.7360i 0.274563 + 0.917105i
\(375\) −12.2930 + 0.429457i −0.634809 + 0.0221771i
\(376\) −2.34856 + 3.15466i −0.121118 + 0.162689i
\(377\) 12.6048 21.8322i 0.649183 1.12442i
\(378\) −3.82634 + 12.2617i −0.196806 + 0.630673i
\(379\) 14.1459 + 24.5014i 0.726625 + 1.25855i 0.958302 + 0.285758i \(0.0922454\pi\)
−0.231677 + 0.972793i \(0.574421\pi\)
\(380\) 6.00646 + 0.702054i 0.308125 + 0.0360146i
\(381\) −14.6838 + 5.93288i −0.752273 + 0.303950i
\(382\) 19.4875 + 4.61863i 0.997068 + 0.236309i
\(383\) 15.5208 + 10.2082i 0.793077 + 0.521615i 0.880212 0.474581i \(-0.157401\pi\)
−0.0871343 + 0.996197i \(0.527771\pi\)
\(384\) −1.72631 0.140893i −0.0880954 0.00718990i
\(385\) −8.25438 8.74913i −0.420682 0.445897i
\(386\) 2.54494 2.13545i 0.129534 0.108692i
\(387\) 9.90021 + 0.460827i 0.503256 + 0.0234252i
\(388\) −4.14803 3.48061i −0.210584 0.176701i
\(389\) −0.236871 4.06691i −0.0120098 0.206201i −0.998975 0.0452664i \(-0.985586\pi\)
0.986965 0.160934i \(-0.0514507\pi\)
\(390\) −2.69118 3.36305i −0.136273 0.170295i
\(391\) 1.49161 + 2.00358i 0.0754340 + 0.101326i
\(392\) 0.883245 0.103237i 0.0446106 0.00521423i
\(393\) −20.8204 + 11.3835i −1.05025 + 0.574221i
\(394\) 13.5703 8.92531i 0.683660 0.449650i
\(395\) 9.65691 3.51483i 0.485892 0.176850i
\(396\) −4.69142 18.8140i −0.235753 0.945438i
\(397\) 3.32233 + 1.20923i 0.166743 + 0.0606895i 0.424043 0.905642i \(-0.360611\pi\)
−0.257300 + 0.966332i \(0.582833\pi\)
\(398\) 4.05149 0.960221i 0.203083 0.0481315i
\(399\) 31.2549 + 14.3531i 1.56470 + 0.718553i
\(400\) 0.257770 4.42573i 0.0128885 0.221287i
\(401\) −5.61322 + 5.94967i −0.280311 + 0.297112i −0.852197 0.523221i \(-0.824730\pi\)
0.571886 + 0.820333i \(0.306212\pi\)
\(402\) −16.0476 5.21394i −0.800383 0.260048i
\(403\) −2.71600 6.29640i −0.135294 0.313646i
\(404\) 2.31996 0.115422
\(405\) 4.76336 + 4.81856i 0.236693 + 0.239436i
\(406\) −18.8658 −0.936294
\(407\) −3.69729 8.57129i −0.183268 0.424863i
\(408\) 3.68693 3.31982i 0.182530 0.164356i
\(409\) −7.12185 + 7.54872i −0.352153 + 0.373260i −0.879100 0.476638i \(-0.841855\pi\)
0.526947 + 0.849898i \(0.323337\pi\)
\(410\) −0.102208 + 1.75484i −0.00504768 + 0.0866653i
\(411\) 1.78047 + 19.0693i 0.0878241 + 0.940620i
\(412\) 15.3258 3.63228i 0.755047 0.178949i
\(413\) 16.6412 + 6.05689i 0.818859 + 0.298040i
\(414\) −1.46296 2.16879i −0.0719004 0.106590i
\(415\) −7.74983 + 2.82071i −0.380424 + 0.138463i
\(416\) 2.75981 1.81516i 0.135311 0.0889954i
\(417\) 0.176361 7.58184i 0.00863645 0.371284i
\(418\) −51.5673 + 6.02735i −2.52224 + 0.294807i
\(419\) 17.0344 + 22.8811i 0.832183 + 1.11782i 0.991438 + 0.130579i \(0.0416835\pi\)
−0.159255 + 0.987238i \(0.550909\pi\)
\(420\) −1.17260 + 3.00252i −0.0572169 + 0.146508i
\(421\) 1.30460 + 22.3991i 0.0635823 + 1.09167i 0.867665 + 0.497149i \(0.165620\pi\)
−0.804083 + 0.594517i \(0.797343\pi\)
\(422\) −13.1179 11.0073i −0.638571 0.535825i
\(423\) 1.50633 + 11.7021i 0.0732405 + 0.568976i
\(424\) −2.01242 + 1.68862i −0.0977320 + 0.0820069i
\(425\) 8.71432 + 9.23664i 0.422707 + 0.448043i
\(426\) 15.0336 21.7389i 0.728380 1.05326i
\(427\) 19.0638 + 12.5384i 0.922561 + 0.606778i
\(428\) −4.43510 1.05114i −0.214379 0.0508087i
\(429\) 29.1404 + 22.7663i 1.40691 + 1.09917i
\(430\) 2.47030 + 0.288736i 0.119128 + 0.0139241i
\(431\) 8.86370 + 15.3524i 0.426949 + 0.739498i 0.996600 0.0823886i \(-0.0262549\pi\)
−0.569651 + 0.821887i \(0.692922\pi\)
\(432\) −4.01894 + 3.29365i −0.193361 + 0.158466i
\(433\) 11.5440 19.9948i 0.554768 0.960887i −0.443153 0.896446i \(-0.646140\pi\)
0.997922 0.0644409i \(-0.0205264\pi\)
\(434\) −3.06440 + 4.11620i −0.147096 + 0.197584i
\(435\) −4.67185 + 8.78677i −0.223998 + 0.421294i
\(436\) −0.817317 2.73003i −0.0391424 0.130745i
\(437\) −6.25967 + 3.14373i −0.299441 + 0.150385i
\(438\) 1.40487 0.385230i 0.0671274 0.0184070i
\(439\) 6.97016 23.2819i 0.332667 1.11119i −0.614089 0.789236i \(-0.710477\pi\)
0.946757 0.321950i \(-0.104338\pi\)
\(440\) −0.844949 4.79195i −0.0402814 0.228447i
\(441\) 1.69086 2.06350i 0.0805171 0.0982617i
\(442\) −1.64303 + 9.31809i −0.0781510 + 0.443216i
\(443\) −18.5681 9.32523i −0.882195 0.443055i −0.0507819 0.998710i \(-0.516171\pi\)
−0.831413 + 0.555655i \(0.812468\pi\)
\(444\) −1.65207 + 1.87836i −0.0784039 + 0.0891432i
\(445\) −1.78679 + 4.14225i −0.0847022 + 0.196362i
\(446\) −10.2972 + 23.8716i −0.487587 + 1.13035i
\(447\) −8.84349 26.1759i −0.418283 1.23808i
\(448\) −2.20905 1.10943i −0.104368 0.0524155i
\(449\) 0.922756 5.23321i 0.0435476 0.246970i −0.955261 0.295763i \(-0.904426\pi\)
0.998809 + 0.0487924i \(0.0155373\pi\)
\(450\) −8.66713 10.0878i −0.408573 0.475541i
\(451\) −2.62059 14.8621i −0.123399 0.699828i
\(452\) −1.54611 + 5.16435i −0.0727227 + 0.242911i
\(453\) 8.83317 + 8.73073i 0.415018 + 0.410206i
\(454\) 13.4443 6.75200i 0.630974 0.316887i
\(455\) −1.76308 5.88910i −0.0826546 0.276085i
\(456\) 7.37297 + 11.7989i 0.345271 + 0.552532i
\(457\) 3.16891 4.25659i 0.148235 0.199115i −0.721803 0.692098i \(-0.756686\pi\)
0.870039 + 0.492984i \(0.164094\pi\)
\(458\) −14.3981 + 24.9382i −0.672779 + 1.16529i
\(459\) 1.03762 14.8477i 0.0484318 0.693033i
\(460\) −0.328248 0.568542i −0.0153046 0.0265084i
\(461\) −30.8435 3.60508i −1.43652 0.167906i −0.638078 0.769972i \(-0.720270\pi\)
−0.798446 + 0.602066i \(0.794344\pi\)
\(462\) 3.85103 27.4043i 0.179166 1.27497i
\(463\) 19.6765 + 4.66342i 0.914444 + 0.216727i 0.660793 0.750568i \(-0.270220\pi\)
0.253652 + 0.967296i \(0.418368\pi\)
\(464\) −6.37630 4.19376i −0.296012 0.194690i
\(465\) 1.15827 + 2.44657i 0.0537135 + 0.113457i
\(466\) −6.35930 6.74047i −0.294589 0.312246i
\(467\) −32.1972 + 27.0166i −1.48991 + 1.25018i −0.595161 + 0.803607i \(0.702912\pi\)
−0.894747 + 0.446574i \(0.852644\pi\)
\(468\) 2.17271 9.66858i 0.100434 0.446930i
\(469\) −18.4477 15.4795i −0.851837 0.714776i
\(470\) 0.172157 + 2.95582i 0.00794102 + 0.136342i
\(471\) −26.8313 + 4.09019i −1.23632 + 0.188466i
\(472\) 4.27800 + 5.74635i 0.196911 + 0.264497i
\(473\) −21.2083 + 2.47889i −0.975156 + 0.113979i
\(474\) 20.1954 + 12.2947i 0.927604 + 0.564713i
\(475\) −29.7525 + 19.5685i −1.36514 + 0.897865i
\(476\) 6.65379 2.42178i 0.304976 0.111002i
\(477\) −0.823576 + 7.83795i −0.0377090 + 0.358875i
\(478\) −2.20218 0.801529i −0.100725 0.0366611i
\(479\) −14.0288 + 3.32489i −0.640994 + 0.151918i −0.538244 0.842789i \(-0.680912\pi\)
−0.102750 + 0.994707i \(0.532764\pi\)
\(480\) −1.06376 + 0.754135i −0.0485537 + 0.0344214i
\(481\) 0.277392 4.76263i 0.0126480 0.217157i
\(482\) −7.08351 + 7.50808i −0.322645 + 0.341984i
\(483\) −0.776329 3.65208i −0.0353242 0.166176i
\(484\) 12.1894 + 28.2581i 0.554062 + 1.28446i
\(485\) −4.07652 −0.185105
\(486\) −1.80861 + 15.4832i −0.0820401 + 0.702331i
\(487\) −28.2131 −1.27846 −0.639229 0.769016i \(-0.720746\pi\)
−0.639229 + 0.769016i \(0.720746\pi\)
\(488\) 3.65599 + 8.47553i 0.165499 + 0.383669i
\(489\) 5.52377 + 25.9855i 0.249793 + 1.17510i
\(490\) 0.459417 0.486954i 0.0207543 0.0219983i
\(491\) 1.26545 21.7270i 0.0571091 0.980526i −0.841078 0.540913i \(-0.818079\pi\)
0.898187 0.439613i \(-0.144884\pi\)
\(492\) −3.29922 + 2.33893i −0.148740 + 0.105447i
\(493\) 21.2715 5.04143i 0.958018 0.227054i
\(494\) −24.9337 9.07514i −1.12182 0.408310i
\(495\) −11.8100 8.57992i −0.530818 0.385639i
\(496\) −1.95072 + 0.710003i −0.0875897 + 0.0318801i
\(497\) 31.5165 20.7287i 1.41371 0.929810i
\(498\) −16.2071 9.86669i −0.726258 0.442137i
\(499\) −25.3260 + 2.96018i −1.13375 + 0.132516i −0.662201 0.749326i \(-0.730378\pi\)
−0.471545 + 0.881842i \(0.656303\pi\)
\(500\) −4.24085 5.69644i −0.189656 0.254753i
\(501\) 21.2671 3.24197i 0.950143 0.144840i
\(502\) −0.328964 5.64809i −0.0146824 0.252087i
\(503\) 26.4766 + 22.2165i 1.18053 + 0.990583i 0.999975 + 0.00701864i \(0.00223412\pi\)
0.180556 + 0.983565i \(0.442210\pi\)
\(504\) −7.07913 + 2.20965i −0.315330 + 0.0984254i
\(505\) 1.33794 1.12266i 0.0595375 0.0499579i
\(506\) 3.86781 + 4.09964i 0.171945 + 0.182251i
\(507\) −1.54798 3.26973i −0.0687482 0.145214i
\(508\) −7.63931 5.02445i −0.338940 0.222924i
\(509\) 12.8322 + 3.04128i 0.568777 + 0.134803i 0.504935 0.863158i \(-0.331517\pi\)
0.0638418 + 0.997960i \(0.479665\pi\)
\(510\) 0.519769 3.69873i 0.0230157 0.163782i
\(511\) 2.06500 + 0.241363i 0.0913501 + 0.0106773i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 40.4998 + 10.0959i 1.78811 + 0.445745i
\(514\) 0.460161 0.797021i 0.0202968 0.0351551i
\(515\) 7.08079 9.51115i 0.312017 0.419111i
\(516\) 3.03231 + 4.85255i 0.133490 + 0.213622i
\(517\) −7.29045 24.3518i −0.320633 1.07099i
\(518\) −3.19043 + 1.60229i −0.140179 + 0.0704007i
\(519\) −4.83780 4.78170i −0.212356 0.209893i
\(520\) 0.713223 2.38233i 0.0312769 0.104472i
\(521\) −1.16259 6.59340i −0.0509342 0.288862i 0.948692 0.316202i \(-0.102408\pi\)
−0.999626 + 0.0273394i \(0.991297\pi\)
\(522\) −22.4997 + 4.23848i −0.984787 + 0.185513i
\(523\) −4.33148 + 24.5651i −0.189402 + 1.07415i 0.730765 + 0.682629i \(0.239164\pi\)
−0.920167 + 0.391525i \(0.871947\pi\)
\(524\) −12.2428 6.14857i −0.534829 0.268601i
\(525\) −6.07548 17.9828i −0.265156 0.784835i
\(526\) 9.90526 22.9630i 0.431890 1.00123i
\(527\) 2.35520 5.45996i 0.102594 0.237839i
\(528\) 7.39340 8.40611i 0.321757 0.365829i
\(529\) −19.8740 9.98110i −0.864087 0.433961i
\(530\) −0.343430 + 1.94769i −0.0149176 + 0.0846022i
\(531\) 21.2074 + 3.48489i 0.920321 + 0.151231i
\(532\) 3.44810 + 19.5551i 0.149494 + 0.847823i
\(533\) 2.21204 7.38873i 0.0958142 0.320042i
\(534\) −10.0094 + 2.74467i −0.433148 + 0.118774i
\(535\) −3.06642 + 1.54002i −0.132573 + 0.0665807i
\(536\) −2.79400 9.33260i −0.120682 0.403107i
\(537\) 6.79583 12.7815i 0.293262 0.551564i
\(538\) −0.315154 + 0.423325i −0.0135873 + 0.0182509i
\(539\) −2.87380 + 4.97756i −0.123783 + 0.214399i
\(540\) −0.723903 + 3.84430i −0.0311518 + 0.165432i
\(541\) −13.9209 24.1118i −0.598508 1.03665i −0.993042 0.117764i \(-0.962427\pi\)
0.394534 0.918881i \(-0.370906\pi\)
\(542\) −19.9978 2.33740i −0.858978 0.100400i
\(543\) −2.49514 1.94936i −0.107077 0.0836550i
\(544\) 2.78720 + 0.660580i 0.119500 + 0.0283221i
\(545\) −1.79246 1.17892i −0.0767804 0.0504993i
\(546\) 8.04449 11.6325i 0.344272 0.497826i
\(547\) 7.76808 + 8.23369i 0.332139 + 0.352047i 0.871823 0.489821i \(-0.162938\pi\)
−0.539684 + 0.841868i \(0.681456\pi\)
\(548\) −8.47058 + 7.10766i −0.361845 + 0.303624i
\(549\) 25.5528 + 10.6706i 1.09057 + 0.455412i
\(550\) 21.9499 + 18.4182i 0.935947 + 0.785353i
\(551\) 3.56453 + 61.2006i 0.151854 + 2.60723i
\(552\) 0.549452 1.40691i 0.0233862 0.0598821i
\(553\) 20.1505 + 27.0669i 0.856888 + 1.15100i
\(554\) −21.4190 + 2.50352i −0.910007 + 0.106365i
\(555\) −0.0437942 + 1.88273i −0.00185896 + 0.0799175i
\(556\) 3.65823 2.40606i 0.155144 0.102040i
\(557\) 4.04856 1.47356i 0.171543 0.0624365i −0.254821 0.966988i \(-0.582017\pi\)
0.426364 + 0.904552i \(0.359794\pi\)
\(558\) −2.72990 + 5.59752i −0.115566 + 0.236962i
\(559\) −10.2546 3.73236i −0.433723 0.157862i
\(560\) −1.81085 + 0.429179i −0.0765223 + 0.0181361i
\(561\) 2.98105 + 31.9279i 0.125860 + 1.34800i
\(562\) −0.873367 + 14.9951i −0.0368408 + 0.632531i
\(563\) 6.83248 7.24200i 0.287955 0.305214i −0.567207 0.823575i \(-0.691976\pi\)
0.855162 + 0.518361i \(0.173458\pi\)
\(564\) −5.06221 + 4.55817i −0.213158 + 0.191933i
\(565\) 1.60746 + 3.72651i 0.0676264 + 0.156776i
\(566\) 9.75127 0.409877
\(567\) −10.6715 + 19.5215i −0.448161 + 0.819826i
\(568\) 15.2599 0.640290
\(569\) −9.95294 23.0735i −0.417249 0.967292i −0.989142 0.146963i \(-0.953050\pi\)
0.571893 0.820328i \(-0.306209\pi\)
\(570\) 9.96171 + 3.23660i 0.417250 + 0.135566i
\(571\) 9.17500 9.72494i 0.383962 0.406976i −0.506349 0.862329i \(-0.669005\pi\)
0.890311 + 0.455353i \(0.150487\pi\)
\(572\) −1.24139 + 21.3139i −0.0519052 + 0.891177i
\(573\) 31.5233 + 14.4764i 1.31691 + 0.604758i
\(574\) −5.61629 + 1.33109i −0.234420 + 0.0555585i
\(575\) 3.63276 + 1.32222i 0.151496 + 0.0551402i
\(576\) −2.88381 0.826830i −0.120159 0.0344512i
\(577\) 1.93268 0.703437i 0.0804584 0.0292845i −0.301477 0.953473i \(-0.597480\pi\)
0.381936 + 0.924189i \(0.375258\pi\)
\(578\) 7.34822 4.83300i 0.305646 0.201026i
\(579\) 5.04883 2.76043i 0.209822 0.114719i
\(580\) −5.70669 + 0.667016i −0.236957 + 0.0276963i
\(581\) −16.1711 21.7216i −0.670892 0.901164i
\(582\) −5.85988 7.32284i −0.242900 0.303542i
\(583\) −0.987268 16.9507i −0.0408885 0.702028i
\(584\) 0.644277 + 0.540613i 0.0266604 + 0.0223707i
\(585\) −3.42576 6.62736i −0.141638 0.274008i
\(586\) 10.3170 8.65703i 0.426193 0.357619i
\(587\) −3.86852 4.10039i −0.159671 0.169241i 0.642599 0.766202i \(-0.277856\pi\)
−0.802270 + 0.596961i \(0.796375\pi\)
\(588\) 1.53514 + 0.125290i 0.0633079 + 0.00516687i
\(589\) 13.9319 + 9.16317i 0.574055 + 0.377562i
\(590\) 5.24791 + 1.24378i 0.216053 + 0.0512055i
\(591\) 26.0839 10.5390i 1.07295 0.433517i
\(592\) −1.43449 0.167667i −0.0589570 0.00689109i
\(593\) 7.18561 + 12.4458i 0.295078 + 0.511090i 0.975003 0.222192i \(-0.0713211\pi\)
−0.679925 + 0.733281i \(0.737988\pi\)
\(594\) −1.56397 33.5482i −0.0641703 1.37650i
\(595\) 2.66536 4.61653i 0.109269 0.189259i
\(596\) 9.52577 12.7953i 0.390191 0.524117i
\(597\) 7.20739 0.251790i 0.294979 0.0103051i
\(598\) 0.826139 + 2.75950i 0.0337834 + 0.112844i
\(599\) 14.8418 7.45384i 0.606420 0.304555i −0.118966 0.992898i \(-0.537958\pi\)
0.725385 + 0.688343i \(0.241662\pi\)
\(600\) 1.94407 7.42841i 0.0793665 0.303263i
\(601\) −2.21265 + 7.39076i −0.0902558 + 0.301475i −0.991184 0.132493i \(-0.957702\pi\)
0.900928 + 0.433968i \(0.142887\pi\)
\(602\) 1.41811 + 8.04251i 0.0577979 + 0.327788i
\(603\) −25.4788 14.3166i −1.03758 0.583016i
\(604\) −1.24515 + 7.06162i −0.0506646 + 0.287333i
\(605\) 20.7042 + 10.3981i 0.841747 + 0.422741i
\(606\) 3.93994 + 0.789604i 0.160049 + 0.0320755i
\(607\) 11.6078 26.9099i 0.471147 1.09224i −0.502582 0.864529i \(-0.667617\pi\)
0.973729 0.227711i \(-0.0731242\pi\)
\(608\) −3.18160 + 7.37577i −0.129031 + 0.299127i
\(609\) −32.0394 6.42102i −1.29830 0.260193i
\(610\) 6.20988 + 3.11872i 0.251431 + 0.126273i
\(611\) 2.25591 12.7939i 0.0912642 0.517585i
\(612\) 7.39135 4.38313i 0.298778 0.177178i
\(613\) 4.70375 + 26.6763i 0.189983 + 1.07744i 0.919385 + 0.393360i \(0.128687\pi\)
−0.729402 + 0.684085i \(0.760202\pi\)
\(614\) 8.65954 28.9249i 0.349470 1.16731i
\(615\) −0.770841 + 2.94542i −0.0310833 + 0.118771i
\(616\) 14.2779 7.17063i 0.575273 0.288913i
\(617\) −3.70570 12.3779i −0.149186 0.498315i 0.850428 0.526091i \(-0.176343\pi\)
−0.999614 + 0.0277755i \(0.991158\pi\)
\(618\) 27.2637 0.952460i 1.09671 0.0383135i
\(619\) 19.5260 26.2280i 0.784817 1.05419i −0.212217 0.977223i \(-0.568068\pi\)
0.997033 0.0769693i \(-0.0245243\pi\)
\(620\) −0.781413 + 1.35345i −0.0313823 + 0.0543557i
\(621\) −1.74636 4.18113i −0.0700790 0.167783i
\(622\) 14.8685 + 25.7530i 0.596173 + 1.03260i
\(623\) −14.7126 1.71966i −0.589449 0.0688967i
\(624\) 5.30473 2.14334i 0.212359 0.0858022i
\(625\) 16.3663 + 3.87889i 0.654654 + 0.155156i
\(626\) −5.66875 3.72839i −0.226569 0.149017i
\(627\) −89.6272 7.31492i −3.57937 0.292130i
\(628\) −10.7534 11.3980i −0.429108 0.454828i
\(629\) 3.16908 2.65917i 0.126359 0.106028i
\(630\) −3.01331 + 4.70003i −0.120053 + 0.187253i
\(631\) 26.3422 + 22.1037i 1.04867 + 0.879936i 0.992953 0.118511i \(-0.0378120\pi\)
0.0557141 + 0.998447i \(0.482256\pi\)
\(632\) 0.793709 + 13.6274i 0.0315720 + 0.542071i
\(633\) −18.5316 23.1581i −0.736565 0.920454i
\(634\) 1.63543 + 2.19677i 0.0649514 + 0.0872448i
\(635\) −6.83706 + 0.799138i −0.271321 + 0.0317128i
\(636\) −3.99239 + 2.18283i −0.158309 + 0.0865547i
\(637\) −2.45418 + 1.61414i −0.0972383 + 0.0639546i
\(638\) 46.3524 16.8709i 1.83511 0.667925i
\(639\) 32.9302 31.8021i 1.30270 1.25807i
\(640\) −0.707437 0.257486i −0.0279639 0.0101780i
\(641\) 8.21026 1.94587i 0.324286 0.0768572i −0.0652486 0.997869i \(-0.520784\pi\)
0.389534 + 0.921012i \(0.372636\pi\)
\(642\) −7.17430 3.29463i −0.283147 0.130029i
\(643\) −1.74107 + 29.8930i −0.0686610 + 1.17886i 0.771392 + 0.636360i \(0.219561\pi\)
−0.840053 + 0.542504i \(0.817476\pi\)
\(644\) 1.47929 1.56796i 0.0582923 0.0617862i
\(645\) 4.09698 + 1.33113i 0.161319 + 0.0524131i
\(646\) −9.11342 21.1273i −0.358563 0.831241i
\(647\) −18.1620 −0.714022 −0.357011 0.934100i \(-0.616204\pi\)
−0.357011 + 0.934100i \(0.616204\pi\)
\(648\) −7.94629 + 4.22570i −0.312160 + 0.166001i
\(649\) −46.3030 −1.81755
\(650\) 5.80019 + 13.4464i 0.227502 + 0.527410i
\(651\) −6.60517 + 5.94749i −0.258877 + 0.233100i
\(652\) −10.5255 + 11.1564i −0.412211 + 0.436918i
\(653\) 1.14109 19.5917i 0.0446543 0.766684i −0.899447 0.437029i \(-0.856031\pi\)
0.944102 0.329655i \(-0.106932\pi\)
\(654\) −0.458862 4.91453i −0.0179429 0.192173i
\(655\) −10.0359 + 2.37856i −0.392136 + 0.0929379i
\(656\) −2.19410 0.798586i −0.0856651 0.0311795i
\(657\) 2.51698 0.176077i 0.0981968 0.00686940i
\(658\) −9.13576 + 3.32514i −0.356149 + 0.129628i
\(659\) 31.8582 20.9535i 1.24102 0.816232i 0.252541 0.967586i \(-0.418734\pi\)
0.988480 + 0.151354i \(0.0483632\pi\)
\(660\) 0.195989 8.42565i 0.00762887 0.327968i
\(661\) −10.0831 + 1.17854i −0.392187 + 0.0458401i −0.309901 0.950769i \(-0.600296\pi\)
−0.0822855 + 0.996609i \(0.526222\pi\)
\(662\) −8.19323 11.0054i −0.318439 0.427738i
\(663\) −5.96176 + 15.2655i −0.231536 + 0.592864i
\(664\) −0.636964 10.9363i −0.0247190 0.424409i
\(665\) 11.4516 + 9.60902i 0.444074 + 0.372622i
\(666\) −3.44499 + 2.62770i −0.133491 + 0.101821i
\(667\) 5.09815 4.27785i 0.197401 0.165639i
\(668\) 8.52339 + 9.03427i 0.329780 + 0.349546i
\(669\) −25.6123 + 37.0360i −0.990229 + 1.43189i
\(670\) −6.12751 4.03013i −0.236726 0.155697i
\(671\) −58.0514 13.7584i −2.24105 0.531139i
\(672\) −3.37400 2.63598i −0.130155 0.101685i
\(673\) −15.1316 1.76863i −0.583282 0.0681758i −0.180665 0.983545i \(-0.557825\pi\)
−0.402616 + 0.915369i \(0.631899\pi\)
\(674\) −0.593766 1.02843i −0.0228710 0.0396137i
\(675\) −11.2858 20.0817i −0.434392 0.772946i
\(676\) 1.04433 1.80882i 0.0401664 0.0695702i
\(677\) 10.4389 14.0219i 0.401200 0.538905i −0.554911 0.831910i \(-0.687248\pi\)
0.956111 + 0.293005i \(0.0946552\pi\)
\(678\) −4.38342 + 8.24431i −0.168344 + 0.316621i
\(679\) −3.83900 12.8232i −0.147327 0.492108i
\(680\) 1.92707 0.967811i 0.0738997 0.0371138i
\(681\) 25.1303 6.89098i 0.962997 0.264063i
\(682\) 3.84814 12.8537i 0.147353 0.492193i
\(683\) 4.00733 + 22.7267i 0.153336 + 0.869612i 0.960291 + 0.278999i \(0.0900028\pi\)
−0.806955 + 0.590613i \(0.798886\pi\)
\(684\) 8.50562 + 22.5472i 0.325220 + 0.862113i
\(685\) −1.44555 + 8.19809i −0.0552314 + 0.313233i
\(686\) 17.4278 + 8.75256i 0.665396 + 0.334174i
\(687\) −32.9398 + 37.4517i −1.25673 + 1.42887i
\(688\) −1.30851 + 3.03346i −0.0498863 + 0.115650i
\(689\) 3.43706 7.96801i 0.130942 0.303557i
\(690\) −0.363953 1.07727i −0.0138554 0.0410108i
\(691\) −24.0112 12.0589i −0.913430 0.458742i −0.0709561 0.997479i \(-0.522605\pi\)
−0.842473 + 0.538738i \(0.818901\pi\)
\(692\) 0.681953 3.86755i 0.0259240 0.147022i
\(693\) 15.8673 45.2296i 0.602748 1.71813i
\(694\) −0.867384 4.91918i −0.0329254 0.186729i
\(695\) 0.945405 3.15787i 0.0358612 0.119785i
\(696\) −9.40139 9.29237i −0.356359 0.352226i
\(697\) 5.97675 3.00164i 0.226386 0.113695i
\(698\) −8.68784 29.0194i −0.328840 1.09840i
\(699\) −8.50575 13.6116i −0.321717 0.514839i
\(700\) 6.54421 8.79040i 0.247348 0.332246i
\(701\) 8.80982 15.2590i 0.332742 0.576326i −0.650306 0.759672i \(-0.725359\pi\)
0.983048 + 0.183346i \(0.0586928\pi\)
\(702\) 6.98060 15.6805i 0.263466 0.591822i
\(703\) 5.80063 + 10.0470i 0.218775 + 0.378930i
\(704\) 6.41966 + 0.750350i 0.241950 + 0.0282799i
\(705\) −0.713651 + 5.07842i −0.0268777 + 0.191264i
\(706\) −18.6952 4.43084i −0.703602 0.166757i
\(707\) 4.79145 + 3.15139i 0.180201 + 0.118520i
\(708\) 5.30947 + 11.2150i 0.199542 + 0.421484i
\(709\) −0.916771 0.971721i −0.0344301 0.0364937i 0.709930 0.704273i \(-0.248727\pi\)
−0.744360 + 0.667779i \(0.767245\pi\)
\(710\) 8.80049 7.38449i 0.330277 0.277135i
\(711\) 30.1129 + 27.7534i 1.12932 + 1.04083i
\(712\) −4.59033 3.85174i −0.172030 0.144350i
\(713\) −0.105257 1.80719i −0.00394189 0.0676797i
\(714\) 12.1243 1.84823i 0.453739 0.0691683i
\(715\) 9.59819 + 12.8926i 0.358952 + 0.482156i
\(716\) 8.30114 0.970264i 0.310228 0.0362605i
\(717\) −3.46712 2.11074i −0.129482 0.0788270i
\(718\) 8.00202 5.26301i 0.298633 0.196414i
\(719\) −15.3237 + 5.57739i −0.571479 + 0.208001i −0.611564 0.791195i \(-0.709459\pi\)
0.0400850 + 0.999196i \(0.487237\pi\)
\(720\) −2.06323 + 0.918681i −0.0768921 + 0.0342372i
\(721\) 36.5866 + 13.3164i 1.36256 + 0.495930i
\(722\) 44.2974 10.4987i 1.64858 0.390721i
\(723\) −14.5852 + 10.3399i −0.542429 + 0.384547i
\(724\) 0.106294 1.82500i 0.00395038 0.0678254i
\(725\) 23.2181 24.6097i 0.862297 0.913982i
\(726\) 11.0832 + 52.1389i 0.411338 + 1.93506i
\(727\) −3.11630 7.22440i −0.115577 0.267938i 0.850602 0.525810i \(-0.176238\pi\)
−0.966179 + 0.257872i \(0.916979\pi\)
\(728\) 8.16556 0.302636
\(729\) −8.34126 + 25.6792i −0.308936 + 0.951083i
\(730\) 0.633171 0.0234347
\(731\) −3.74811 8.68909i −0.138629 0.321377i
\(732\) 3.32423 + 15.6382i 0.122867 + 0.578003i
\(733\) 6.12571 6.49288i 0.226258 0.239820i −0.604293 0.796762i \(-0.706544\pi\)
0.830551 + 0.556943i \(0.188026\pi\)
\(734\) −1.24661 + 21.4034i −0.0460131 + 0.790015i
\(735\) 0.945955 0.670620i 0.0348921 0.0247362i
\(736\) 0.848522 0.201103i 0.0312769 0.00741277i
\(737\) 59.1679 + 21.5353i 2.17948 + 0.793265i
\(738\) −6.39906 + 2.84926i −0.235553 + 0.104883i
\(739\) 0.858569 0.312494i 0.0315830 0.0114953i −0.326180 0.945308i \(-0.605762\pi\)
0.357763 + 0.933812i \(0.383539\pi\)
\(740\) −0.908417 + 0.597475i −0.0333941 + 0.0219636i
\(741\) −39.2558 23.8984i −1.44210 0.877930i
\(742\) −6.45010 + 0.753908i −0.236790 + 0.0276768i
\(743\) 17.9644 + 24.1304i 0.659050 + 0.885258i 0.998465 0.0553789i \(-0.0176367\pi\)
−0.339415 + 0.940637i \(0.610229\pi\)
\(744\) −3.55452 + 0.541853i −0.130315 + 0.0198653i
\(745\) −0.698271 11.9888i −0.0255827 0.439237i
\(746\) −21.1328 17.7325i −0.773725 0.649233i
\(747\) −24.1661 22.2725i −0.884191 0.814910i
\(748\) −14.1824 + 11.9004i −0.518558 + 0.435122i
\(749\) −7.73205 8.19550i −0.282523 0.299457i
\(750\) −5.26335 11.1175i −0.192190 0.405956i
\(751\) 10.0362 + 6.60094i 0.366228 + 0.240872i 0.719262 0.694738i \(-0.244480\pi\)
−0.353035 + 0.935610i \(0.614850\pi\)
\(752\) −3.82688 0.906987i −0.139552 0.0330744i
\(753\) 1.36367 9.70402i 0.0496949 0.353634i
\(754\) 25.0392 + 2.92667i 0.911875 + 0.106583i
\(755\) 2.69914 + 4.67504i 0.0982317 + 0.170142i
\(756\) −12.7744 + 1.34320i −0.464601 + 0.0488516i
\(757\) −24.9224 + 43.1669i −0.905820 + 1.56893i −0.0860076 + 0.996294i \(0.527411\pi\)
−0.819813 + 0.572632i \(0.805922\pi\)
\(758\) −16.8947 + 22.6935i −0.613642 + 0.824264i
\(759\) 5.17331 + 8.27876i 0.187779 + 0.300500i
\(760\) 1.73440 + 5.79329i 0.0629132 + 0.210145i
\(761\) −21.5309 + 10.8132i −0.780496 + 0.391980i −0.793991 0.607929i \(-0.792001\pi\)
0.0134952 + 0.999909i \(0.495704\pi\)
\(762\) −11.2636 11.1330i −0.408038 0.403306i
\(763\) 2.02040 6.74861i 0.0731434 0.244316i
\(764\) 3.47771 + 19.7231i 0.125819 + 0.713557i
\(765\) 2.14159 6.10458i 0.0774292 0.220712i
\(766\) −3.22586 + 18.2947i −0.116555 + 0.661016i
\(767\) −21.1470 10.6204i −0.763575