Properties

Label 162.2.g.b.31.2
Level $162$
Weight $2$
Character 162.31
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 31.2
Character \(\chi\) \(=\) 162.31
Dual form 162.2.g.b.115.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.396080 + 0.918216i) q^{2} +(-1.57515 - 0.720348i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(0.193287 - 3.31862i) q^{5} +(0.0375499 - 1.73164i) q^{6} +(2.86227 - 0.678371i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(1.96220 + 2.26931i) q^{9} +O(q^{10})\) \(q+(0.396080 + 0.918216i) q^{2} +(-1.57515 - 0.720348i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(0.193287 - 3.31862i) q^{5} +(0.0375499 - 1.73164i) q^{6} +(2.86227 - 0.678371i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(1.96220 + 2.26931i) q^{9} +(3.12376 - 1.13696i) q^{10} +(5.02852 - 3.30731i) q^{11} +(1.60490 - 0.651390i) q^{12} +(-6.08473 + 0.711203i) q^{13} +(1.75658 + 2.35949i) q^{14} +(-2.69501 + 5.08809i) q^{15} +(-0.0581448 - 0.998308i) q^{16} +(-0.253735 - 0.212909i) q^{17} +(-1.30653 + 2.70055i) q^{18} +(-0.285511 + 0.239572i) q^{19} +(2.28123 + 2.41796i) q^{20} +(-4.99717 - 0.993295i) q^{21} +(5.02852 + 3.30731i) q^{22} +(0.697536 + 0.165319i) q^{23} +(1.23378 + 1.21564i) q^{24} +(-6.00966 - 0.702429i) q^{25} +(-3.06308 - 5.30540i) q^{26} +(-1.45606 - 4.98797i) q^{27} +(-1.47078 + 2.54747i) q^{28} +(0.233421 - 0.313539i) q^{29} +(-5.73940 - 0.459319i) q^{30} +(2.28811 + 7.64280i) q^{31} +(0.893633 - 0.448799i) q^{32} +(-10.3031 + 1.58723i) q^{33} +(0.0949972 - 0.317313i) q^{34} +(-1.69801 - 9.62990i) q^{35} +(-2.99718 - 0.130046i) q^{36} +(-0.453355 + 2.57110i) q^{37} +(-0.333064 - 0.167271i) q^{38} +(10.0967 + 3.26287i) q^{39} +(-1.31666 + 3.05237i) q^{40} +(-0.132020 + 0.306057i) q^{41} +(-1.06722 - 4.98191i) q^{42} +(7.96817 + 4.00176i) q^{43} +(-1.04513 + 5.92723i) q^{44} +(7.91025 - 6.07315i) q^{45} +(0.124481 + 0.705968i) q^{46} +(-2.04511 + 6.83114i) q^{47} +(-0.627542 + 1.61437i) q^{48} +(1.47698 - 0.741765i) q^{49} +(-1.73532 - 5.79638i) q^{50} +(0.246303 + 0.518142i) q^{51} +(3.65828 - 4.91393i) q^{52} +(-3.45123 + 5.97770i) q^{53} +(4.00332 - 3.31261i) q^{54} +(-10.0037 - 17.3270i) q^{55} +(-2.92167 - 0.341494i) q^{56} +(0.622298 - 0.171695i) q^{57} +(0.380350 + 0.0901447i) q^{58} +(-9.06502 - 5.96216i) q^{59} +(-1.85151 - 5.45194i) q^{60} +(4.99910 + 5.29874i) q^{61} +(-6.11147 + 5.12813i) q^{62} +(7.15577 + 5.16429i) q^{63} +(0.766044 + 0.642788i) q^{64} +(1.18411 + 20.3303i) q^{65} +(-5.53826 - 8.83180i) q^{66} +(0.734568 + 0.986697i) q^{67} +(0.328988 - 0.0384532i) q^{68} +(-0.979637 - 0.762871i) q^{69} +(8.16978 - 5.37335i) q^{70} +(12.1389 - 4.41819i) q^{71} +(-1.06771 - 2.80357i) q^{72} +(-0.412642 - 0.150189i) q^{73} +(-2.54039 + 0.602084i) q^{74} +(8.96013 + 5.43548i) q^{75} +(0.0216710 - 0.372077i) q^{76} +(12.1494 - 12.8776i) q^{77} +(1.00307 + 10.5633i) q^{78} +(0.525833 + 1.21902i) q^{79} -3.32424 q^{80} +(-1.29956 + 8.90568i) q^{81} -0.333317 q^{82} +(-1.98870 - 4.61033i) q^{83} +(4.15176 - 2.95317i) q^{84} +(-0.755608 + 0.800897i) q^{85} +(-0.518454 + 8.90152i) q^{86} +(-0.593531 + 0.325727i) q^{87} +(-5.85643 + 1.38800i) q^{88} +(1.65643 + 0.602892i) q^{89} +(8.70955 + 4.85786i) q^{90} +(-16.9337 + 6.16336i) q^{91} +(-0.598927 + 0.393920i) q^{92} +(1.90137 - 13.6868i) q^{93} +(-7.08249 + 0.827825i) q^{94} +(0.739862 + 0.993807i) q^{95} +(-1.73090 + 0.0631998i) q^{96} +(-0.696419 - 11.9570i) q^{97} +(1.26610 + 1.06239i) q^{98} +(17.3723 + 4.92169i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{10}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396080 + 0.918216i 0.280071 + 0.649277i
\(3\) −1.57515 0.720348i −0.909414 0.415893i
\(4\) −0.686242 + 0.727374i −0.343121 + 0.363687i
\(5\) 0.193287 3.31862i 0.0864407 1.48413i −0.624581 0.780960i \(-0.714730\pi\)
0.711022 0.703170i \(-0.248233\pi\)
\(6\) 0.0375499 1.73164i 0.0153297 0.706941i
\(7\) 2.86227 0.678371i 1.08184 0.256400i 0.349219 0.937041i \(-0.386447\pi\)
0.732617 + 0.680641i \(0.238299\pi\)
\(8\) −0.939693 0.342020i −0.332232 0.120922i
\(9\) 1.96220 + 2.26931i 0.654066 + 0.756438i
\(10\) 3.12376 1.13696i 0.987821 0.359537i
\(11\) 5.02852 3.30731i 1.51616 0.997192i 0.527075 0.849818i \(-0.323289\pi\)
0.989081 0.147373i \(-0.0470819\pi\)
\(12\) 1.60490 0.651390i 0.463294 0.188040i
\(13\) −6.08473 + 0.711203i −1.68760 + 0.197252i −0.905041 0.425324i \(-0.860160\pi\)
−0.782559 + 0.622576i \(0.786086\pi\)
\(14\) 1.75658 + 2.35949i 0.469465 + 0.630601i
\(15\) −2.69501 + 5.08809i −0.695850 + 1.31374i
\(16\) −0.0581448 0.998308i −0.0145362 0.249577i
\(17\) −0.253735 0.212909i −0.0615398 0.0516381i 0.611499 0.791245i \(-0.290567\pi\)
−0.673039 + 0.739607i \(0.735011\pi\)
\(18\) −1.30653 + 2.70055i −0.307953 + 0.636526i
\(19\) −0.285511 + 0.239572i −0.0655007 + 0.0549616i −0.674950 0.737863i \(-0.735835\pi\)
0.609450 + 0.792825i \(0.291390\pi\)
\(20\) 2.28123 + 2.41796i 0.510099 + 0.540673i
\(21\) −4.99717 0.993295i −1.09047 0.216755i
\(22\) 5.02852 + 3.30731i 1.07208 + 0.705121i
\(23\) 0.697536 + 0.165319i 0.145446 + 0.0344714i 0.302694 0.953088i \(-0.402114\pi\)
−0.157248 + 0.987559i \(0.550262\pi\)
\(24\) 1.23378 + 1.21564i 0.251845 + 0.248141i
\(25\) −6.00966 0.702429i −1.20193 0.140486i
\(26\) −3.06308 5.30540i −0.600719 1.04048i
\(27\) −1.45606 4.98797i −0.280219 0.959936i
\(28\) −1.47078 + 2.54747i −0.277951 + 0.481426i
\(29\) 0.233421 0.313539i 0.0433453 0.0582228i −0.779922 0.625877i \(-0.784741\pi\)
0.823267 + 0.567654i \(0.192149\pi\)
\(30\) −5.73940 0.459319i −1.04787 0.0838597i
\(31\) 2.28811 + 7.64280i 0.410956 + 1.37269i 0.873816 + 0.486257i \(0.161638\pi\)
−0.462860 + 0.886431i \(0.653177\pi\)
\(32\) 0.893633 0.448799i 0.157973 0.0793372i
\(33\) −10.3031 + 1.58723i −1.79354 + 0.276301i
\(34\) 0.0949972 0.317313i 0.0162919 0.0544187i
\(35\) −1.69801 9.62990i −0.287016 1.62775i
\(36\) −2.99718 0.130046i −0.499530 0.0216743i
\(37\) −0.453355 + 2.57110i −0.0745310 + 0.422687i 0.924597 + 0.380946i \(0.124402\pi\)
−0.999128 + 0.0417409i \(0.986710\pi\)
\(38\) −0.333064 0.167271i −0.0540301 0.0271349i
\(39\) 10.0967 + 3.26287i 1.61676 + 0.522477i
\(40\) −1.31666 + 3.05237i −0.208183 + 0.482622i
\(41\) −0.132020 + 0.306057i −0.0206181 + 0.0477981i −0.928214 0.372047i \(-0.878656\pi\)
0.907596 + 0.419845i \(0.137915\pi\)
\(42\) −1.06722 4.98191i −0.164675 0.768725i
\(43\) 7.96817 + 4.00176i 1.21513 + 0.610263i 0.936680 0.350186i \(-0.113882\pi\)
0.278454 + 0.960450i \(0.410178\pi\)
\(44\) −1.04513 + 5.92723i −0.157559 + 0.893563i
\(45\) 7.91025 6.07315i 1.17919 0.905332i
\(46\) 0.124481 + 0.705968i 0.0183538 + 0.104089i
\(47\) −2.04511 + 6.83114i −0.298310 + 0.996425i 0.669092 + 0.743179i \(0.266683\pi\)
−0.967402 + 0.253245i \(0.918502\pi\)
\(48\) −0.627542 + 1.61437i −0.0905779 + 0.233014i
\(49\) 1.47698 0.741765i 0.210997 0.105966i
\(50\) −1.73532 5.79638i −0.245412 0.819733i
\(51\) 0.246303 + 0.518142i 0.0344892 + 0.0725543i
\(52\) 3.65828 4.91393i 0.507313 0.681439i
\(53\) −3.45123 + 5.97770i −0.474062 + 0.821100i −0.999559 0.0296958i \(-0.990546\pi\)
0.525497 + 0.850796i \(0.323879\pi\)
\(54\) 4.00332 3.31261i 0.544783 0.450790i
\(55\) −10.0037 17.3270i −1.34890 2.33637i
\(56\) −2.92167 0.341494i −0.390425 0.0456341i
\(57\) 0.622298 0.171695i 0.0824254 0.0227415i
\(58\) 0.380350 + 0.0901447i 0.0499424 + 0.0118366i
\(59\) −9.06502 5.96216i −1.18016 0.776207i −0.201063 0.979578i \(-0.564440\pi\)
−0.979102 + 0.203372i \(0.934810\pi\)
\(60\) −1.85151 5.45194i −0.239029 0.703842i
\(61\) 4.99910 + 5.29874i 0.640069 + 0.678434i 0.963466 0.267830i \(-0.0863064\pi\)
−0.323397 + 0.946263i \(0.604825\pi\)
\(62\) −6.11147 + 5.12813i −0.776158 + 0.651274i
\(63\) 7.15577 + 5.16429i 0.901543 + 0.650639i
\(64\) 0.766044 + 0.642788i 0.0957556 + 0.0803485i
\(65\) 1.18411 + 20.3303i 0.146871 + 2.52167i
\(66\) −5.53826 8.83180i −0.681713 1.08712i
\(67\) 0.734568 + 0.986697i 0.0897418 + 0.120544i 0.844726 0.535198i \(-0.179763\pi\)
−0.754985 + 0.655742i \(0.772356\pi\)
\(68\) 0.328988 0.0384532i 0.0398957 0.00466314i
\(69\) −0.979637 0.762871i −0.117934 0.0918389i
\(70\) 8.16978 5.37335i 0.976475 0.642238i
\(71\) 12.1389 4.41819i 1.44062 0.524343i 0.500665 0.865641i \(-0.333089\pi\)
0.939955 + 0.341298i \(0.110867\pi\)
\(72\) −1.06771 2.80357i −0.125831 0.330404i
\(73\) −0.412642 0.150189i −0.0482961 0.0175783i 0.317759 0.948171i \(-0.397070\pi\)
−0.366055 + 0.930593i \(0.619292\pi\)
\(74\) −2.54039 + 0.602084i −0.295315 + 0.0699908i
\(75\) 8.96013 + 5.43548i 1.03463 + 0.627635i
\(76\) 0.0216710 0.372077i 0.00248584 0.0426802i
\(77\) 12.1494 12.8776i 1.38455 1.46754i
\(78\) 1.00307 + 10.5633i 0.113575 + 1.19606i
\(79\) 0.525833 + 1.21902i 0.0591609 + 0.137150i 0.945232 0.326399i \(-0.105835\pi\)
−0.886071 + 0.463549i \(0.846576\pi\)
\(80\) −3.32424 −0.371661
\(81\) −1.29956 + 8.90568i −0.144396 + 0.989520i
\(82\) −0.333317 −0.0368087
\(83\) −1.98870 4.61033i −0.218288 0.506049i 0.773522 0.633770i \(-0.218493\pi\)
−0.991810 + 0.127720i \(0.959234\pi\)
\(84\) 4.15176 2.95317i 0.452994 0.322217i
\(85\) −0.755608 + 0.800897i −0.0819571 + 0.0868695i
\(86\) −0.518454 + 8.90152i −0.0559064 + 0.959875i
\(87\) −0.593531 + 0.325727i −0.0636332 + 0.0349216i
\(88\) −5.85643 + 1.38800i −0.624298 + 0.147961i
\(89\) 1.65643 + 0.602892i 0.175582 + 0.0639064i 0.428315 0.903629i \(-0.359107\pi\)
−0.252734 + 0.967536i \(0.581330\pi\)
\(90\) 8.70955 + 4.85786i 0.918068 + 0.512064i
\(91\) −16.9337 + 6.16336i −1.77513 + 0.646095i
\(92\) −0.598927 + 0.393920i −0.0624425 + 0.0410691i
\(93\) 1.90137 13.6868i 0.197163 1.41925i
\(94\) −7.08249 + 0.827825i −0.730503 + 0.0853836i
\(95\) 0.739862 + 0.993807i 0.0759082 + 0.101962i
\(96\) −1.73090 + 0.0631998i −0.176659 + 0.00645030i
\(97\) −0.696419 11.9570i −0.0707106 1.21405i −0.827907 0.560866i \(-0.810468\pi\)
0.757196 0.653188i \(-0.226569\pi\)
\(98\) 1.26610 + 1.06239i 0.127896 + 0.107317i
\(99\) 17.3723 + 4.92169i 1.74598 + 0.494649i
\(100\) 4.63501 3.88923i 0.463501 0.388923i
\(101\) 4.08642 + 4.33136i 0.406614 + 0.430986i 0.898027 0.439941i \(-0.145001\pi\)
−0.491412 + 0.870927i \(0.663519\pi\)
\(102\) −0.378211 + 0.431384i −0.0374484 + 0.0427134i
\(103\) 2.28704 + 1.50421i 0.225348 + 0.148214i 0.657163 0.753748i \(-0.271756\pi\)
−0.431815 + 0.901962i \(0.642127\pi\)
\(104\) 5.96102 + 1.41279i 0.584526 + 0.138535i
\(105\) −4.26225 + 16.3917i −0.415953 + 1.59967i
\(106\) −6.85578 0.801326i −0.665892 0.0778316i
\(107\) −1.73880 3.01170i −0.168097 0.291152i 0.769654 0.638461i \(-0.220429\pi\)
−0.937751 + 0.347309i \(0.887095\pi\)
\(108\) 4.62733 + 2.36385i 0.445265 + 0.227462i
\(109\) 3.05632 5.29371i 0.292743 0.507045i −0.681715 0.731618i \(-0.738765\pi\)
0.974457 + 0.224573i \(0.0720987\pi\)
\(110\) 11.9476 16.0485i 1.13916 1.53016i
\(111\) 2.56619 3.72330i 0.243572 0.353400i
\(112\) −0.843649 2.81798i −0.0797173 0.266274i
\(113\) −4.71089 + 2.36590i −0.443163 + 0.222565i −0.656365 0.754443i \(-0.727907\pi\)
0.213202 + 0.977008i \(0.431611\pi\)
\(114\) 0.404133 + 0.503399i 0.0378505 + 0.0471476i
\(115\) 0.683455 2.28290i 0.0637325 0.212882i
\(116\) 0.0678768 + 0.384948i 0.00630220 + 0.0357415i
\(117\) −13.5534 12.4126i −1.25301 1.14755i
\(118\) 1.88408 10.6851i 0.173443 0.983647i
\(119\) −0.870690 0.437277i −0.0798160 0.0400851i
\(120\) 4.27271 3.85949i 0.390044 0.352321i
\(121\) 9.99085 23.1614i 0.908259 2.10558i
\(122\) −2.88534 + 6.68898i −0.261227 + 0.605592i
\(123\) 0.428419 0.386986i 0.0386293 0.0348933i
\(124\) −7.12937 3.58050i −0.640236 0.321539i
\(125\) −0.606441 + 3.43930i −0.0542417 + 0.307620i
\(126\) −1.90768 + 8.61602i −0.169949 + 0.767576i
\(127\) 0.883746 + 5.01197i 0.0784198 + 0.444741i 0.998584 + 0.0532069i \(0.0169443\pi\)
−0.920164 + 0.391534i \(0.871945\pi\)
\(128\) −0.286803 + 0.957990i −0.0253501 + 0.0846751i
\(129\) −9.66840 12.0432i −0.851255 1.06035i
\(130\) −18.1987 + 9.13971i −1.59613 + 0.801605i
\(131\) 1.34349 + 4.48758i 0.117381 + 0.392081i 0.996407 0.0846931i \(-0.0269910\pi\)
−0.879026 + 0.476775i \(0.841806\pi\)
\(132\) 5.91590 8.58342i 0.514913 0.747091i
\(133\) −0.654691 + 0.879402i −0.0567689 + 0.0762538i
\(134\) −0.615053 + 1.06530i −0.0531325 + 0.0920282i
\(135\) −16.8346 + 3.86800i −1.44889 + 0.332904i
\(136\) 0.165614 + 0.286852i 0.0142013 + 0.0245973i
\(137\) −15.4437 1.80511i −1.31944 0.154221i −0.572936 0.819600i \(-0.694196\pi\)
−0.746505 + 0.665380i \(0.768270\pi\)
\(138\) 0.312466 1.20168i 0.0265989 0.102293i
\(139\) 8.65408 + 2.05105i 0.734029 + 0.173968i 0.580597 0.814191i \(-0.302819\pi\)
0.153432 + 0.988159i \(0.450967\pi\)
\(140\) 8.16978 + 5.37335i 0.690472 + 0.454131i
\(141\) 8.14216 9.28689i 0.685693 0.782097i
\(142\) 8.86482 + 9.39616i 0.743919 + 0.788508i
\(143\) −28.2450 + 23.7004i −2.36197 + 1.98193i
\(144\) 2.15138 2.09083i 0.179282 0.174236i
\(145\) −0.995399 0.835239i −0.0826634 0.0693628i
\(146\) −0.0255328 0.438382i −0.00211311 0.0362807i
\(147\) −2.86079 + 0.104455i −0.235954 + 0.00861532i
\(148\) −1.55904 2.09416i −0.128152 0.172139i
\(149\) −5.97912 + 0.698858i −0.489828 + 0.0572527i −0.357422 0.933943i \(-0.616344\pi\)
−0.132406 + 0.991196i \(0.542270\pi\)
\(150\) −1.44202 + 10.3802i −0.117740 + 0.847541i
\(151\) −15.0719 + 9.91297i −1.22654 + 0.806706i −0.986453 0.164046i \(-0.947546\pi\)
−0.240085 + 0.970752i \(0.577175\pi\)
\(152\) 0.350231 0.127474i 0.0284075 0.0103395i
\(153\) −0.0147212 0.993574i −0.00119014 0.0803257i
\(154\) 16.6366 + 6.05522i 1.34061 + 0.487943i
\(155\) 25.8058 6.11609i 2.07277 0.491256i
\(156\) −9.30209 + 5.10494i −0.744763 + 0.408722i
\(157\) −0.606618 + 10.4152i −0.0484134 + 0.831226i 0.883474 + 0.468479i \(0.155198\pi\)
−0.931888 + 0.362747i \(0.881839\pi\)
\(158\) −0.911050 + 0.965657i −0.0724793 + 0.0768235i
\(159\) 9.74222 6.92969i 0.772608 0.549560i
\(160\) −1.31666 3.05237i −0.104091 0.241311i
\(161\) 2.10868 0.166188
\(162\) −8.69207 + 2.33408i −0.682913 + 0.183383i
\(163\) −18.8787 −1.47869 −0.739346 0.673326i \(-0.764865\pi\)
−0.739346 + 0.673326i \(0.764865\pi\)
\(164\) −0.132020 0.306057i −0.0103090 0.0238991i
\(165\) 3.27594 + 34.4988i 0.255031 + 2.68573i
\(166\) 3.44559 3.65212i 0.267430 0.283459i
\(167\) 0.339011 5.82060i 0.0262335 0.450411i −0.959458 0.281852i \(-0.909051\pi\)
0.985691 0.168560i \(-0.0539116\pi\)
\(168\) 4.35608 + 2.64252i 0.336079 + 0.203875i
\(169\) 23.8685 5.65695i 1.83604 0.435150i
\(170\) −1.03468 0.376592i −0.0793561 0.0288833i
\(171\) −1.10389 0.177826i −0.0844168 0.0135987i
\(172\) −8.37887 + 3.04966i −0.638883 + 0.232534i
\(173\) −19.9947 + 13.1507i −1.52017 + 0.999828i −0.531947 + 0.846778i \(0.678539\pi\)
−0.988218 + 0.153051i \(0.951090\pi\)
\(174\) −0.534173 0.415976i −0.0404956 0.0315351i
\(175\) −17.6778 + 2.06624i −1.33631 + 0.156193i
\(176\) −3.59410 4.82771i −0.270915 0.363902i
\(177\) 9.98394 + 15.9213i 0.750439 + 1.19672i
\(178\) 0.102494 + 1.75976i 0.00768226 + 0.131899i
\(179\) 5.79434 + 4.86203i 0.433090 + 0.363405i 0.833116 0.553098i \(-0.186555\pi\)
−0.400026 + 0.916504i \(0.630999\pi\)
\(180\) −1.01089 + 9.92135i −0.0753473 + 0.739494i
\(181\) 3.57502 2.99980i 0.265729 0.222973i −0.500181 0.865921i \(-0.666733\pi\)
0.765910 + 0.642948i \(0.222289\pi\)
\(182\) −12.3664 13.1076i −0.916657 0.971600i
\(183\) −4.05740 11.9474i −0.299932 0.883177i
\(184\) −0.598927 0.393920i −0.0441535 0.0290402i
\(185\) 8.44487 + 2.00147i 0.620879 + 0.147151i
\(186\) 13.3205 3.67520i 0.976709 0.269478i
\(187\) −1.98007 0.231437i −0.144797 0.0169243i
\(188\) −3.56535 6.17537i −0.260030 0.450385i
\(189\) −7.55134 13.2892i −0.549279 0.966646i
\(190\) −0.619485 + 1.07298i −0.0449422 + 0.0778422i
\(191\) −6.01138 + 8.07468i −0.434968 + 0.584263i −0.964519 0.264015i \(-0.914953\pi\)
0.529551 + 0.848278i \(0.322361\pi\)
\(192\) −0.743604 1.56431i −0.0536650 0.112894i
\(193\) −4.53054 15.1331i −0.326115 1.08930i −0.951156 0.308709i \(-0.900103\pi\)
0.625041 0.780592i \(-0.285082\pi\)
\(194\) 10.7033 5.37541i 0.768453 0.385932i
\(195\) 12.7798 32.8763i 0.915179 2.35432i
\(196\) −0.474022 + 1.58334i −0.0338587 + 0.113096i
\(197\) −1.60575 9.10664i −0.114405 0.648821i −0.987043 0.160455i \(-0.948704\pi\)
0.872639 0.488367i \(-0.162407\pi\)
\(198\) 2.36163 + 17.9009i 0.167834 + 1.27216i
\(199\) −0.0962211 + 0.545697i −0.00682093 + 0.0386834i −0.988028 0.154273i \(-0.950696\pi\)
0.981207 + 0.192956i \(0.0618076\pi\)
\(200\) 5.40699 + 2.71549i 0.382332 + 0.192014i
\(201\) −0.446291 2.08334i −0.0314789 0.146948i
\(202\) −2.35857 + 5.46778i −0.165948 + 0.384712i
\(203\) 0.455419 1.05578i 0.0319642 0.0741013i
\(204\) −0.545906 0.176416i −0.0382210 0.0123516i
\(205\) 0.990169 + 0.497281i 0.0691564 + 0.0347316i
\(206\) −0.475339 + 2.69578i −0.0331184 + 0.187824i
\(207\) 0.993543 + 1.90732i 0.0690560 + 0.132568i
\(208\) 1.06380 + 6.03308i 0.0737609 + 0.418319i
\(209\) −0.643358 + 2.14897i −0.0445020 + 0.148647i
\(210\) −16.7393 + 2.57875i −1.15512 + 0.177951i
\(211\) 11.3871 5.71883i 0.783923 0.393701i −0.0113631 0.999935i \(-0.503617\pi\)
0.795286 + 0.606235i \(0.207321\pi\)
\(212\) −1.97964 6.61247i −0.135963 0.454147i
\(213\) −22.3032 1.78490i −1.52819 0.122300i
\(214\) 2.07668 2.78947i 0.141959 0.190684i
\(215\) 14.8205 25.6698i 1.01075 1.75067i
\(216\) −0.337737 + 5.18516i −0.0229801 + 0.352806i
\(217\) 11.7338 + 20.3236i 0.796544 + 1.37965i
\(218\) 6.07131 + 0.709635i 0.411201 + 0.0480625i
\(219\) 0.541785 + 0.533817i 0.0366104 + 0.0360720i
\(220\) 19.4682 + 4.61404i 1.31254 + 0.311079i
\(221\) 1.69533 + 1.11504i 0.114040 + 0.0750055i
\(222\) 4.43521 + 0.881593i 0.297672 + 0.0591687i
\(223\) 9.49130 + 10.0602i 0.635585 + 0.673680i 0.962471 0.271383i \(-0.0874810\pi\)
−0.326887 + 0.945064i \(0.606000\pi\)
\(224\) 2.25337 1.89080i 0.150559 0.126334i
\(225\) −10.1981 15.0161i −0.679874 1.00107i
\(226\) −4.03829 3.38853i −0.268623 0.225402i
\(227\) −1.10287 18.9355i −0.0731997 1.25679i −0.812318 0.583215i \(-0.801794\pi\)
0.739118 0.673576i \(-0.235243\pi\)
\(228\) −0.302160 + 0.570467i −0.0200111 + 0.0377801i
\(229\) −0.390581 0.524641i −0.0258103 0.0346693i 0.789031 0.614354i \(-0.210583\pi\)
−0.814841 + 0.579684i \(0.803176\pi\)
\(230\) 2.36690 0.276651i 0.156069 0.0182418i
\(231\) −28.4135 + 11.5324i −1.86947 + 0.758775i
\(232\) −0.326581 + 0.214796i −0.0214411 + 0.0141020i
\(233\) 8.18822 2.98027i 0.536428 0.195244i −0.0595782 0.998224i \(-0.518976\pi\)
0.596006 + 0.802980i \(0.296753\pi\)
\(234\) 6.02926 17.3613i 0.394145 1.13495i
\(235\) 22.2746 + 8.10731i 1.45304 + 0.528862i
\(236\) 10.5575 2.50218i 0.687235 0.162878i
\(237\) 0.0498510 2.29892i 0.00323817 0.149331i
\(238\) 0.0566521 0.972678i 0.00367221 0.0630494i
\(239\) 3.50926 3.71960i 0.226995 0.240601i −0.603859 0.797091i \(-0.706371\pi\)
0.830854 + 0.556490i \(0.187852\pi\)
\(240\) 5.23618 + 2.39461i 0.337994 + 0.154571i
\(241\) 1.10816 + 2.56900i 0.0713826 + 0.165484i 0.950172 0.311727i \(-0.100907\pi\)
−0.878789 + 0.477210i \(0.841648\pi\)
\(242\) 25.2243 1.62148
\(243\) 8.46219 13.0917i 0.542850 0.839830i
\(244\) −7.28475 −0.466358
\(245\) −2.17615 5.04489i −0.139029 0.322306i
\(246\) 0.525025 + 0.240104i 0.0334744 + 0.0153085i
\(247\) 1.56687 1.66079i 0.0996977 0.105673i
\(248\) 0.463877 7.96446i 0.0294562 0.505744i
\(249\) −0.188537 + 8.69452i −0.0119480 + 0.550993i
\(250\) −3.39822 + 0.805392i −0.214922 + 0.0509375i
\(251\) 5.23170 + 1.90418i 0.330222 + 0.120191i 0.501810 0.864978i \(-0.332668\pi\)
−0.171588 + 0.985169i \(0.554890\pi\)
\(252\) −8.66696 + 1.66097i −0.545967 + 0.104631i
\(253\) 4.05434 1.47566i 0.254894 0.0927738i
\(254\) −4.25204 + 2.79661i −0.266797 + 0.175475i
\(255\) 1.76712 0.717233i 0.110661 0.0449149i
\(256\) −0.993238 + 0.116093i −0.0620774 + 0.00725581i
\(257\) 5.02711 + 6.75258i 0.313582 + 0.421214i 0.930772 0.365600i \(-0.119136\pi\)
−0.617190 + 0.786814i \(0.711729\pi\)
\(258\) 7.22883 13.6478i 0.450048 0.849673i
\(259\) 0.446536 + 7.66673i 0.0277464 + 0.476387i
\(260\) −15.6003 13.0902i −0.967492 0.811822i
\(261\) 1.16954 0.0855200i 0.0723926 0.00529356i
\(262\) −3.58844 + 3.01106i −0.221694 + 0.186024i
\(263\) −10.2726 10.8883i −0.633435 0.671402i 0.328556 0.944485i \(-0.393438\pi\)
−0.961990 + 0.273083i \(0.911957\pi\)
\(264\) 10.2246 + 2.03236i 0.629281 + 0.125083i
\(265\) 19.1706 + 12.6087i 1.17764 + 0.774547i
\(266\) −1.06679 0.252834i −0.0654091 0.0155023i
\(267\) −2.17484 2.14285i −0.133098 0.131141i
\(268\) −1.22179 0.142807i −0.0746326 0.00872330i
\(269\) 13.7136 + 23.7527i 0.836135 + 1.44823i 0.893103 + 0.449852i \(0.148523\pi\)
−0.0569680 + 0.998376i \(0.518143\pi\)
\(270\) −10.2195 13.9258i −0.621939 0.847496i
\(271\) 3.19636 5.53625i 0.194165 0.336303i −0.752462 0.658636i \(-0.771134\pi\)
0.946626 + 0.322333i \(0.104467\pi\)
\(272\) −0.197796 + 0.265686i −0.0119931 + 0.0161096i
\(273\) 31.1129 + 2.48993i 1.88304 + 0.150697i
\(274\) −4.45945 14.8956i −0.269405 0.899875i
\(275\) −32.5429 + 16.3436i −1.96241 + 0.985558i
\(276\) 1.22716 0.189048i 0.0738663 0.0113794i
\(277\) −8.35954 + 27.9228i −0.502276 + 1.67772i 0.211528 + 0.977372i \(0.432156\pi\)
−0.713804 + 0.700346i \(0.753029\pi\)
\(278\) 1.54439 + 8.75869i 0.0926266 + 0.525312i
\(279\) −12.8542 + 20.1891i −0.769561 + 1.20869i
\(280\) −1.69801 + 9.62990i −0.101476 + 0.575496i
\(281\) −13.7103 6.88559i −0.817890 0.410760i −0.00989646 0.999951i \(-0.503150\pi\)
−0.807994 + 0.589191i \(0.799446\pi\)
\(282\) 11.7523 + 3.79791i 0.699840 + 0.226162i
\(283\) 7.68577 17.8176i 0.456872 1.05915i −0.521679 0.853142i \(-0.674694\pi\)
0.978551 0.206006i \(-0.0660467\pi\)
\(284\) −5.11653 + 11.8615i −0.303610 + 0.703848i
\(285\) −0.449507 2.09835i −0.0266265 0.124296i
\(286\) −32.9494 16.5478i −1.94834 0.978491i
\(287\) −0.170257 + 0.965577i −0.0100500 + 0.0569962i
\(288\) 2.77195 + 1.14730i 0.163339 + 0.0676053i
\(289\) −2.93297 16.6337i −0.172528 0.978452i
\(290\) 0.372672 1.24481i 0.0218841 0.0730979i
\(291\) −7.51627 + 19.3358i −0.440611 + 1.13349i
\(292\) 0.392416 0.197079i 0.0229644 0.0115332i
\(293\) −4.01512 13.4114i −0.234566 0.783505i −0.991511 0.130026i \(-0.958494\pi\)
0.756945 0.653479i \(-0.226691\pi\)
\(294\) −1.22901 2.58545i −0.0716775 0.150787i
\(295\) −21.5383 + 28.9309i −1.25401 + 1.68442i
\(296\) 1.30538 2.26099i 0.0758738 0.131417i
\(297\) −23.8186 20.2665i −1.38210 1.17598i
\(298\) −3.00991 5.21332i −0.174359 0.301999i
\(299\) −4.36189 0.509832i −0.252255 0.0294844i
\(300\) −10.1024 + 2.78731i −0.583264 + 0.160925i
\(301\) 25.5217 + 6.04876i 1.47105 + 0.348645i
\(302\) −15.0719 9.91297i −0.867293 0.570428i
\(303\) −3.31665 9.76618i −0.190536 0.561053i
\(304\) 0.255768 + 0.271098i 0.0146693 + 0.0155485i
\(305\) 18.5507 15.5659i 1.06221 0.891302i
\(306\) 0.906485 0.407052i 0.0518203 0.0232696i
\(307\) 15.4132 + 12.9332i 0.879679 + 0.738138i 0.966113 0.258119i \(-0.0831028\pi\)
−0.0864343 + 0.996258i \(0.527547\pi\)
\(308\) 1.02941 + 17.6743i 0.0586562 + 1.00709i
\(309\) −2.51887 4.01682i −0.143294 0.228509i
\(310\) 15.8370 + 21.2728i 0.899483 + 1.20822i
\(311\) −7.96648 + 0.931148i −0.451738 + 0.0528006i −0.338920 0.940815i \(-0.610062\pi\)
−0.112818 + 0.993616i \(0.535988\pi\)
\(312\) −8.37181 6.51936i −0.473960 0.369086i
\(313\) 25.3797 16.6925i 1.43455 0.943516i 0.435485 0.900196i \(-0.356577\pi\)
0.999061 0.0433196i \(-0.0137934\pi\)
\(314\) −9.80370 + 3.56826i −0.553255 + 0.201368i
\(315\) 18.5214 22.7491i 1.04356 1.28177i
\(316\) −1.24753 0.454064i −0.0701791 0.0255431i
\(317\) 26.0843 6.18210i 1.46504 0.347221i 0.580722 0.814102i \(-0.302770\pi\)
0.884321 + 0.466880i \(0.154622\pi\)
\(318\) 10.2216 + 6.20075i 0.573202 + 0.347721i
\(319\) 0.136792 2.34864i 0.00765891 0.131498i
\(320\) 2.28123 2.41796i 0.127525 0.135168i
\(321\) 0.569408 + 5.99642i 0.0317813 + 0.334688i
\(322\) 0.835207 + 1.93623i 0.0465443 + 0.107902i
\(323\) 0.123451 0.00686901
\(324\) −5.58594 7.05671i −0.310330 0.392040i
\(325\) 37.0667 2.05609
\(326\) −7.47746 17.3347i −0.414138 0.960080i
\(327\) −8.62748 + 6.13677i −0.477101 + 0.339364i
\(328\) 0.228736 0.242446i 0.0126298 0.0133868i
\(329\) −1.21961 + 20.9399i −0.0672394 + 1.15446i
\(330\) −30.3798 + 16.6723i −1.67235 + 0.917780i
\(331\) −23.3438 + 5.53258i −1.28309 + 0.304098i −0.814937 0.579549i \(-0.803229\pi\)
−0.468154 + 0.883647i \(0.655081\pi\)
\(332\) 4.71816 + 1.71727i 0.258943 + 0.0942475i
\(333\) −6.72421 + 4.01621i −0.368484 + 0.220087i
\(334\) 5.47884 1.99413i 0.299789 0.109114i
\(335\) 3.41645 2.24703i 0.186661 0.122769i
\(336\) −0.701055 + 5.04647i −0.0382457 + 0.275307i
\(337\) −28.5732 + 3.33973i −1.55648 + 0.181927i −0.850374 0.526178i \(-0.823624\pi\)
−0.706107 + 0.708105i \(0.749550\pi\)
\(338\) 14.6481 + 19.6759i 0.796754 + 1.07023i
\(339\) 9.12463 0.333165i 0.495582 0.0180950i
\(340\) −0.0640222 1.09922i −0.00347209 0.0596135i
\(341\) 36.7829 + 30.8645i 1.99191 + 1.67141i
\(342\) −0.273947 1.08405i −0.0148134 0.0586184i
\(343\) −12.0492 + 10.1105i −0.650598 + 0.545917i
\(344\) −6.11894 6.48570i −0.329911 0.349686i
\(345\) −2.72103 + 3.10359i −0.146495 + 0.167091i
\(346\) −19.9947 13.1507i −1.07492 0.706985i
\(347\) −10.5355 2.49696i −0.565576 0.134044i −0.0621258 0.998068i \(-0.519788\pi\)
−0.503450 + 0.864024i \(0.667936\pi\)
\(348\) 0.170381 0.655246i 0.00913336 0.0351249i
\(349\) −19.1454 2.23777i −1.02483 0.119785i −0.412963 0.910748i \(-0.635506\pi\)
−0.611865 + 0.790963i \(0.709580\pi\)
\(350\) −8.89906 15.4136i −0.475675 0.823893i
\(351\) 12.4072 + 29.3149i 0.662247 + 1.56471i
\(352\) 3.00933 5.21232i 0.160398 0.277817i
\(353\) 12.5332 16.8350i 0.667075 0.896037i −0.331806 0.943348i \(-0.607658\pi\)
0.998880 + 0.0473112i \(0.0150652\pi\)
\(354\) −10.6647 + 15.4735i −0.566824 + 0.822408i
\(355\) −12.3160 41.1383i −0.653665 2.18339i
\(356\) −1.57524 + 0.791116i −0.0834876 + 0.0419291i
\(357\) 1.05648 + 1.31598i 0.0559147 + 0.0696489i
\(358\) −2.16937 + 7.24621i −0.114655 + 0.382974i
\(359\) −1.91261 10.8469i −0.100944 0.572479i −0.992763 0.120088i \(-0.961682\pi\)
0.891820 0.452391i \(-0.149429\pi\)
\(360\) −9.51034 + 3.00143i −0.501239 + 0.158189i
\(361\) −3.27519 + 18.5745i −0.172379 + 0.977608i
\(362\) 4.17045 + 2.09448i 0.219194 + 0.110083i
\(363\) −32.4214 + 29.2858i −1.70168 + 1.53711i
\(364\) 7.13753 16.5467i 0.374108 0.867281i
\(365\) −0.578180 + 1.34037i −0.0302633 + 0.0701582i
\(366\) 9.36324 8.45769i 0.489424 0.442091i
\(367\) 33.0903 + 16.6186i 1.72730 + 0.867483i 0.978928 + 0.204205i \(0.0654609\pi\)
0.748373 + 0.663278i \(0.230835\pi\)
\(368\) 0.124481 0.705968i 0.00648903 0.0368011i
\(369\) −0.953589 + 0.300950i −0.0496419 + 0.0156668i
\(370\) 1.50706 + 8.54696i 0.0783483 + 0.444335i
\(371\) −5.82325 + 19.4510i −0.302328 + 1.00985i
\(372\) 8.65062 + 10.7755i 0.448514 + 0.558681i
\(373\) −28.2445 + 14.1849i −1.46244 + 0.734467i −0.989215 0.146473i \(-0.953208\pi\)
−0.473229 + 0.880939i \(0.656912\pi\)
\(374\) −0.571756 1.90980i −0.0295648 0.0987534i
\(375\) 3.43273 4.98056i 0.177265 0.257195i
\(376\) 4.25816 5.71971i 0.219598 0.294971i
\(377\) −1.19732 + 2.07381i −0.0616649 + 0.106807i
\(378\) 9.21141 12.1973i 0.473784 0.627363i
\(379\) −7.42062 12.8529i −0.381172 0.660209i 0.610058 0.792357i \(-0.291146\pi\)
−0.991230 + 0.132148i \(0.957813\pi\)
\(380\) −1.23059 0.143836i −0.0631281 0.00737862i
\(381\) 2.21833 8.53122i 0.113649 0.437067i
\(382\) −9.79529 2.32153i −0.501170 0.118780i
\(383\) −6.05315 3.98122i −0.309301 0.203431i 0.385362 0.922765i \(-0.374076\pi\)
−0.694664 + 0.719335i \(0.744447\pi\)
\(384\) 1.14184 1.30238i 0.0582695 0.0664618i
\(385\) −40.3875 42.8083i −2.05834 2.18171i
\(386\) 12.1010 10.1539i 0.615923 0.516820i
\(387\) 6.55387 + 25.9345i 0.333152 + 1.31833i
\(388\) 9.17515 + 7.69887i 0.465798 + 0.390851i
\(389\) −1.19265 20.4770i −0.0604696 1.03822i −0.882961 0.469446i \(-0.844454\pi\)
0.822492 0.568777i \(-0.192583\pi\)
\(390\) 35.2494 1.28705i 1.78492 0.0651723i
\(391\) −0.141792 0.190459i −0.00717071 0.00963193i
\(392\) −1.64160 + 0.191876i −0.0829134 + 0.00969119i
\(393\) 1.11641 8.03639i 0.0563157 0.405382i
\(394\) 7.72586 5.08138i 0.389223 0.255996i
\(395\) 4.14709 1.50942i 0.208663 0.0759470i
\(396\) −15.5015 + 9.25867i −0.778979 + 0.465266i
\(397\) −19.6226 7.14204i −0.984830 0.358449i −0.201114 0.979568i \(-0.564456\pi\)
−0.783716 + 0.621119i \(0.786678\pi\)
\(398\) −0.539179 + 0.127788i −0.0270266 + 0.00640542i
\(399\) 1.66471 0.913586i 0.0833398 0.0457365i
\(400\) −0.351809 + 6.04034i −0.0175905 + 0.302017i
\(401\) −18.7706 + 19.8957i −0.937361 + 0.993545i −0.999990 0.00449194i \(-0.998570\pi\)
0.0626286 + 0.998037i \(0.480052\pi\)
\(402\) 1.73619 1.23496i 0.0865933 0.0615942i
\(403\) −19.3581 44.8771i −0.964295 2.23549i
\(404\) −5.95479 −0.296262
\(405\) 29.3033 + 6.03410i 1.45609 + 0.299837i
\(406\) 1.14982 0.0570645
\(407\) 6.22373 + 14.4282i 0.308499 + 0.715181i
\(408\) −0.0542338 0.571134i −0.00268497 0.0282754i
\(409\) −17.8934 + 18.9659i −0.884774 + 0.937805i −0.998447 0.0557130i \(-0.982257\pi\)
0.113673 + 0.993518i \(0.463738\pi\)
\(410\) −0.0644260 + 1.10615i −0.00318177 + 0.0546289i
\(411\) 23.0258 + 13.9681i 1.13578 + 0.688997i
\(412\) −2.66358 + 0.631280i −0.131225 + 0.0311009i
\(413\) −29.9911 10.9159i −1.47576 0.537135i
\(414\) −1.35781 + 1.66774i −0.0667325 + 0.0819648i
\(415\) −15.6843 + 5.70862i −0.769912 + 0.280225i
\(416\) −5.11833 + 3.36638i −0.250947 + 0.165050i
\(417\) −12.1540 9.46467i −0.595184 0.463487i
\(418\) −2.22804 + 0.260420i −0.108977 + 0.0127376i
\(419\) 1.42703 + 1.91683i 0.0697148 + 0.0936433i 0.835613 0.549319i \(-0.185113\pi\)
−0.765898 + 0.642962i \(0.777705\pi\)
\(420\) −8.99795 14.3489i −0.439055 0.700155i
\(421\) −1.95309 33.5332i −0.0951877 1.63431i −0.621072 0.783754i \(-0.713302\pi\)
0.525884 0.850556i \(-0.323735\pi\)
\(422\) 9.76134 + 8.19074i 0.475175 + 0.398719i
\(423\) −19.5149 + 8.76306i −0.948847 + 0.426074i
\(424\) 5.28758 4.43681i 0.256788 0.215471i
\(425\) 1.37531 + 1.45774i 0.0667123 + 0.0707109i
\(426\) −7.19492 21.1861i −0.348595 1.02647i
\(427\) 17.9033 + 11.7752i 0.866401 + 0.569841i
\(428\) 3.38387 + 0.801992i 0.163565 + 0.0387657i
\(429\) 61.5627 16.9854i 2.97227 0.820064i
\(430\) 29.4405 + 3.44110i 1.41975 + 0.165945i
\(431\) −14.5851 25.2622i −0.702541 1.21684i −0.967572 0.252596i \(-0.918716\pi\)
0.265031 0.964240i \(-0.414618\pi\)
\(432\) −4.89487 + 1.74362i −0.235505 + 0.0838901i
\(433\) 5.39771 9.34910i 0.259397 0.449289i −0.706683 0.707530i \(-0.749809\pi\)
0.966081 + 0.258241i \(0.0831428\pi\)
\(434\) −14.0139 + 18.8240i −0.672689 + 0.903579i
\(435\) 0.966241 + 2.03266i 0.0463277 + 0.0974586i
\(436\) 1.75313 + 5.85585i 0.0839595 + 0.280444i
\(437\) −0.238760 + 0.119910i −0.0114214 + 0.00573606i
\(438\) −0.275569 + 0.708910i −0.0131672 + 0.0338730i
\(439\) 5.37441 17.9518i 0.256507 0.856792i −0.728614 0.684925i \(-0.759835\pi\)
0.985120 0.171867i \(-0.0549798\pi\)
\(440\) 3.47426 + 19.7035i 0.165629 + 0.939329i
\(441\) 4.58142 + 1.89623i 0.218163 + 0.0902967i
\(442\) −0.352359 + 1.99832i −0.0167600 + 0.0950506i
\(443\) 15.3004 + 7.68417i 0.726946 + 0.365086i 0.773471 0.633831i \(-0.218519\pi\)
−0.0465256 + 0.998917i \(0.514815\pi\)
\(444\) 0.947203 + 4.42166i 0.0449523 + 0.209843i
\(445\) 2.32094 5.38053i 0.110023 0.255062i
\(446\) −5.47812 + 12.6997i −0.259396 + 0.601349i
\(447\) 9.92143 + 3.20624i 0.469267 + 0.151650i
\(448\) 2.62867 + 1.32017i 0.124193 + 0.0623722i
\(449\) 0.580276 3.29091i 0.0273849 0.155308i −0.968049 0.250761i \(-0.919319\pi\)
0.995434 + 0.0954537i \(0.0304302\pi\)
\(450\) 9.74876 15.3116i 0.459561 0.721798i
\(451\) 0.348360 + 1.97565i 0.0164036 + 0.0930296i
\(452\) 1.51192 5.05016i 0.0711146 0.237539i
\(453\) 30.8814 4.75738i 1.45093 0.223521i
\(454\) 16.9500 8.51262i 0.795504 0.399517i
\(455\) 17.1807 + 57.3877i 0.805446 + 2.69038i
\(456\) −0.643492 0.0514980i −0.0301343 0.00241161i
\(457\) −14.6603 + 19.6922i −0.685781 + 0.921164i −0.999599 0.0283195i \(-0.990984\pi\)
0.313818 + 0.949483i \(0.398392\pi\)
\(458\) 0.327033 0.566437i 0.0152812 0.0264679i
\(459\) −0.692531 + 1.57563i −0.0323246 + 0.0735443i
\(460\) 1.19151 + 2.06375i 0.0555542 + 0.0962228i
\(461\) −27.2892 3.18964i −1.27098 0.148557i −0.546271 0.837609i \(-0.683953\pi\)
−0.724712 + 0.689052i \(0.758027\pi\)
\(462\) −21.8432 21.5220i −1.01624 1.00129i
\(463\) 5.17053 + 1.22544i 0.240295 + 0.0569509i 0.348999 0.937123i \(-0.386522\pi\)
−0.108704 + 0.994074i \(0.534670\pi\)
\(464\) −0.326581 0.214796i −0.0151611 0.00997164i
\(465\) −45.0537 8.95540i −2.08932 0.415297i
\(466\) 5.97972 + 6.33813i 0.277005 + 0.293608i
\(467\) 4.85482 4.07368i 0.224654 0.188507i −0.523513 0.852018i \(-0.675379\pi\)
0.748167 + 0.663511i \(0.230934\pi\)
\(468\) 18.3295 1.34031i 0.847282 0.0619558i
\(469\) 2.77188 + 2.32588i 0.127994 + 0.107399i
\(470\) 1.37828 + 23.6641i 0.0635751 + 1.09154i
\(471\) 8.45811 15.9686i 0.389729 0.735793i
\(472\) 6.47915 + 8.70301i 0.298227 + 0.400589i
\(473\) 53.3032 6.23025i 2.45088 0.286467i
\(474\) 2.13065 0.864782i 0.0978640 0.0397207i
\(475\) 1.88411 1.23920i 0.0864487 0.0568582i
\(476\) 0.915568 0.333239i 0.0419650 0.0152740i
\(477\) −20.3372 + 3.89751i −0.931179 + 0.178455i
\(478\) 4.80535 + 1.74900i 0.219791 + 0.0799975i
\(479\) −11.9470 + 2.83148i −0.545871 + 0.129374i −0.494293 0.869295i \(-0.664573\pi\)
−0.0515777 + 0.998669i \(0.516425\pi\)
\(480\) −0.124825 + 5.75640i −0.00569745 + 0.262742i
\(481\) 0.929965 15.9669i 0.0424028 0.728027i
\(482\) −1.91997 + 2.03505i −0.0874524 + 0.0926942i
\(483\) −3.32149 1.51899i −0.151133 0.0691163i
\(484\) 9.99085 + 23.1614i 0.454130 + 1.05279i
\(485\) −39.8154 −1.80793
\(486\) 15.3727 + 2.58478i 0.697318 + 0.117248i
\(487\) 36.9221 1.67310 0.836551 0.547889i \(-0.184568\pi\)
0.836551 + 0.547889i \(0.184568\pi\)
\(488\) −2.88534 6.68898i −0.130613 0.302796i
\(489\) 29.7367 + 13.5992i 1.34474 + 0.614978i
\(490\) 3.77037 3.99636i 0.170328 0.180537i
\(491\) 1.53285 26.3181i 0.0691767 1.18772i −0.767877 0.640597i \(-0.778687\pi\)
0.837054 0.547121i \(-0.184276\pi\)
\(492\) −0.0125160 + 0.577187i −0.000564266 + 0.0260216i
\(493\) −0.125983 + 0.0298584i −0.00567397 + 0.00134476i
\(494\) 2.14557 + 0.780923i 0.0965337 + 0.0351354i
\(495\) 19.6910 56.7006i 0.885047 2.54850i
\(496\) 7.49683 2.72862i 0.336618 0.122519i
\(497\) 31.7476 20.8807i 1.42407 0.936628i
\(498\) −8.05812 + 3.27061i −0.361093 + 0.146559i
\(499\) −14.5973 + 1.70618i −0.653463 + 0.0763789i −0.436363 0.899770i \(-0.643734\pi\)
−0.217100 + 0.976149i \(0.569660\pi\)
\(500\) −2.08549 2.80130i −0.0932659 0.125278i
\(501\) −4.72685 + 8.92411i −0.211180 + 0.398700i
\(502\) 0.323719 + 5.55804i 0.0144483 + 0.248068i
\(503\) −22.9501 19.2574i −1.02329 0.858644i −0.0332546 0.999447i \(-0.510587\pi\)
−0.990038 + 0.140803i \(0.955032\pi\)
\(504\) −4.95794 7.30026i −0.220844 0.325180i
\(505\) 15.1640 12.7241i 0.674787 0.566214i
\(506\) 2.96081 + 3.13828i 0.131624 + 0.139514i
\(507\) −41.6715 8.28311i −1.85070 0.367866i
\(508\) −4.25204 2.79661i −0.188654 0.124080i
\(509\) −3.42340 0.811361i −0.151740 0.0359630i 0.154044 0.988064i \(-0.450770\pi\)
−0.305784 + 0.952101i \(0.598918\pi\)
\(510\) 1.35850 + 1.33852i 0.0601552 + 0.0592705i
\(511\) −1.28298 0.149959i −0.0567556 0.00663378i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 1.61070 + 1.07529i 0.0711142 + 0.0474752i
\(514\) −4.20919 + 7.29053i −0.185659 + 0.321571i
\(515\) 5.43394 7.29905i 0.239448 0.321635i
\(516\) 15.3948 + 1.23203i 0.677718 + 0.0542371i
\(517\) 12.3088 + 41.1144i 0.541342 + 1.80821i
\(518\) −6.86285 + 3.44665i −0.301536 + 0.151437i
\(519\) 40.9677 6.31121i 1.79828 0.277031i
\(520\) 5.84069 19.5093i 0.256131 0.855538i
\(521\) 6.86950 + 38.9589i 0.300958 + 1.70682i 0.641944 + 0.766751i \(0.278128\pi\)
−0.340986 + 0.940068i \(0.610761\pi\)
\(522\) 0.541756 + 1.04002i 0.0237120 + 0.0455202i
\(523\) −1.46216 + 8.29230i −0.0639357 + 0.362597i 0.936008 + 0.351979i \(0.114491\pi\)
−0.999944 + 0.0106183i \(0.996620\pi\)
\(524\) −4.18611 2.10234i −0.182871 0.0918412i
\(525\) 29.3336 + 9.47952i 1.28022 + 0.413720i
\(526\) 5.92905 13.7451i 0.258519 0.599314i
\(527\) 1.04665 2.42641i 0.0455928 0.105696i
\(528\) 2.18361 + 10.1934i 0.0950296 + 0.443610i
\(529\) −20.0943 10.0917i −0.873666 0.438772i
\(530\) −3.98443 + 22.5968i −0.173072 + 0.981543i
\(531\) −4.25736 32.2703i −0.184754 1.40041i
\(532\) −0.190378 1.07969i −0.00825393 0.0468104i
\(533\) 0.585638 1.95617i 0.0253668 0.0847311i
\(534\) 1.10619 2.84571i 0.0478697 0.123146i
\(535\) −10.3308 + 5.18830i −0.446638 + 0.224310i
\(536\) −0.352798 1.17843i −0.0152386 0.0509004i
\(537\) −5.62461 11.8324i −0.242720 0.510605i
\(538\) −16.3784 + 22.0000i −0.706124 + 0.948489i
\(539\) 4.97376 8.61480i 0.214235 0.371066i
\(540\) 8.73913 14.8994i 0.376072 0.641169i
\(541\) −3.31994 5.75031i −0.142735 0.247225i 0.785790 0.618493i \(-0.212256\pi\)
−0.928526 + 0.371268i \(0.878923\pi\)
\(542\) 6.34949 + 0.742149i 0.272734 + 0.0318780i
\(543\) −7.79209 + 2.14987i −0.334391 + 0.0922599i
\(544\) −0.322300 0.0763864i −0.0138185 0.00327504i
\(545\) −16.9770 11.1660i −0.727216 0.478298i
\(546\) 10.0369 + 29.5545i 0.429539 + 1.26482i
\(547\) 11.7320 + 12.4352i 0.501623 + 0.531689i 0.927863 0.372921i \(-0.121644\pi\)
−0.426240 + 0.904610i \(0.640162\pi\)
\(548\) 11.9111 9.99458i 0.508816 0.426947i
\(549\) −2.21527 + 21.7417i −0.0945453 + 0.927913i
\(550\) −27.8966 23.4080i −1.18951 0.998120i
\(551\) 0.00847092 + 0.145440i 0.000360873 + 0.00619596i
\(552\) 0.659640 + 1.05192i 0.0280762 + 0.0447727i
\(553\) 2.33202 + 3.13245i 0.0991677 + 0.133205i
\(554\) −28.9502 + 3.38379i −1.22998 + 0.143764i
\(555\) −11.8602 9.23586i −0.503437 0.392041i
\(556\) −7.43067 + 4.88723i −0.315131 + 0.207265i
\(557\) −27.7299 + 10.0929i −1.17495 + 0.427649i −0.854417 0.519587i \(-0.826086\pi\)
−0.320538 + 0.947236i \(0.603864\pi\)
\(558\) −23.6293 3.80643i −1.00031 0.161139i
\(559\) −51.3302 18.6827i −2.17104 0.790193i
\(560\) −9.51487 + 2.25507i −0.402077 + 0.0952940i
\(561\) 2.95219 + 1.79089i 0.124642 + 0.0756113i
\(562\) 0.892073 15.3163i 0.0376298 0.646079i
\(563\) −11.0582 + 11.7210i −0.466046 + 0.493980i −0.917178 0.398477i \(-0.869539\pi\)
0.451132 + 0.892457i \(0.351020\pi\)
\(564\) 1.16755 + 12.2954i 0.0491627 + 0.517731i
\(565\) 6.94095 + 16.0909i 0.292008 + 0.676951i
\(566\) 19.4046 0.815637
\(567\) 2.32166 + 26.3720i 0.0975004 + 1.10752i
\(568\) −12.9179 −0.542024
\(569\) 15.2873 + 35.4399i 0.640876 + 1.48572i 0.860143 + 0.510053i \(0.170374\pi\)
−0.219267 + 0.975665i \(0.570367\pi\)
\(570\) 1.74870 1.24386i 0.0732450 0.0520996i
\(571\) −14.1739 + 15.0234i −0.593159 + 0.628711i −0.952516 0.304489i \(-0.901514\pi\)
0.359357 + 0.933200i \(0.382996\pi\)
\(572\) 2.14387 36.8089i 0.0896398 1.53906i
\(573\) 15.2854 8.38855i 0.638557 0.350437i
\(574\) −0.954044 + 0.226113i −0.0398210 + 0.00943776i
\(575\) −4.07583 1.48348i −0.169974 0.0618654i
\(576\) 0.0444445 + 2.99967i 0.00185185 + 0.124986i
\(577\) 36.8361 13.4072i 1.53351 0.558151i 0.569030 0.822317i \(-0.307319\pi\)
0.964477 + 0.264166i \(0.0850968\pi\)
\(578\) 14.1116 9.28136i 0.586966 0.386054i
\(579\) −3.76478 + 27.1004i −0.156459 + 1.12625i
\(580\) 1.29062 0.150851i 0.0535899 0.00626376i
\(581\) −8.81971 11.8469i −0.365903 0.491494i
\(582\) −20.7315 + 0.756963i −0.859348 + 0.0313771i
\(583\) 2.41554 + 41.4733i 0.100042 + 1.71765i
\(584\) 0.336389 + 0.282264i 0.0139199 + 0.0116802i
\(585\) −43.8125 + 42.5793i −1.81142 + 1.76044i
\(586\) 10.7243 8.99875i 0.443016 0.371735i
\(587\) 19.2706 + 20.4256i 0.795382 + 0.843055i 0.990470 0.137731i \(-0.0439808\pi\)
−0.195088 + 0.980786i \(0.562499\pi\)
\(588\) 1.88721 2.15254i 0.0778274 0.0887694i
\(589\) −2.48428 1.63394i −0.102363 0.0673252i
\(590\) −35.0957 8.31783i −1.44487 0.342440i
\(591\) −4.03066 + 15.5010i −0.165799 + 0.637627i
\(592\) 2.59311 + 0.303091i 0.106576 + 0.0124570i
\(593\) 19.1361 + 33.1448i 0.785827 + 1.36109i 0.928504 + 0.371323i \(0.121096\pi\)
−0.142677 + 0.989769i \(0.545571\pi\)
\(594\) 9.17494 29.8978i 0.376452 1.22672i
\(595\) −1.61945 + 2.80497i −0.0663909 + 0.114992i
\(596\) 3.59479 4.82864i 0.147248 0.197789i
\(597\) 0.544654 0.790242i 0.0222912 0.0323424i
\(598\) −1.25952 4.20710i −0.0515057 0.172041i
\(599\) 42.1825 21.1848i 1.72353 0.865589i 0.742980 0.669314i \(-0.233412\pi\)
0.980549 0.196275i \(-0.0628846\pi\)
\(600\) −6.56072 8.17222i −0.267840 0.333630i
\(601\) 6.44817 21.5384i 0.263026 0.878570i −0.719823 0.694158i \(-0.755777\pi\)
0.982849 0.184412i \(-0.0590379\pi\)
\(602\) 4.55457 + 25.8303i 0.185630 + 1.05276i
\(603\) −0.797755 + 3.60306i −0.0324871 + 0.146728i
\(604\) 3.13256 17.7656i 0.127462 0.722873i
\(605\) −74.9327 37.6326i −3.04645 1.52998i
\(606\) 7.65381 6.91359i 0.310915 0.280845i
\(607\) 12.3108 28.5396i 0.499680 1.15839i −0.462659 0.886536i \(-0.653105\pi\)
0.962339 0.271852i \(-0.0876360\pi\)
\(608\) −0.147622 + 0.342226i −0.00598687 + 0.0138791i
\(609\) −1.47788 + 1.33495i −0.0598868 + 0.0540950i
\(610\) 21.6404 + 10.8682i 0.876196 + 0.440042i
\(611\) 7.58561 43.0201i 0.306881 1.74041i
\(612\) 0.732802 + 0.671124i 0.0296218 + 0.0271286i
\(613\) 4.37659 + 24.8209i 0.176769 + 1.00251i 0.936082 + 0.351781i \(0.114424\pi\)
−0.759313 + 0.650725i \(0.774465\pi\)
\(614\) −5.77063 + 19.2753i −0.232884 + 0.777886i
\(615\) −1.20145 1.49656i −0.0484471 0.0603471i
\(616\) −15.8211 + 7.94566i −0.637451 + 0.320140i
\(617\) −9.56432 31.9471i −0.385045 1.28614i −0.902596 0.430488i \(-0.858342\pi\)
0.517551 0.855652i \(-0.326844\pi\)
\(618\) 2.69063 3.90385i 0.108233 0.157036i
\(619\) 13.5345 18.1800i 0.543998 0.730716i −0.442084 0.896973i \(-0.645761\pi\)
0.986082 + 0.166257i \(0.0531682\pi\)
\(620\) −13.2603 + 22.9676i −0.532548 + 0.922400i
\(621\) −0.191048 3.72001i −0.00766650 0.149279i
\(622\) −4.01036 6.94614i −0.160801 0.278515i
\(623\) 5.15014 + 0.601965i 0.206336 + 0.0241172i
\(624\) 2.67028 10.2693i 0.106897 0.411102i
\(625\) −18.1409 4.29947i −0.725636 0.171979i
\(626\) 25.3797 + 16.6925i 1.01438 + 0.667166i
\(627\) 2.56139 2.92150i 0.102292 0.116674i
\(628\) −7.15948 7.58860i −0.285694 0.302818i
\(629\) 0.662443 0.555856i 0.0264133 0.0221634i
\(630\) 28.2245 + 7.99621i 1.12449 + 0.318577i
\(631\) 1.88019 + 1.57766i 0.0748491 + 0.0628058i 0.679445 0.733727i \(-0.262221\pi\)
−0.604596 + 0.796533i \(0.706665\pi\)
\(632\) −0.0771927 1.32535i −0.00307056 0.0527195i
\(633\) −22.0560 + 0.805325i −0.876647 + 0.0320088i
\(634\) 16.0080 + 21.5025i 0.635758 + 0.853972i
\(635\) 16.8036 1.96406i 0.666832 0.0779415i
\(636\) −1.64504 + 11.8417i −0.0652302 + 0.469553i
\(637\) −8.45946 + 5.56387i −0.335176 + 0.220449i
\(638\) 2.21074 0.804642i 0.0875239 0.0318561i
\(639\) 33.8451 + 18.8776i 1.33889 + 0.746785i
\(640\) 3.12376 + 1.13696i 0.123478 + 0.0449422i
\(641\) −0.914672 + 0.216781i −0.0361274 + 0.00856234i −0.248640 0.968596i \(-0.579984\pi\)
0.212512 + 0.977158i \(0.431835\pi\)
\(642\) −5.28048 + 2.89790i −0.208404 + 0.114371i
\(643\) 2.21590 38.0456i 0.0873866 1.50037i −0.614973 0.788548i \(-0.710833\pi\)
0.702360 0.711822i \(-0.252130\pi\)
\(644\) −1.44707 + 1.53380i −0.0570224 + 0.0604402i
\(645\) −41.8356 + 29.7579i −1.64728 + 1.17172i
\(646\) 0.0488965 + 0.113355i 0.00192381 + 0.00445989i
\(647\) −15.8871 −0.624585 −0.312292 0.949986i \(-0.601097\pi\)
−0.312292 + 0.949986i \(0.601097\pi\)
\(648\) 4.26711 7.92413i 0.167628 0.311289i
\(649\) −65.3024 −2.56334
\(650\) 14.6814 + 34.0353i 0.575851 + 1.33497i
\(651\) −3.84249 40.4651i −0.150599 1.58595i
\(652\) 12.9553 13.7318i 0.507370 0.537781i
\(653\) 0.995104 17.0853i 0.0389414 0.668599i −0.921201 0.389087i \(-0.872790\pi\)
0.960142 0.279511i \(-0.0901725\pi\)
\(654\) −9.05205 5.49124i −0.353963 0.214725i
\(655\) 15.1522 3.59114i 0.592047 0.140318i
\(656\) 0.313216 + 0.114001i 0.0122290 + 0.00445100i
\(657\) −0.468859 1.23112i −0.0182919 0.0480304i
\(658\) −19.7104 + 7.17401i −0.768393 + 0.279672i
\(659\) −1.84544 + 1.21376i −0.0718881 + 0.0472815i −0.584944 0.811074i \(-0.698884\pi\)
0.513056 + 0.858355i \(0.328513\pi\)
\(660\) −27.3416 21.2917i −1.06427 0.828778i
\(661\) −20.7712 + 2.42780i −0.807905 + 0.0944306i −0.510011 0.860168i \(-0.670359\pi\)
−0.297895 + 0.954599i \(0.596284\pi\)
\(662\) −14.3261 19.2433i −0.556800 0.747912i
\(663\) −1.86719 2.97758i −0.0725156 0.115640i
\(664\) 0.291943 + 5.01247i 0.0113296 + 0.194522i
\(665\) 2.79185 + 2.34264i 0.108263 + 0.0908438i
\(666\) −6.35107 4.58354i −0.246099 0.177608i
\(667\) 0.214654 0.180116i 0.00831143 0.00697412i
\(668\) 4.00110 + 4.24092i 0.154807 + 0.164086i
\(669\) −7.70339 22.6834i −0.297830 0.876989i
\(670\) 3.41645 + 2.24703i 0.131989 + 0.0868105i
\(671\) 42.6627 + 10.1112i 1.64697 + 0.390340i
\(672\) −4.91142 + 1.35508i −0.189462 + 0.0522735i
\(673\) 48.9509 + 5.72154i 1.88692 + 0.220549i 0.979751 0.200219i \(-0.0641654\pi\)
0.907168 + 0.420768i \(0.138240\pi\)
\(674\) −14.3839 24.9136i −0.554046 0.959635i
\(675\) 5.24674 + 30.9988i 0.201947 + 1.19314i
\(676\) −12.2649 + 21.2434i −0.471726 + 0.817053i
\(677\) −5.72803 + 7.69408i −0.220146 + 0.295708i −0.898452 0.439072i \(-0.855307\pi\)
0.678306 + 0.734780i \(0.262715\pi\)
\(678\) 3.92000 + 8.24642i 0.150547 + 0.316702i
\(679\) −10.1046 33.7519i −0.387781 1.29528i
\(680\) 0.983962 0.494164i 0.0377332 0.0189503i
\(681\) −11.9029 + 30.6207i −0.456122 + 1.17339i
\(682\) −13.7713 + 45.9995i −0.527332 + 1.76141i
\(683\) 4.55983 + 25.8601i 0.174477 + 0.989508i 0.938746 + 0.344610i \(0.111989\pi\)
−0.764269 + 0.644898i \(0.776900\pi\)
\(684\) 0.886883 0.680911i 0.0339108 0.0260353i
\(685\) −8.97552 + 50.9027i −0.342937 + 1.94489i
\(686\) −14.0561 7.05924i −0.536665 0.269523i
\(687\) 0.237299 + 1.10774i 0.00905354 + 0.0422630i
\(688\) 3.53169 8.18737i 0.134644 0.312141i
\(689\) 16.7484 38.8272i 0.638064 1.47920i
\(690\) −3.92751 1.26922i −0.149518 0.0483185i
\(691\) −5.25149 2.63740i −0.199776 0.100331i 0.346099 0.938198i \(-0.387506\pi\)
−0.545875 + 0.837867i \(0.683803\pi\)
\(692\) 4.15570 23.5681i 0.157976 0.895926i
\(693\) 53.0629 + 2.30237i 2.01569 + 0.0874598i
\(694\) −1.88015 10.6629i −0.0713696 0.404757i
\(695\) 8.47939 28.3231i 0.321641 1.07436i
\(696\) 0.669142 0.103084i 0.0253638 0.00390737i
\(697\) 0.0986606 0.0495492i 0.00373704 0.00187681i
\(698\) −5.52833 18.4659i −0.209250 0.698945i
\(699\) −15.0445 1.20400i −0.569036 0.0455393i
\(700\) 10.6283 14.2763i 0.401712 0.539593i
\(701\) 7.90660 13.6946i 0.298628 0.517239i −0.677194 0.735804i \(-0.736804\pi\)
0.975822 + 0.218565i \(0.0701376\pi\)
\(702\) −22.0032 + 23.0035i −0.830457 + 0.868213i
\(703\) −0.486526 0.842689i −0.0183497 0.0317826i
\(704\) 5.97797 + 0.698724i 0.225303 + 0.0263342i
\(705\) −29.2458 28.8157i −1.10146 1.08526i
\(706\) 20.4223 + 4.84018i 0.768604 + 0.182162i
\(707\) 14.6347 + 9.62540i 0.550395 + 0.362000i
\(708\) −18.4321 3.66378i −0.692721 0.137693i
\(709\) 1.29478 + 1.37239i 0.0486265 + 0.0515411i 0.751230 0.660040i \(-0.229461\pi\)
−0.702604 + 0.711581i \(0.747979\pi\)
\(710\) 32.8957 27.6028i 1.23455 1.03591i
\(711\) −1.73455 + 3.58523i −0.0650505 + 0.134457i
\(712\) −1.35034 1.13307i −0.0506060 0.0424635i
\(713\) 0.332535 + 5.70940i 0.0124535 + 0.213819i
\(714\) −0.789902 + 1.49131i −0.0295614 + 0.0558107i
\(715\) 73.1931 + 98.3154i 2.73727 + 3.67679i
\(716\) −7.51283 + 0.878124i −0.280768 + 0.0328170i
\(717\) −8.20702 + 3.33104i −0.306497 + 0.124400i
\(718\) 9.20229 6.05244i 0.343426 0.225875i
\(719\) −44.0317 + 16.0262i −1.64211 + 0.597678i −0.987405 0.158211i \(-0.949427\pi\)
−0.654700 + 0.755888i \(0.727205\pi\)
\(720\) −6.52282 7.54374i −0.243091 0.281139i
\(721\) 7.56653 + 2.75399i 0.281792 + 0.102564i
\(722\) −18.3527 + 4.34967i −0.683016 + 0.161878i
\(723\) 0.105057 4.84481i 0.00390713 0.180180i
\(724\) −0.271354 + 4.65896i −0.0100848 + 0.173149i
\(725\) −1.62302 + 1.72030i −0.0602775 + 0.0638904i
\(726\) −39.7321 18.1703i −1.47460 0.674363i
\(727\) 10.9506 + 25.3865i 0.406137 + 0.941531i 0.991422 + 0.130703i \(0.0417235\pi\)
−0.585285 + 0.810828i \(0.699017\pi\)
\(728\) 18.0204 0.667882
\(729\) −22.7598 + 14.5256i −0.842954 + 0.537985i
\(730\) −1.45976 −0.0540280
\(731\) −1.16979 2.71188i −0.0432663 0.100303i
\(732\) 11.4746 + 5.24756i 0.424113 + 0.193955i
\(733\) −33.3583 + 35.3577i −1.23212 + 1.30597i −0.295614 + 0.955307i \(0.595524\pi\)
−0.936503 + 0.350660i \(0.885957\pi\)
\(734\) −2.15305 + 36.9664i −0.0794703 + 1.36445i
\(735\) −0.206308 + 9.51405i −0.00760978 + 0.350931i
\(736\) 0.697536 0.165319i 0.0257115 0.00609374i
\(737\) 6.95711 + 2.53218i 0.256268 + 0.0932740i
\(738\) −0.654034 0.756401i −0.0240753 0.0278435i
\(739\) 9.67296 3.52067i 0.355826 0.129510i −0.157921 0.987452i \(-0.550479\pi\)
0.513747 + 0.857942i \(0.328257\pi\)
\(740\) −7.25104 + 4.76908i −0.266554 + 0.175315i
\(741\) −3.66440 + 1.48730i −0.134615 + 0.0546372i
\(742\) −20.1667 + 2.35715i −0.740342 + 0.0865336i
\(743\) 6.81356 + 9.15220i 0.249965 + 0.335762i 0.909341 0.416052i \(-0.136587\pi\)
−0.659375 + 0.751814i \(0.729179\pi\)
\(744\) −6.46786 + 12.2111i −0.237123 + 0.447680i
\(745\) 1.16356 + 19.9775i 0.0426294 + 0.731918i
\(746\) −24.2119 20.3162i −0.886460 0.743828i
\(747\) 6.56005 13.5594i 0.240020 0.496111i
\(748\) 1.52715 1.28143i 0.0558380 0.0468537i
\(749\) −7.01997 7.44074i −0.256504 0.271879i
\(750\) 5.93287 + 1.17928i 0.216638 + 0.0430614i
\(751\) 27.3381 + 17.9805i 0.997581 + 0.656119i 0.939627 0.342200i \(-0.111172\pi\)
0.0579539 + 0.998319i \(0.481542\pi\)
\(752\) 6.93850 + 1.64445i 0.253021 + 0.0599671i
\(753\) −6.86905 6.76803i −0.250322 0.246641i
\(754\) −2.37844 0.278000i −0.0866177 0.0101242i
\(755\) 29.9841 + 51.9340i 1.09123 + 1.89007i
\(756\) 14.8482 + 3.62695i 0.540025 + 0.131911i
\(757\) 1.03503 1.79273i 0.0376190 0.0651580i −0.846603 0.532225i \(-0.821356\pi\)
0.884222 + 0.467067i \(0.154689\pi\)
\(758\) 8.86258 11.9045i 0.321903 0.432391i
\(759\) −7.44918 0.596150i −0.270388 0.0216389i
\(760\) −0.355341 1.18692i −0.0128896 0.0430541i
\(761\) 27.1676 13.6441i 0.984826 0.494598i 0.117895 0.993026i \(-0.462385\pi\)
0.866931 + 0.498428i \(0.166089\pi\)
\(762\) 8.71214 1.34213i 0.315607 0.0486204i
\(763\) 5.15693 17.2253i 0.186693 0.623599i
\(764\) −1.74805 9.91370i −0.0632423 0.358665i
\(765\) −3.30014 0.143191i −0.119317 0.00517709i
\(766\) 1.25809 7.13498i 0.0454566 0.257797i
\(767\) 59.3985 + 29.8310i