Properties

Label 162.2.g.b.31.1
Level $162$
Weight $2$
Character 162.31
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 31.1
Character \(\chi\) \(=\) 162.31
Dual form 162.2.g.b.115.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.396080 + 0.918216i) q^{2} +(-1.62304 + 0.604777i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(-0.102641 + 1.76229i) q^{5} +(-1.19817 - 1.25076i) q^{6} +(-1.24262 + 0.294506i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(2.26849 - 1.96315i) q^{9} +O(q^{10})\) \(q+(0.396080 + 0.918216i) q^{2} +(-1.62304 + 0.604777i) q^{3} +(-0.686242 + 0.727374i) q^{4} +(-0.102641 + 1.76229i) q^{5} +(-1.19817 - 1.25076i) q^{6} +(-1.24262 + 0.294506i) q^{7} +(-0.939693 - 0.342020i) q^{8} +(2.26849 - 1.96315i) q^{9} +(-1.65881 + 0.603759i) q^{10} +(-4.77831 + 3.14274i) q^{11} +(0.673895 - 1.59558i) q^{12} +(-1.80009 + 0.210400i) q^{13} +(-0.762596 - 1.02434i) q^{14} +(-0.899200 - 2.92233i) q^{15} +(-0.0581448 - 0.998308i) q^{16} +(4.64536 + 3.89792i) q^{17} +(2.70110 + 1.30540i) q^{18} +(1.44222 - 1.21016i) q^{19} +(-1.21140 - 1.28401i) q^{20} +(1.83870 - 1.22950i) q^{21} +(-4.77831 - 3.14274i) q^{22} +(8.51413 + 2.01789i) q^{23} +(1.73200 - 0.0131941i) q^{24} +(1.87108 + 0.218698i) q^{25} +(-0.906172 - 1.56954i) q^{26} +(-2.49457 + 4.55819i) q^{27} +(0.638520 - 1.10595i) q^{28} +(-0.789224 + 1.06011i) q^{29} +(2.32717 - 1.98313i) q^{30} +(-0.973767 - 3.25261i) q^{31} +(0.893633 - 0.448799i) q^{32} +(5.85470 - 7.99060i) q^{33} +(-1.73920 + 5.80933i) q^{34} +(-0.391459 - 2.22008i) q^{35} +(-0.128787 + 2.99723i) q^{36} +(0.658474 - 3.73439i) q^{37} +(1.68242 + 0.844945i) q^{38} +(2.79437 - 1.43014i) q^{39} +(0.699189 - 1.62090i) q^{40} +(-0.237614 + 0.550851i) q^{41} +(1.85722 + 1.20135i) q^{42} +(0.859982 + 0.431899i) q^{43} +(0.993126 - 5.63230i) q^{44} +(3.22679 + 4.19922i) q^{45} +(1.51942 + 8.61706i) q^{46} +(-3.27215 + 10.9297i) q^{47} +(0.698125 + 1.58512i) q^{48} +(-4.79806 + 2.40968i) q^{49} +(0.540284 + 1.80467i) q^{50} +(-9.89695 - 3.51705i) q^{51} +(1.08226 - 1.45372i) q^{52} +(3.24720 - 5.62432i) q^{53} +(-5.17345 - 0.485145i) q^{54} +(-5.04796 - 8.74332i) q^{55} +(1.26841 + 0.148255i) q^{56} +(-1.60889 + 2.83636i) q^{57} +(-1.28601 - 0.304789i) q^{58} +(-3.91105 - 2.57234i) q^{59} +(2.74269 + 1.35137i) q^{60} +(6.81251 + 7.22084i) q^{61} +(2.60091 - 2.18242i) q^{62} +(-2.24070 + 3.10753i) q^{63} +(0.766044 + 0.642788i) q^{64} +(-0.186022 - 3.19387i) q^{65} +(9.65603 + 2.21097i) q^{66} +(-3.75818 - 5.04811i) q^{67} +(-6.02308 + 0.703997i) q^{68} +(-15.0391 + 1.87405i) q^{69} +(1.88346 - 1.23877i) q^{70} +(2.23180 - 0.812309i) q^{71} +(-2.80312 + 1.06889i) q^{72} +(10.7703 + 3.92007i) q^{73} +(3.68979 - 0.874496i) q^{74} +(-3.16909 + 0.776631i) q^{75} +(-0.109468 + 1.87949i) q^{76} +(5.01205 - 5.31247i) q^{77} +(2.41997 + 1.99938i) q^{78} +(-4.27156 - 9.90258i) q^{79} +1.76527 q^{80} +(1.29208 - 8.90677i) q^{81} -0.599915 q^{82} +(-2.62121 - 6.07665i) q^{83} +(-0.367488 + 2.18116i) q^{84} +(-7.34605 + 7.78636i) q^{85} +(-0.0559553 + 0.960716i) q^{86} +(0.639807 - 2.19790i) q^{87} +(5.56502 - 1.31893i) q^{88} +(-16.1151 - 5.86541i) q^{89} +(-2.57773 + 4.62612i) q^{90} +(2.17486 - 0.791584i) q^{91} +(-7.31051 + 4.80820i) q^{92} +(3.54756 + 4.69018i) q^{93} +(-11.3319 + 1.32451i) q^{94} +(1.98462 + 2.66581i) q^{95} +(-1.17897 + 1.26887i) q^{96} +(0.665093 + 11.4192i) q^{97} +(-4.11302 - 3.45123i) q^{98} +(-4.66986 + 16.5098i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{10}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396080 + 0.918216i 0.280071 + 0.649277i
\(3\) −1.62304 + 0.604777i −0.937060 + 0.349168i
\(4\) −0.686242 + 0.727374i −0.343121 + 0.363687i
\(5\) −0.102641 + 1.76229i −0.0459026 + 0.788118i 0.894293 + 0.447482i \(0.147679\pi\)
−0.940195 + 0.340636i \(0.889358\pi\)
\(6\) −1.19817 1.25076i −0.489150 0.510620i
\(7\) −1.24262 + 0.294506i −0.469665 + 0.111313i −0.458632 0.888626i \(-0.651660\pi\)
−0.0110335 + 0.999939i \(0.503512\pi\)
\(8\) −0.939693 0.342020i −0.332232 0.120922i
\(9\) 2.26849 1.96315i 0.756163 0.654383i
\(10\) −1.65881 + 0.603759i −0.524563 + 0.190925i
\(11\) −4.77831 + 3.14274i −1.44071 + 0.947573i −0.441993 + 0.897018i \(0.645728\pi\)
−0.998721 + 0.0505543i \(0.983901\pi\)
\(12\) 0.673895 1.59558i 0.194537 0.460603i
\(13\) −1.80009 + 0.210400i −0.499255 + 0.0583546i −0.361994 0.932180i \(-0.617904\pi\)
−0.137261 + 0.990535i \(0.543830\pi\)
\(14\) −0.762596 1.02434i −0.203812 0.273767i
\(15\) −0.899200 2.92233i −0.232172 0.754542i
\(16\) −0.0581448 0.998308i −0.0145362 0.249577i
\(17\) 4.64536 + 3.89792i 1.12666 + 0.945384i 0.998922 0.0464234i \(-0.0147823\pi\)
0.127743 + 0.991807i \(0.459227\pi\)
\(18\) 2.70110 + 1.30540i 0.636655 + 0.307685i
\(19\) 1.44222 1.21016i 0.330867 0.277630i −0.462186 0.886783i \(-0.652935\pi\)
0.793053 + 0.609153i \(0.208490\pi\)
\(20\) −1.21140 1.28401i −0.270878 0.287114i
\(21\) 1.83870 1.22950i 0.401238 0.268299i
\(22\) −4.77831 3.14274i −1.01874 0.670035i
\(23\) 8.51413 + 2.01789i 1.77532 + 0.420758i 0.982128 0.188214i \(-0.0602698\pi\)
0.793191 + 0.608972i \(0.208418\pi\)
\(24\) 1.73200 0.0131941i 0.353543 0.00269322i
\(25\) 1.87108 + 0.218698i 0.374215 + 0.0437395i
\(26\) −0.906172 1.56954i −0.177715 0.307811i
\(27\) −2.49457 + 4.55819i −0.480080 + 0.877225i
\(28\) 0.638520 1.10595i 0.120669 0.209005i
\(29\) −0.789224 + 1.06011i −0.146555 + 0.196858i −0.869339 0.494217i \(-0.835455\pi\)
0.722784 + 0.691074i \(0.242862\pi\)
\(30\) 2.32717 1.98313i 0.424882 0.362069i
\(31\) −0.973767 3.25261i −0.174894 0.584185i −0.999821 0.0189460i \(-0.993969\pi\)
0.824927 0.565239i \(-0.191216\pi\)
\(32\) 0.893633 0.448799i 0.157973 0.0793372i
\(33\) 5.85470 7.99060i 1.01917 1.39098i
\(34\) −1.73920 + 5.80933i −0.298270 + 0.996292i
\(35\) −0.391459 2.22008i −0.0661687 0.375261i
\(36\) −0.128787 + 2.99723i −0.0214646 + 0.499539i
\(37\) 0.658474 3.73439i 0.108253 0.613931i −0.881619 0.471962i \(-0.843546\pi\)
0.989871 0.141968i \(-0.0453431\pi\)
\(38\) 1.68242 + 0.844945i 0.272925 + 0.137068i
\(39\) 2.79437 1.43014i 0.447457 0.229006i
\(40\) 0.699189 1.62090i 0.110551 0.256287i
\(41\) −0.237614 + 0.550851i −0.0371091 + 0.0860285i −0.935763 0.352631i \(-0.885287\pi\)
0.898654 + 0.438659i \(0.144546\pi\)
\(42\) 1.85722 + 1.20135i 0.286575 + 0.185372i
\(43\) 0.859982 + 0.431899i 0.131146 + 0.0658640i 0.513162 0.858292i \(-0.328474\pi\)
−0.382016 + 0.924156i \(0.624770\pi\)
\(44\) 0.993126 5.63230i 0.149719 0.849101i
\(45\) 3.22679 + 4.19922i 0.481022 + 0.625983i
\(46\) 1.51942 + 8.61706i 0.224026 + 1.27052i
\(47\) −3.27215 + 10.9297i −0.477292 + 1.59427i 0.292694 + 0.956206i \(0.405448\pi\)
−0.769986 + 0.638061i \(0.779737\pi\)
\(48\) 0.698125 + 1.58512i 0.100766 + 0.228793i
\(49\) −4.79806 + 2.40968i −0.685438 + 0.344240i
\(50\) 0.540284 + 1.80467i 0.0764077 + 0.255220i
\(51\) −9.89695 3.51705i −1.38585 0.492486i
\(52\) 1.08226 1.45372i 0.150082 0.201595i
\(53\) 3.24720 5.62432i 0.446038 0.772560i −0.552086 0.833787i \(-0.686168\pi\)
0.998124 + 0.0612269i \(0.0195013\pi\)
\(54\) −5.17345 0.485145i −0.704018 0.0660198i
\(55\) −5.04796 8.74332i −0.680667 1.17895i
\(56\) 1.26841 + 0.148255i 0.169498 + 0.0198115i
\(57\) −1.60889 + 2.83636i −0.213103 + 0.375685i
\(58\) −1.28601 0.304789i −0.168861 0.0400208i
\(59\) −3.91105 2.57234i −0.509176 0.334890i 0.268788 0.963199i \(-0.413377\pi\)
−0.777964 + 0.628309i \(0.783747\pi\)
\(60\) 2.74269 + 1.35137i 0.354080 + 0.174461i
\(61\) 6.81251 + 7.22084i 0.872253 + 0.924534i 0.997715 0.0675643i \(-0.0215228\pi\)
−0.125462 + 0.992098i \(0.540041\pi\)
\(62\) 2.60091 2.18242i 0.330316 0.277168i
\(63\) −2.24070 + 3.10753i −0.282302 + 0.391512i
\(64\) 0.766044 + 0.642788i 0.0957556 + 0.0803485i
\(65\) −0.186022 3.19387i −0.0230731 0.396151i
\(66\) 9.65603 + 2.21097i 1.18857 + 0.272152i
\(67\) −3.75818 5.04811i −0.459134 0.616724i 0.510915 0.859631i \(-0.329307\pi\)
−0.970050 + 0.242907i \(0.921899\pi\)
\(68\) −6.02308 + 0.703997i −0.730406 + 0.0853722i
\(69\) −15.0391 + 1.87405i −1.81050 + 0.225610i
\(70\) 1.88346 1.23877i 0.225116 0.148061i
\(71\) 2.23180 0.812309i 0.264866 0.0964034i −0.206173 0.978515i \(-0.566101\pi\)
0.471040 + 0.882112i \(0.343879\pi\)
\(72\) −2.80312 + 1.06889i −0.330351 + 0.125970i
\(73\) 10.7703 + 3.92007i 1.26057 + 0.458809i 0.883959 0.467564i \(-0.154868\pi\)
0.376608 + 0.926373i \(0.377090\pi\)
\(74\) 3.68979 0.874496i 0.428929 0.101658i
\(75\) −3.16909 + 0.776631i −0.365935 + 0.0896777i
\(76\) −0.109468 + 1.87949i −0.0125569 + 0.215593i
\(77\) 5.01205 5.31247i 0.571177 0.605412i
\(78\) 2.41997 + 1.99938i 0.274008 + 0.226385i
\(79\) −4.27156 9.90258i −0.480588 1.11413i −0.970226 0.242202i \(-0.922130\pi\)
0.489638 0.871926i \(-0.337129\pi\)
\(80\) 1.76527 0.197363
\(81\) 1.29208 8.90677i 0.143564 0.989641i
\(82\) −0.599915 −0.0662495
\(83\) −2.62121 6.07665i −0.287715 0.666999i 0.711653 0.702531i \(-0.247947\pi\)
−0.999369 + 0.0355317i \(0.988688\pi\)
\(84\) −0.367488 + 2.18116i −0.0400962 + 0.237984i
\(85\) −7.34605 + 7.78636i −0.796791 + 0.844549i
\(86\) −0.0559553 + 0.960716i −0.00603382 + 0.103597i
\(87\) 0.639807 2.19790i 0.0685945 0.235640i
\(88\) 5.56502 1.31893i 0.593233 0.140599i
\(89\) −16.1151 5.86541i −1.70819 0.621732i −0.711479 0.702708i \(-0.751974\pi\)
−0.996716 + 0.0809756i \(0.974196\pi\)
\(90\) −2.57773 + 4.62612i −0.271717 + 0.487636i
\(91\) 2.17486 0.791584i 0.227987 0.0829806i
\(92\) −7.31051 + 4.80820i −0.762173 + 0.501289i
\(93\) 3.54756 + 4.69018i 0.367865 + 0.486350i
\(94\) −11.3319 + 1.32451i −1.16880 + 0.136613i
\(95\) 1.98462 + 2.66581i 0.203618 + 0.273506i
\(96\) −1.17897 + 1.26887i −0.120329 + 0.129503i
\(97\) 0.665093 + 11.4192i 0.0675300 + 1.15944i 0.846502 + 0.532386i \(0.178704\pi\)
−0.778972 + 0.627059i \(0.784258\pi\)
\(98\) −4.11302 3.45123i −0.415478 0.348627i
\(99\) −4.66986 + 16.5098i −0.469339 + 1.65930i
\(100\) −1.44309 + 1.21089i −0.144309 + 0.121089i
\(101\) −5.94861 6.30516i −0.591909 0.627387i 0.360299 0.932837i \(-0.382675\pi\)
−0.952208 + 0.305450i \(0.901193\pi\)
\(102\) −0.690569 10.4806i −0.0683766 1.03773i
\(103\) 13.9250 + 9.15865i 1.37208 + 0.902428i 0.999671 0.0256425i \(-0.00816317\pi\)
0.372404 + 0.928071i \(0.378534\pi\)
\(104\) 1.76349 + 0.417955i 0.172925 + 0.0409839i
\(105\) 1.97800 + 3.36652i 0.193033 + 0.328538i
\(106\) 6.45050 + 0.753955i 0.626528 + 0.0732306i
\(107\) 2.84205 + 4.92258i 0.274752 + 0.475884i 0.970072 0.242816i \(-0.0780710\pi\)
−0.695321 + 0.718700i \(0.744738\pi\)
\(108\) −1.60363 4.94251i −0.154310 0.475593i
\(109\) 5.42377 9.39424i 0.519503 0.899805i −0.480240 0.877137i \(-0.659450\pi\)
0.999743 0.0226683i \(-0.00721617\pi\)
\(110\) 6.02886 8.09817i 0.574830 0.772130i
\(111\) 1.18975 + 6.45928i 0.112926 + 0.613088i
\(112\) 0.366259 + 1.22339i 0.0346082 + 0.115600i
\(113\) 3.54439 1.78006i 0.333428 0.167454i −0.274206 0.961671i \(-0.588415\pi\)
0.607634 + 0.794217i \(0.292119\pi\)
\(114\) −3.24164 0.353884i −0.303607 0.0331443i
\(115\) −4.43000 + 14.7972i −0.413099 + 1.37985i
\(116\) −0.229499 1.30155i −0.0213084 0.120846i
\(117\) −3.67044 + 4.01114i −0.339332 + 0.370830i
\(118\) 0.812875 4.61004i 0.0748312 0.424389i
\(119\) −6.92036 3.47554i −0.634389 0.318602i
\(120\) −0.154523 + 3.05363i −0.0141060 + 0.278757i
\(121\) 8.59852 19.9336i 0.781684 1.81215i
\(122\) −3.93200 + 9.11539i −0.355986 + 0.825269i
\(123\) 0.0525136 1.03775i 0.00473499 0.0935712i
\(124\) 3.03410 + 1.52378i 0.272470 + 0.136840i
\(125\) −2.11014 + 11.9672i −0.188737 + 1.07038i
\(126\) −3.74088 0.826622i −0.333264 0.0736413i
\(127\) −1.14065 6.46893i −0.101216 0.574024i −0.992664 0.120902i \(-0.961421\pi\)
0.891448 0.453122i \(-0.149690\pi\)
\(128\) −0.286803 + 0.957990i −0.0253501 + 0.0846751i
\(129\) −1.65698 0.180890i −0.145889 0.0159265i
\(130\) 2.85898 1.43583i 0.250749 0.125931i
\(131\) 2.57359 + 8.59640i 0.224856 + 0.751071i 0.993743 + 0.111687i \(0.0356253\pi\)
−0.768888 + 0.639384i \(0.779189\pi\)
\(132\) 1.79441 + 9.74204i 0.156183 + 0.847936i
\(133\) −1.43572 + 1.92851i −0.124493 + 0.167223i
\(134\) 3.14672 5.45027i 0.271835 0.470832i
\(135\) −7.77679 4.86400i −0.669320 0.418627i
\(136\) −3.03204 5.25165i −0.259995 0.450325i
\(137\) −8.21266 0.959922i −0.701655 0.0820117i −0.242218 0.970222i \(-0.577875\pi\)
−0.459437 + 0.888210i \(0.651949\pi\)
\(138\) −7.67747 13.0669i −0.653550 1.11233i
\(139\) 19.5506 + 4.63357i 1.65826 + 0.393015i 0.949830 0.312768i \(-0.101256\pi\)
0.708429 + 0.705782i \(0.249404\pi\)
\(140\) 1.88346 + 1.23877i 0.159181 + 0.104695i
\(141\) −1.29925 19.7183i −0.109416 1.66058i
\(142\) 1.62985 + 1.72754i 0.136774 + 0.144972i
\(143\) 7.94015 6.66258i 0.663989 0.557153i
\(144\) −2.09173 2.15050i −0.174311 0.179209i
\(145\) −1.78721 1.49965i −0.148420 0.124539i
\(146\) 0.666427 + 11.4421i 0.0551539 + 0.946956i
\(147\) 6.33011 6.81275i 0.522099 0.561906i
\(148\) 2.26443 + 3.04165i 0.186135 + 0.250022i
\(149\) 2.64847 0.309562i 0.216971 0.0253603i −0.00691281 0.999976i \(-0.502200\pi\)
0.223884 + 0.974616i \(0.428126\pi\)
\(150\) −1.96833 2.60230i −0.160713 0.212477i
\(151\) 6.59462 4.33735i 0.536663 0.352969i −0.252066 0.967710i \(-0.581110\pi\)
0.788729 + 0.614741i \(0.210740\pi\)
\(152\) −1.76914 + 0.643914i −0.143496 + 0.0522284i
\(153\) 18.1901 0.277154i 1.47059 0.0224066i
\(154\) 6.86317 + 2.49799i 0.553050 + 0.201294i
\(155\) 5.83197 1.38220i 0.468435 0.111021i
\(156\) −0.877363 + 3.01397i −0.0702452 + 0.241311i
\(157\) −0.512798 + 8.80441i −0.0409258 + 0.702668i 0.913980 + 0.405759i \(0.132993\pi\)
−0.954906 + 0.296909i \(0.904044\pi\)
\(158\) 7.40083 7.84442i 0.588779 0.624069i
\(159\) −1.86886 + 11.0923i −0.148211 + 0.879678i
\(160\) 0.699189 + 1.62090i 0.0552757 + 0.128143i
\(161\) −11.1741 −0.880642
\(162\) 8.69011 2.34138i 0.682759 0.183956i
\(163\) 16.0528 1.25736 0.628678 0.777666i \(-0.283596\pi\)
0.628678 + 0.777666i \(0.283596\pi\)
\(164\) −0.237614 0.550851i −0.0185545 0.0430143i
\(165\) 13.4808 + 11.1378i 1.04948 + 0.867079i
\(166\) 4.54147 4.81368i 0.352487 0.373614i
\(167\) 0.830732 14.2631i 0.0642840 1.10371i −0.799768 0.600310i \(-0.795044\pi\)
0.864052 0.503403i \(-0.167919\pi\)
\(168\) −2.14833 + 0.526479i −0.165747 + 0.0406188i
\(169\) −9.45353 + 2.24053i −0.727194 + 0.172348i
\(170\) −10.0592 3.66124i −0.771504 0.280804i
\(171\) 0.895919 5.57653i 0.0685126 0.426448i
\(172\) −0.904307 + 0.329141i −0.0689528 + 0.0250968i
\(173\) 6.70607 4.41065i 0.509853 0.335335i −0.268378 0.963314i \(-0.586488\pi\)
0.778231 + 0.627978i \(0.216117\pi\)
\(174\) 2.27156 0.283064i 0.172207 0.0214590i
\(175\) −2.38944 + 0.279286i −0.180625 + 0.0211120i
\(176\) 3.41526 + 4.58749i 0.257435 + 0.345795i
\(177\) 7.90347 + 1.80968i 0.594061 + 0.136024i
\(178\) −0.997144 17.1203i −0.0747391 1.28322i
\(179\) 14.5191 + 12.1830i 1.08521 + 0.910600i 0.996343 0.0854438i \(-0.0272308\pi\)
0.0888675 + 0.996043i \(0.471675\pi\)
\(180\) −5.26876 0.534601i −0.392710 0.0398468i
\(181\) −9.09486 + 7.63149i −0.676016 + 0.567244i −0.914839 0.403819i \(-0.867683\pi\)
0.238823 + 0.971063i \(0.423238\pi\)
\(182\) 1.58826 + 1.68346i 0.117730 + 0.124786i
\(183\) −15.4240 7.59963i −1.14017 0.561781i
\(184\) −7.31051 4.80820i −0.538938 0.354465i
\(185\) 6.51348 + 1.54372i 0.478881 + 0.113497i
\(186\) −2.90149 + 5.11512i −0.212747 + 0.375058i
\(187\) −34.4471 4.02629i −2.51902 0.294431i
\(188\) −5.70452 9.88052i −0.416045 0.720611i
\(189\) 1.75738 6.39876i 0.127831 0.465441i
\(190\) −1.66172 + 2.87818i −0.120554 + 0.208805i
\(191\) 15.3416 20.6074i 1.11008 1.49110i 0.259140 0.965840i \(-0.416561\pi\)
0.850942 0.525259i \(-0.176032\pi\)
\(192\) −1.63206 0.579981i −0.117784 0.0418565i
\(193\) 2.38171 + 7.95546i 0.171439 + 0.572647i 0.999920 + 0.0126297i \(0.00402028\pi\)
−0.828481 + 0.560017i \(0.810795\pi\)
\(194\) −10.2219 + 5.13362i −0.733888 + 0.368572i
\(195\) 2.23350 + 5.07126i 0.159944 + 0.363161i
\(196\) 1.53989 5.14361i 0.109992 0.367400i
\(197\) −1.59985 9.07319i −0.113984 0.646438i −0.987248 0.159190i \(-0.949112\pi\)
0.873264 0.487248i \(-0.161999\pi\)
\(198\) −17.0092 + 2.25126i −1.20879 + 0.159990i
\(199\) −0.0235730 + 0.133689i −0.00167105 + 0.00947699i −0.985632 0.168908i \(-0.945976\pi\)
0.983961 + 0.178385i \(0.0570871\pi\)
\(200\) −1.68344 0.845455i −0.119037 0.0597827i
\(201\) 9.15264 + 5.92040i 0.645577 + 0.417593i
\(202\) 3.43338 7.95946i 0.241571 0.560026i
\(203\) 0.668494 1.54974i 0.0469191 0.108771i
\(204\) 9.34991 4.78524i 0.654625 0.335034i
\(205\) −0.946368 0.475284i −0.0660972 0.0331953i
\(206\) −2.89419 + 16.4138i −0.201648 + 1.14360i
\(207\) 23.2756 12.1370i 1.61777 0.843578i
\(208\) 0.314710 + 1.78481i 0.0218212 + 0.123754i
\(209\) −3.08812 + 10.3150i −0.213610 + 0.713507i
\(210\) −2.30774 + 3.14964i −0.159249 + 0.217346i
\(211\) −22.9784 + 11.5402i −1.58190 + 0.794460i −0.999826 0.0186757i \(-0.994055\pi\)
−0.582074 + 0.813136i \(0.697759\pi\)
\(212\) 1.86262 + 6.22158i 0.127925 + 0.427300i
\(213\) −3.13103 + 2.66815i −0.214534 + 0.182819i
\(214\) −3.39431 + 4.55936i −0.232031 + 0.311671i
\(215\) −0.849399 + 1.47120i −0.0579286 + 0.100335i
\(216\) 3.90312 3.43011i 0.265574 0.233389i
\(217\) 2.16793 + 3.75497i 0.147169 + 0.254904i
\(218\) 10.7742 + 1.25932i 0.729720 + 0.0852921i
\(219\) −19.8513 + 0.151224i −1.34143 + 0.0102187i
\(220\) 9.82378 + 2.32828i 0.662319 + 0.156973i
\(221\) −9.18219 6.03922i −0.617661 0.406242i
\(222\) −5.45978 + 3.65084i −0.366437 + 0.245028i
\(223\) −2.94049 3.11674i −0.196910 0.208712i 0.621394 0.783498i \(-0.286567\pi\)
−0.818304 + 0.574786i \(0.805085\pi\)
\(224\) −0.978270 + 0.820866i −0.0653634 + 0.0548464i
\(225\) 4.67385 3.17709i 0.311590 0.211806i
\(226\) 3.03834 + 2.54947i 0.202107 + 0.169588i
\(227\) 1.33212 + 22.8716i 0.0884158 + 1.51804i 0.692673 + 0.721252i \(0.256433\pi\)
−0.604257 + 0.796789i \(0.706530\pi\)
\(228\) −0.959005 3.11669i −0.0635117 0.206408i
\(229\) 1.87408 + 2.51733i 0.123843 + 0.166350i 0.859721 0.510765i \(-0.170638\pi\)
−0.735878 + 0.677114i \(0.763230\pi\)
\(230\) −15.3417 + 1.79318i −1.01160 + 0.118239i
\(231\) −4.92188 + 11.6535i −0.323836 + 0.766744i
\(232\) 1.10421 0.726248i 0.0724947 0.0476805i
\(233\) −16.7102 + 6.08203i −1.09472 + 0.398447i −0.825369 0.564594i \(-0.809033\pi\)
−0.269355 + 0.963041i \(0.586811\pi\)
\(234\) −5.13688 1.78152i −0.335808 0.116462i
\(235\) −18.9255 6.88831i −1.23456 0.449344i
\(236\) 4.55498 1.07955i 0.296504 0.0702727i
\(237\) 12.9217 + 13.4889i 0.839358 + 0.876198i
\(238\) 0.450278 7.73098i 0.0291872 0.501125i
\(239\) −2.02296 + 2.14421i −0.130854 + 0.138697i −0.789487 0.613767i \(-0.789653\pi\)
0.658633 + 0.752464i \(0.271135\pi\)
\(240\) −2.86510 + 1.06760i −0.184941 + 0.0689131i
\(241\) −3.76131 8.71971i −0.242288 0.561686i 0.753069 0.657941i \(-0.228573\pi\)
−0.995357 + 0.0962558i \(0.969313\pi\)
\(242\) 21.7091 1.39551
\(243\) 3.28952 + 15.2374i 0.211023 + 0.977481i
\(244\) −9.92728 −0.635529
\(245\) −3.75406 8.70289i −0.239838 0.556007i
\(246\) 0.973683 0.362815i 0.0620797 0.0231322i
\(247\) −2.34150 + 2.48185i −0.148986 + 0.157916i
\(248\) −0.197416 + 3.38950i −0.0125359 + 0.215233i
\(249\) 7.92934 + 8.27737i 0.502502 + 0.524557i
\(250\) −11.8243 + 2.80240i −0.747831 + 0.177239i
\(251\) 6.12939 + 2.23092i 0.386884 + 0.140814i 0.528137 0.849159i \(-0.322891\pi\)
−0.141253 + 0.989974i \(0.545113\pi\)
\(252\) −0.722669 3.76234i −0.0455239 0.237005i
\(253\) −47.0249 + 17.1156i −2.95643 + 1.07605i
\(254\) 5.48809 3.60957i 0.344353 0.226485i
\(255\) 7.21389 17.0803i 0.451751 1.06961i
\(256\) −0.993238 + 0.116093i −0.0620774 + 0.00725581i
\(257\) 0.280340 + 0.376561i 0.0174871 + 0.0234892i 0.810781 0.585350i \(-0.199043\pi\)
−0.793294 + 0.608839i \(0.791635\pi\)
\(258\) −0.490202 1.59312i −0.0305186 0.0991831i
\(259\) 0.281569 + 4.83435i 0.0174958 + 0.300392i
\(260\) 2.45079 + 2.05646i 0.151992 + 0.127536i
\(261\) 0.290813 + 3.95422i 0.0180009 + 0.244760i
\(262\) −6.87400 + 5.76797i −0.424677 + 0.356347i
\(263\) 14.4182 + 15.2824i 0.889066 + 0.942354i 0.998667 0.0516212i \(-0.0164388\pi\)
−0.109601 + 0.993976i \(0.534957\pi\)
\(264\) −8.23457 + 5.50628i −0.506803 + 0.338888i
\(265\) 9.57837 + 6.29979i 0.588394 + 0.386993i
\(266\) −2.33945 0.554460i −0.143441 0.0339961i
\(267\) 29.7026 0.226269i 1.81777 0.0138474i
\(268\) 6.25088 + 0.730623i 0.381833 + 0.0446299i
\(269\) 5.04831 + 8.74393i 0.307801 + 0.533127i 0.977881 0.209162i \(-0.0670736\pi\)
−0.670080 + 0.742289i \(0.733740\pi\)
\(270\) 1.38597 9.06731i 0.0843477 0.551819i
\(271\) 6.92063 11.9869i 0.420398 0.728151i −0.575580 0.817745i \(-0.695224\pi\)
0.995978 + 0.0895945i \(0.0285571\pi\)
\(272\) 3.62122 4.86414i 0.219569 0.294932i
\(273\) −3.05114 + 2.60008i −0.184664 + 0.157364i
\(274\) −2.37145 7.92120i −0.143265 0.478537i
\(275\) −9.62789 + 4.83531i −0.580584 + 0.291580i
\(276\) 8.95733 12.2251i 0.539168 0.735865i
\(277\) 4.63998 15.4986i 0.278789 0.931221i −0.697833 0.716260i \(-0.745852\pi\)
0.976623 0.214961i \(-0.0689624\pi\)
\(278\) 3.48897 + 19.7869i 0.209254 + 1.18674i
\(279\) −8.59434 5.46685i −0.514529 0.327292i
\(280\) −0.391459 + 2.22008i −0.0233942 + 0.132675i
\(281\) −22.1299 11.1141i −1.32016 0.663010i −0.357549 0.933894i \(-0.616388\pi\)
−0.962612 + 0.270885i \(0.912684\pi\)
\(282\) 17.5910 9.00300i 1.04753 0.536121i
\(283\) 11.6043 26.9017i 0.689801 1.59914i −0.106551 0.994307i \(-0.533981\pi\)
0.796353 0.604832i \(-0.206760\pi\)
\(284\) −0.940703 + 2.18079i −0.0558204 + 0.129406i
\(285\) −4.83333 3.12645i −0.286302 0.185195i
\(286\) 9.26262 + 4.65186i 0.547710 + 0.275070i
\(287\) 0.133034 0.754476i 0.00785278 0.0445353i
\(288\) 1.14614 2.77243i 0.0675367 0.163367i
\(289\) 3.43356 + 19.4727i 0.201974 + 1.14545i
\(290\) 0.669123 2.23503i 0.0392923 0.131245i
\(291\) −7.98555 18.1315i −0.468121 1.06289i
\(292\) −10.2424 + 5.14391i −0.599390 + 0.301025i
\(293\) −2.63754 8.80998i −0.154087 0.514685i 0.845735 0.533604i \(-0.179163\pi\)
−0.999821 + 0.0189191i \(0.993977\pi\)
\(294\) 8.76281 + 3.11401i 0.511057 + 0.181613i
\(295\) 4.93463 6.62836i 0.287305 0.385918i
\(296\) −1.89600 + 3.28397i −0.110203 + 0.190877i
\(297\) −2.40541 29.6202i −0.139576 1.71874i
\(298\) 1.33325 + 2.30926i 0.0772331 + 0.133772i
\(299\) −15.7508 1.84100i −0.910891 0.106468i
\(300\) 1.60986 2.83807i 0.0929452 0.163856i
\(301\) −1.19583 0.283416i −0.0689262 0.0163358i
\(302\) 6.59462 + 4.33735i 0.379478 + 0.249587i
\(303\) 13.4680 + 6.63591i 0.773718 + 0.381223i
\(304\) −1.29197 1.36941i −0.0740997 0.0785411i
\(305\) −13.4244 + 11.2644i −0.768681 + 0.645000i
\(306\) 7.45923 + 16.5927i 0.426416 + 0.948542i
\(307\) −5.57659 4.67931i −0.318273 0.267062i 0.469629 0.882864i \(-0.344388\pi\)
−0.787901 + 0.615802i \(0.788832\pi\)
\(308\) 0.424668 + 7.29127i 0.0241977 + 0.415459i
\(309\) −28.1398 6.44325i −1.60082 0.366544i
\(310\) 3.57909 + 4.80755i 0.203278 + 0.273050i
\(311\) 2.62115 0.306368i 0.148632 0.0173725i −0.0414517 0.999141i \(-0.513198\pi\)
0.190083 + 0.981768i \(0.439124\pi\)
\(312\) −3.11498 + 0.388164i −0.176351 + 0.0219755i
\(313\) 4.54399 2.98863i 0.256841 0.168927i −0.414558 0.910023i \(-0.636064\pi\)
0.671399 + 0.741096i \(0.265694\pi\)
\(314\) −8.28746 + 3.01639i −0.467688 + 0.170225i
\(315\) −5.24636 4.26772i −0.295599 0.240459i
\(316\) 10.1342 + 3.68855i 0.570093 + 0.207497i
\(317\) 29.6920 7.03713i 1.66767 0.395244i 0.714967 0.699158i \(-0.246441\pi\)
0.952700 + 0.303913i \(0.0982933\pi\)
\(318\) −10.9254 + 2.67742i −0.612664 + 0.150142i
\(319\) 0.439497 7.54587i 0.0246071 0.422487i
\(320\) −1.21140 + 1.28401i −0.0677195 + 0.0717785i
\(321\) −7.58982 6.27072i −0.423623 0.349997i
\(322\) −4.42583 10.2602i −0.246642 0.571780i
\(323\) 11.4167 0.635244
\(324\) 5.59187 + 7.05202i 0.310659 + 0.391779i
\(325\) −3.41412 −0.189381
\(326\) 6.35820 + 14.7400i 0.352148 + 0.816372i
\(327\) −3.12154 + 18.5274i −0.172622 + 1.02457i
\(328\) 0.411686 0.436362i 0.0227316 0.0240941i
\(329\) 0.847159 14.5452i 0.0467054 0.801900i
\(330\) −4.88747 + 16.7897i −0.269046 + 0.924245i
\(331\) 28.5318 6.76216i 1.56825 0.371682i 0.647572 0.762004i \(-0.275785\pi\)
0.920678 + 0.390322i \(0.127636\pi\)
\(332\) 6.21878 + 2.26345i 0.341300 + 0.124223i
\(333\) −5.83744 9.76411i −0.319889 0.535070i
\(334\) 13.4257 4.88654i 0.734619 0.267380i
\(335\) 9.28195 6.10483i 0.507127 0.333543i
\(336\) −1.33433 1.76410i −0.0727937 0.0962397i
\(337\) −33.6001 + 3.92729i −1.83032 + 0.213933i −0.960277 0.279049i \(-0.909981\pi\)
−0.870039 + 0.492983i \(0.835907\pi\)
\(338\) −5.80164 7.79295i −0.315568 0.423881i
\(339\) −4.67613 + 5.03266i −0.253972 + 0.273337i
\(340\) −0.622426 10.6866i −0.0337558 0.579565i
\(341\) 14.8751 + 12.4817i 0.805530 + 0.675920i
\(342\) 5.47531 1.38610i 0.296071 0.0749519i
\(343\) 12.1004 10.1534i 0.653359 0.548233i
\(344\) −0.660400 0.699984i −0.0356064 0.0377406i
\(345\) −1.75898 26.6956i −0.0947004 1.43724i
\(346\) 6.70607 + 4.41065i 0.360520 + 0.237118i
\(347\) −11.6926 2.77120i −0.627692 0.148766i −0.0955551 0.995424i \(-0.530463\pi\)
−0.532137 + 0.846658i \(0.678611\pi\)
\(348\) 1.15963 + 1.97367i 0.0621630 + 0.105800i
\(349\) 6.52156 + 0.762261i 0.349091 + 0.0408029i 0.288832 0.957380i \(-0.406733\pi\)
0.0602593 + 0.998183i \(0.480807\pi\)
\(350\) −1.20285 2.08340i −0.0642952 0.111363i
\(351\) 3.53140 8.73002i 0.188492 0.465974i
\(352\) −2.85959 + 4.95296i −0.152417 + 0.263994i
\(353\) 4.39144 5.89873i 0.233733 0.313958i −0.669746 0.742590i \(-0.733597\pi\)
0.903479 + 0.428632i \(0.141004\pi\)
\(354\) 1.46872 + 7.97387i 0.0780619 + 0.423806i
\(355\) 1.20245 + 4.01645i 0.0638192 + 0.213171i
\(356\) 15.3252 7.69660i 0.812233 0.407919i
\(357\) 13.3339 + 1.45564i 0.705706 + 0.0770406i
\(358\) −5.43589 + 18.1571i −0.287296 + 0.959634i
\(359\) −2.01556 11.4308i −0.106377 0.603296i −0.990661 0.136346i \(-0.956464\pi\)
0.884284 0.466950i \(-0.154647\pi\)
\(360\) −1.59597 5.04961i −0.0841151 0.266138i
\(361\) −2.68382 + 15.2207i −0.141254 + 0.801090i
\(362\) −10.6097 5.32837i −0.557631 0.280053i
\(363\) −1.90031 + 37.5532i −0.0997402 + 1.97103i
\(364\) −0.916702 + 2.12515i −0.0480482 + 0.111388i
\(365\) −8.01375 + 18.5780i −0.419459 + 0.972415i
\(366\) 0.868986 17.1726i 0.0454226 0.897625i
\(367\) −14.5052 7.28479i −0.757166 0.380263i 0.0279521 0.999609i \(-0.491101\pi\)
−0.785118 + 0.619346i \(0.787398\pi\)
\(368\) 1.51942 8.61706i 0.0792052 0.449195i
\(369\) 0.542379 + 1.71607i 0.0282351 + 0.0893351i
\(370\) 1.16239 + 6.59222i 0.0604296 + 0.342713i
\(371\) −2.37864 + 7.94520i −0.123493 + 0.412494i
\(372\) −5.84600 0.638198i −0.303101 0.0330890i
\(373\) 21.0756 10.5846i 1.09125 0.548047i 0.190194 0.981747i \(-0.439088\pi\)
0.901058 + 0.433699i \(0.142792\pi\)
\(374\) −9.94680 33.2246i −0.514337 1.71800i
\(375\) −3.81266 20.6993i −0.196885 1.06891i
\(376\) 6.81301 9.15146i 0.351354 0.471950i
\(377\) 1.19763 2.07435i 0.0616809 0.106834i
\(378\) 6.57150 0.920763i 0.338002 0.0473589i
\(379\) 6.29421 + 10.9019i 0.323312 + 0.559993i 0.981169 0.193150i \(-0.0618703\pi\)
−0.657857 + 0.753143i \(0.728537\pi\)
\(380\) −3.30097 0.385828i −0.169336 0.0197926i
\(381\) 5.76357 + 9.80946i 0.295277 + 0.502554i
\(382\) 24.9986 + 5.92477i 1.27904 + 0.303137i
\(383\) −26.0098 17.1069i −1.32904 0.874122i −0.331445 0.943474i \(-0.607536\pi\)
−0.997592 + 0.0693529i \(0.977907\pi\)
\(384\) −0.113879 1.72830i −0.00581134 0.0881971i
\(385\) 8.84764 + 9.37795i 0.450917 + 0.477945i
\(386\) −6.36149 + 5.33792i −0.323791 + 0.271693i
\(387\) 2.79874 0.708516i 0.142268 0.0360159i
\(388\) −8.76245 7.35257i −0.444846 0.373270i
\(389\) −1.71787 29.4946i −0.0870993 1.49544i −0.705015 0.709192i \(-0.749060\pi\)
0.617916 0.786244i \(-0.287977\pi\)
\(390\) −3.77187 + 4.05946i −0.190996 + 0.205559i
\(391\) 31.6856 + 42.5612i 1.60241 + 2.15241i
\(392\) 5.33286 0.623322i 0.269350 0.0314825i
\(393\) −9.37594 12.3958i −0.472954 0.625286i
\(394\) 7.69748 5.06271i 0.387794 0.255056i
\(395\) 17.8896 6.51129i 0.900124 0.327618i
\(396\) −8.80415 14.7265i −0.442425 0.740032i
\(397\) 11.5130 + 4.19038i 0.577820 + 0.210309i 0.614364 0.789023i \(-0.289413\pi\)
−0.0365442 + 0.999332i \(0.511635\pi\)
\(398\) −0.132093 + 0.0313065i −0.00662120 + 0.00156925i
\(399\) 1.16391 3.99833i 0.0582684 0.200167i
\(400\) 0.109534 1.88063i 0.00547670 0.0940314i
\(401\) −19.0425 + 20.1839i −0.950937 + 1.00793i 0.0490209 + 0.998798i \(0.484390\pi\)
−0.999958 + 0.00913701i \(0.997092\pi\)
\(402\) −1.81103 + 10.7490i −0.0903260 + 0.536114i
\(403\) 2.43722 + 5.65011i 0.121406 + 0.281452i
\(404\) 8.66840 0.431269
\(405\) 15.5636 + 3.19122i 0.773364 + 0.158573i
\(406\) 1.68778 0.0837630
\(407\) 8.58985 + 19.9135i 0.425783 + 0.987076i
\(408\) 8.09719 + 6.68990i 0.400871 + 0.331200i
\(409\) 0.114220 0.121066i 0.00564782 0.00598634i −0.724544 0.689229i \(-0.757949\pi\)
0.730191 + 0.683243i \(0.239431\pi\)
\(410\) 0.0615761 1.05722i 0.00304103 0.0522124i
\(411\) 13.9100 3.40884i 0.686128 0.168146i
\(412\) −16.2177 + 3.84367i −0.798989 + 0.189364i
\(413\) 5.61751 + 2.04461i 0.276420 + 0.100609i
\(414\) 20.3634 + 16.5648i 1.00080 + 0.814118i
\(415\) 10.9778 3.99561i 0.538881 0.196137i
\(416\) −1.51419 + 0.995900i −0.0742394 + 0.0488280i
\(417\) −34.5336 + 4.30330i −1.69112 + 0.210733i
\(418\) −10.6946 + 1.25002i −0.523089 + 0.0611404i
\(419\) −3.93942 5.29156i −0.192453 0.258510i 0.695414 0.718609i \(-0.255221\pi\)
−0.887867 + 0.460100i \(0.847814\pi\)
\(420\) −3.80610 0.871495i −0.185719 0.0425246i
\(421\) −1.56373 26.8482i −0.0762116 1.30850i −0.792144 0.610334i \(-0.791035\pi\)
0.715933 0.698169i \(-0.246002\pi\)
\(422\) −19.6977 16.5283i −0.958868 0.804586i
\(423\) 14.0339 + 31.2177i 0.682351 + 1.51786i
\(424\) −4.97501 + 4.17453i −0.241608 + 0.202733i
\(425\) 7.83936 + 8.30923i 0.380265 + 0.403057i
\(426\) −3.69007 1.81816i −0.178785 0.0880901i
\(427\) −10.5919 6.96642i −0.512579 0.337129i
\(428\) −5.53089 1.31085i −0.267346 0.0633621i
\(429\) −8.85777 + 15.6156i −0.427657 + 0.753930i
\(430\) −1.68731 0.197218i −0.0813694 0.00951072i
\(431\) 9.37590 + 16.2395i 0.451621 + 0.782231i 0.998487 0.0549892i \(-0.0175124\pi\)
−0.546866 + 0.837220i \(0.684179\pi\)
\(432\) 4.69553 + 2.22531i 0.225914 + 0.107065i
\(433\) −12.3539 + 21.3977i −0.593692 + 1.02831i 0.400038 + 0.916499i \(0.368997\pi\)
−0.993730 + 0.111807i \(0.964336\pi\)
\(434\) −2.58920 + 3.47790i −0.124285 + 0.166944i
\(435\) 3.80766 + 1.35312i 0.182563 + 0.0648770i
\(436\) 3.11111 + 10.3918i 0.148995 + 0.497678i
\(437\) 14.7212 7.39326i 0.704210 0.353668i
\(438\) −8.00157 18.1679i −0.382330 0.868097i
\(439\) 3.17608 10.6088i 0.151586 0.506333i −0.848139 0.529773i \(-0.822277\pi\)
0.999725 + 0.0234408i \(0.00746214\pi\)
\(440\) 1.75314 + 9.94254i 0.0835776 + 0.473992i
\(441\) −6.15379 + 14.8856i −0.293038 + 0.708840i
\(442\) 1.90843 10.8232i 0.0907748 0.514809i
\(443\) 10.6152 + 5.33117i 0.504345 + 0.253291i 0.682732 0.730669i \(-0.260792\pi\)
−0.178387 + 0.983960i \(0.557088\pi\)
\(444\) −5.51477 3.56724i −0.261719 0.169294i
\(445\) 11.9906 27.7973i 0.568409 1.31772i
\(446\) 1.69717 3.93448i 0.0803633 0.186303i
\(447\) −4.11134 + 2.10416i −0.194460 + 0.0995236i
\(448\) −1.14120 0.573135i −0.0539169 0.0270781i
\(449\) −0.524278 + 2.97333i −0.0247422 + 0.140320i −0.994677 0.103047i \(-0.967141\pi\)
0.969934 + 0.243367i \(0.0782519\pi\)
\(450\) 4.76848 + 3.03322i 0.224788 + 0.142988i
\(451\) −0.595791 3.37890i −0.0280547 0.159106i
\(452\) −1.13754 + 3.79964i −0.0535053 + 0.178720i
\(453\) −8.08018 + 11.0280i −0.379640 + 0.518139i
\(454\) −20.4734 + 10.2821i −0.960866 + 0.482565i
\(455\) 1.17177 + 3.91397i 0.0549333 + 0.183490i
\(456\) 2.48195 2.11503i 0.116228 0.0990454i
\(457\) 0.109969 0.147714i 0.00514413 0.00690977i −0.799544 0.600608i \(-0.794925\pi\)
0.804688 + 0.593698i \(0.202333\pi\)
\(458\) −1.56916 + 2.71787i −0.0733222 + 0.126998i
\(459\) −29.3556 + 11.4508i −1.37020 + 0.534478i
\(460\) −7.72306 13.3767i −0.360089 0.623693i
\(461\) −14.7018 1.71839i −0.684731 0.0800336i −0.233388 0.972384i \(-0.574981\pi\)
−0.451344 + 0.892350i \(0.649055\pi\)
\(462\) −12.6499 + 0.0963645i −0.588526 + 0.00448328i
\(463\) 11.8315 + 2.80412i 0.549856 + 0.130318i 0.496147 0.868238i \(-0.334748\pi\)
0.0537088 + 0.998557i \(0.482896\pi\)
\(464\) 1.10421 + 0.726248i 0.0512615 + 0.0337152i
\(465\) −8.62957 + 5.77041i −0.400187 + 0.267596i
\(466\) −12.2032 12.9346i −0.565303 0.599186i
\(467\) −24.6438 + 20.6786i −1.14038 + 0.956893i −0.999451 0.0331269i \(-0.989453\pi\)
−0.140929 + 0.990020i \(0.545009\pi\)
\(468\) −0.398790 5.42239i −0.0184341 0.250650i
\(469\) 6.15667 + 5.16606i 0.284289 + 0.238547i
\(470\) −1.17104 20.1060i −0.0540161 0.927420i
\(471\) −4.49242 14.6000i −0.207000 0.672732i
\(472\) 2.79539 + 3.75487i 0.128668 + 0.172832i
\(473\) −5.46661 + 0.638955i −0.251355 + 0.0293792i
\(474\) −7.26768 + 17.2076i −0.333816 + 0.790373i
\(475\) 2.96316 1.94890i 0.135959 0.0894216i
\(476\) 7.27705 2.64863i 0.333543 0.121400i
\(477\) −3.67515 19.1335i −0.168273 0.876061i
\(478\) −2.77010 1.00823i −0.126701 0.0461156i
\(479\) 10.1219 2.39894i 0.462483 0.109610i 0.00723231 0.999974i \(-0.497698\pi\)
0.455250 + 0.890363i \(0.349550\pi\)
\(480\) −2.11509 2.20793i −0.0965403 0.100778i
\(481\) −0.399595 + 6.86079i −0.0182200 + 0.312825i
\(482\) 6.51679 6.90740i 0.296832 0.314623i
\(483\) 18.1359 6.75784i 0.825214 0.307492i
\(484\) 8.59852 + 19.9336i 0.390842 + 0.906074i
\(485\) −20.1922 −0.916879
\(486\) −12.6883 + 9.05573i −0.575555 + 0.410776i
\(487\) 4.60462 0.208655 0.104328 0.994543i \(-0.466731\pi\)
0.104328 + 0.994543i \(0.466731\pi\)
\(488\) −3.93200 9.11539i −0.177993 0.412634i
\(489\) −26.0543 + 9.70840i −1.17822 + 0.439029i
\(490\) 6.50423 6.89408i 0.293831 0.311443i
\(491\) 0.935137 16.0557i 0.0422022 0.724583i −0.909148 0.416472i \(-0.863266\pi\)
0.951351 0.308111i \(-0.0996967\pi\)
\(492\) 0.718798 + 0.750348i 0.0324059 + 0.0338283i
\(493\) −7.79845 + 1.84827i −0.351225 + 0.0832418i
\(494\) −3.20629 1.16699i −0.144258 0.0525056i
\(495\) −28.6157 9.92422i −1.28618 0.446061i
\(496\) −3.19048 + 1.16124i −0.143257 + 0.0521413i
\(497\) −2.53405 + 1.66667i −0.113667 + 0.0747603i
\(498\) −4.45976 + 10.5593i −0.199847 + 0.473176i
\(499\) 2.02618 0.236826i 0.0907042 0.0106018i −0.0706197 0.997503i \(-0.522498\pi\)
0.161324 + 0.986902i \(0.448424\pi\)
\(500\) −7.25656 9.74724i −0.324523 0.435910i
\(501\) 7.27770 + 23.6520i 0.325144 + 1.05669i
\(502\) 0.379265 + 6.51173i 0.0169274 + 0.290633i
\(503\) −27.0044 22.6594i −1.20407 1.01033i −0.999504 0.0314791i \(-0.989978\pi\)
−0.204563 0.978853i \(-0.565577\pi\)
\(504\) 3.16841 2.15376i 0.141132 0.0959359i
\(505\) 11.7221 9.83598i 0.521625 0.437696i
\(506\) −34.3415 36.3998i −1.52666 1.61817i
\(507\) 13.9884 9.35373i 0.621246 0.415414i
\(508\) 5.48809 + 3.60957i 0.243494 + 0.160149i
\(509\) 32.6264 + 7.73261i 1.44614 + 0.342742i 0.877394 0.479770i \(-0.159280\pi\)
0.568747 + 0.822512i \(0.307428\pi\)
\(510\) 18.5406 0.141239i 0.820994 0.00625417i
\(511\) −14.5378 1.69923i −0.643116 0.0751695i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 1.91845 + 9.59274i 0.0847017 + 0.423530i
\(514\) −0.234728 + 0.406561i −0.0103534 + 0.0179326i
\(515\) −17.5694 + 23.5998i −0.774202 + 1.03993i
\(516\) 1.26867 1.08111i 0.0558499 0.0475933i
\(517\) −18.7140 62.5092i −0.823042 2.74915i
\(518\) −4.32745 + 2.17333i −0.190137 + 0.0954906i
\(519\) −8.21672 + 11.2143i −0.360674 + 0.492254i
\(520\) −0.917564 + 3.06488i −0.0402379 + 0.134404i
\(521\) −1.80418 10.2320i −0.0790425 0.448273i −0.998484 0.0550453i \(-0.982470\pi\)
0.919441 0.393227i \(-0.128641\pi\)
\(522\) −3.51564 + 1.83321i −0.153875 + 0.0802376i
\(523\) −4.47445 + 25.3759i −0.195654 + 1.10961i 0.715830 + 0.698274i \(0.246048\pi\)
−0.911484 + 0.411335i \(0.865063\pi\)
\(524\) −8.01890 4.02724i −0.350307 0.175931i
\(525\) 3.70924 1.89837i 0.161885 0.0828517i
\(526\) −8.32180 + 19.2921i −0.362848 + 0.841176i
\(527\) 8.15490 18.9052i 0.355233 0.823523i
\(528\) −8.31750 5.38019i −0.361973 0.234143i
\(529\) 47.8650 + 24.0387i 2.08109 + 1.04516i
\(530\) −1.99077 + 11.2902i −0.0864736 + 0.490416i
\(531\) −13.9221 + 1.84266i −0.604166 + 0.0799647i
\(532\) −0.417495 2.36773i −0.0181007 0.102654i
\(533\) 0.311827 1.04158i 0.0135067 0.0451157i
\(534\) 11.9724 + 27.1838i 0.518095 + 1.17636i
\(535\) −8.96671 + 4.50325i −0.387665 + 0.194693i
\(536\) 1.80498 + 6.02904i 0.0779631 + 0.260415i
\(537\) −30.9331 10.9926i −1.33486 0.474365i
\(538\) −6.02928 + 8.09873i −0.259941 + 0.349161i
\(539\) 15.3536 26.5933i 0.661328 1.14545i
\(540\) 8.87470 2.31875i 0.381906 0.0997833i
\(541\) 8.11527 + 14.0561i 0.348903 + 0.604317i 0.986055 0.166421i \(-0.0532211\pi\)
−0.637152 + 0.770738i \(0.719888\pi\)
\(542\) 13.7477 + 1.60687i 0.590513 + 0.0690210i
\(543\) 10.1459 17.8866i 0.435403 0.767585i
\(544\) 5.90063 + 1.39847i 0.252987 + 0.0599591i
\(545\) 15.9986 + 10.5225i 0.685306 + 0.450733i
\(546\) −3.59593 1.77177i −0.153891 0.0758248i
\(547\) −6.29681 6.67423i −0.269232 0.285370i 0.578625 0.815593i \(-0.303589\pi\)
−0.847858 + 0.530224i \(0.822108\pi\)
\(548\) 6.33409 5.31493i 0.270579 0.227043i
\(549\) 29.6297 + 3.00641i 1.26457 + 0.128310i
\(550\) −8.25327 6.92532i −0.351921 0.295297i
\(551\) 0.144676 + 2.48400i 0.00616343 + 0.105822i
\(552\) 14.7731 + 3.38264i 0.628785 + 0.143975i
\(553\) 8.22428 + 11.0471i 0.349732 + 0.469771i
\(554\) 16.0689 1.87818i 0.682701 0.0797963i
\(555\) −11.5052 + 1.43369i −0.488369 + 0.0608567i
\(556\) −16.7868 + 11.0408i −0.711917 + 0.468235i
\(557\) 10.1478 3.69351i 0.429977 0.156499i −0.117960 0.993018i \(-0.537635\pi\)
0.547937 + 0.836519i \(0.315413\pi\)
\(558\) 1.61571 10.0568i 0.0683984 0.425737i
\(559\) −1.63892 0.596517i −0.0693188 0.0252300i
\(560\) −2.19356 + 0.519883i −0.0926947 + 0.0219691i
\(561\) 58.3439 14.2980i 2.46328 0.603663i
\(562\) 1.43990 24.7221i 0.0607385 1.04284i
\(563\) 0.887457 0.940649i 0.0374018 0.0396436i −0.708403 0.705809i \(-0.750584\pi\)
0.745804 + 0.666165i \(0.232065\pi\)
\(564\) 15.2342 + 12.5865i 0.641474 + 0.529986i
\(565\) 2.77317 + 6.42893i 0.116668 + 0.270467i
\(566\) 29.2978 1.23148
\(567\) 1.01753 + 11.4482i 0.0427324 + 0.480781i
\(568\) −2.37503 −0.0996542
\(569\) 0.174206 + 0.403854i 0.00730307 + 0.0169304i 0.921829 0.387598i \(-0.126695\pi\)
−0.914526 + 0.404528i \(0.867436\pi\)
\(570\) 0.956371 5.67637i 0.0400580 0.237757i
\(571\) −12.4916 + 13.2403i −0.522758 + 0.554091i −0.933925 0.357469i \(-0.883640\pi\)
0.411167 + 0.911560i \(0.365121\pi\)
\(572\) −0.602679 + 10.3476i −0.0251993 + 0.432655i
\(573\) −12.4371 + 42.7248i −0.519569 + 1.78485i
\(574\) 0.745464 0.176678i 0.0311151 0.00737441i
\(575\) 15.4893 + 5.63764i 0.645948 + 0.235106i
\(576\) 2.99965 0.0457042i 0.124985 0.00190434i
\(577\) 9.46838 3.44621i 0.394174 0.143467i −0.137326 0.990526i \(-0.543851\pi\)
0.531500 + 0.847058i \(0.321629\pi\)
\(578\) −16.5202 + 10.8655i −0.687149 + 0.451945i
\(579\) −8.67688 11.4716i −0.360599 0.476743i
\(580\) 2.31726 0.270849i 0.0962192 0.0112464i
\(581\) 5.04677 + 6.77899i 0.209375 + 0.281240i
\(582\) 13.4858 14.5140i 0.559003 0.601625i
\(583\) 2.15966 + 37.0799i 0.0894439 + 1.53569i
\(584\) −8.78002 7.36731i −0.363320 0.304862i
\(585\) −6.69203 6.88007i −0.276682 0.284456i
\(586\) 7.04479 5.91128i 0.291018 0.244193i
\(587\) −16.3396 17.3190i −0.674408 0.714831i 0.296299 0.955095i \(-0.404247\pi\)
−0.970707 + 0.240264i \(0.922766\pi\)
\(588\) 0.611433 + 9.27955i 0.0252151 + 0.382682i
\(589\) −5.34057 3.51255i −0.220054 0.144732i
\(590\) 8.04078 + 1.90570i 0.331034 + 0.0784564i
\(591\) 8.08387 + 13.7586i 0.332526 + 0.565952i
\(592\) −3.76636 0.440225i −0.154797 0.0180931i
\(593\) −6.64959 11.5174i −0.273066 0.472964i 0.696579 0.717480i \(-0.254704\pi\)
−0.969645 + 0.244515i \(0.921371\pi\)
\(594\) 26.2451 13.9407i 1.07685 0.571993i
\(595\) 6.83520 11.8389i 0.280216 0.485348i
\(596\) −1.59232 + 2.13886i −0.0652241 + 0.0876112i
\(597\) −0.0425924 0.231239i −0.00174319 0.00946398i
\(598\) −4.54813 15.1918i −0.185987 0.621239i
\(599\) −30.0827 + 15.1081i −1.22915 + 0.617301i −0.940389 0.340102i \(-0.889539\pi\)
−0.288758 + 0.957402i \(0.593242\pi\)
\(600\) 3.24359 + 0.354097i 0.132419 + 0.0144560i
\(601\) 7.67744 25.6444i 0.313169 1.04606i −0.646026 0.763315i \(-0.723570\pi\)
0.959196 0.282743i \(-0.0912444\pi\)
\(602\) −0.213405 1.21028i −0.00869775 0.0493274i
\(603\) −18.4356 4.07371i −0.750755 0.165894i
\(604\) −1.37063 + 7.77323i −0.0557701 + 0.316288i
\(605\) 34.2462 + 17.1991i 1.39230 + 0.699242i
\(606\) −0.758789 + 14.9949i −0.0308237 + 0.609127i
\(607\) −1.28662 + 2.98271i −0.0522222 + 0.121065i −0.942330 0.334686i \(-0.891370\pi\)
0.890108 + 0.455750i \(0.150629\pi\)
\(608\) 0.745691 1.72871i 0.0302418 0.0701083i
\(609\) −0.147740 + 2.91958i −0.00598672 + 0.118307i
\(610\) −15.6603 7.86491i −0.634068 0.318441i
\(611\) 3.59054 20.3630i 0.145258 0.823798i
\(612\) −12.2812 + 13.4212i −0.496440 + 0.542521i
\(613\) −7.05628 40.0181i −0.285000 1.61632i −0.705284 0.708925i \(-0.749181\pi\)
0.420284 0.907393i \(-0.361931\pi\)
\(614\) 2.08785 6.97389i 0.0842586 0.281443i
\(615\) 1.82343 + 0.199061i 0.0735278 + 0.00802690i
\(616\) −6.52676 + 3.27786i −0.262971 + 0.132069i
\(617\) 11.9220 + 39.8221i 0.479960 + 1.60318i 0.764573 + 0.644537i \(0.222950\pi\)
−0.284613 + 0.958642i \(0.591865\pi\)
\(618\) −5.22930 28.3904i −0.210353 1.14203i
\(619\) −2.81095 + 3.77577i −0.112982 + 0.151761i −0.855017 0.518600i \(-0.826453\pi\)
0.742035 + 0.670361i \(0.233861\pi\)
\(620\) −2.99676 + 5.19055i −0.120353 + 0.208457i
\(621\) −30.4370 + 33.7753i −1.22139 + 1.35536i
\(622\) 1.31950 + 2.28543i 0.0529069 + 0.0916375i
\(623\) 21.7523 + 2.54248i 0.871486 + 0.101862i
\(624\) −1.59020 2.70648i −0.0636589 0.108346i
\(625\) −11.7078 2.77481i −0.468314 0.110992i
\(626\) 4.54399 + 2.98863i 0.181614 + 0.119450i
\(627\) −1.22618 18.6093i −0.0489687 0.743185i
\(628\) −6.05219 6.41495i −0.241509 0.255984i
\(629\) 17.6152 14.7809i 0.702364 0.589354i
\(630\) 1.84071 6.50765i 0.0733358 0.259271i
\(631\) −9.99020 8.38278i −0.397704 0.333713i 0.421902 0.906642i \(-0.361363\pi\)
−0.819605 + 0.572929i \(0.805807\pi\)
\(632\) 0.627068 + 10.7663i 0.0249434 + 0.428262i
\(633\) 30.3155 32.6270i 1.20493 1.29681i
\(634\) 18.2220 + 24.4764i 0.723688 + 0.972081i
\(635\) 11.5172 1.34616i 0.457045 0.0534209i
\(636\) −6.78576 8.97137i −0.269073 0.355738i
\(637\) 8.12995 5.34715i 0.322120 0.211862i
\(638\) 7.10281 2.58521i 0.281203 0.102350i
\(639\) 3.46813 6.22408i 0.137197 0.246221i
\(640\) −1.65881 0.603759i −0.0655703 0.0238657i
\(641\) 20.1164 4.76768i 0.794551 0.188312i 0.186756 0.982406i \(-0.440203\pi\)
0.607794 + 0.794094i \(0.292054\pi\)
\(642\) 2.75170 9.45280i 0.108601 0.373072i
\(643\) 0.602517 10.3448i 0.0237609 0.407959i −0.965366 0.260898i \(-0.915981\pi\)
0.989127 0.147062i \(-0.0469816\pi\)
\(644\) 7.66813 8.12774i 0.302166 0.320278i
\(645\) 0.488855 2.90151i 0.0192486 0.114247i
\(646\) 4.52193 + 10.4830i 0.177913 + 0.412449i
\(647\) −38.2038 −1.50195 −0.750973 0.660333i \(-0.770415\pi\)
−0.750973 + 0.660333i \(0.770415\pi\)
\(648\) −4.26045 + 7.92771i −0.167366 + 0.311430i
\(649\) 26.7724 1.05091
\(650\) −1.35226 3.13490i −0.0530402 0.122961i
\(651\) −5.78955 4.78333i −0.226910 0.187473i
\(652\) −11.0161 + 11.6764i −0.431425 + 0.457284i
\(653\) −1.63240 + 28.0272i −0.0638806 + 1.09679i 0.802256 + 0.596981i \(0.203633\pi\)
−0.866136 + 0.499808i \(0.833404\pi\)
\(654\) −18.2485 + 4.47206i −0.713573 + 0.174871i
\(655\) −15.4135 + 3.65306i −0.602254 + 0.142737i
\(656\) 0.563735 + 0.205183i 0.0220102 + 0.00801105i
\(657\) 32.1280 12.2511i 1.25343 0.477960i
\(658\) 13.6911 4.98317i 0.533736 0.194264i
\(659\) 4.31823 2.84015i 0.168214 0.110636i −0.462610 0.886562i \(-0.653087\pi\)
0.630825 + 0.775925i \(0.282717\pi\)
\(660\) −17.3524 + 2.16232i −0.675443 + 0.0841683i
\(661\) −37.3013 + 4.35990i −1.45085 + 0.169581i −0.804725 0.593648i \(-0.797687\pi\)
−0.646129 + 0.763228i \(0.723613\pi\)
\(662\) 17.5100 + 23.5200i 0.680546 + 0.914131i
\(663\) 18.5554 + 4.24869i 0.720632 + 0.165005i
\(664\) 0.384796 + 6.60669i 0.0149330 + 0.256389i
\(665\) −3.25122 2.72810i −0.126077 0.105791i
\(666\) 6.65348 9.22740i 0.257817 0.357554i
\(667\) −8.85874 + 7.43337i −0.343012 + 0.287821i
\(668\) 9.80453 + 10.3922i 0.379349 + 0.402086i
\(669\) 6.65745 + 3.28023i 0.257392 + 0.126821i
\(670\) 9.28195 + 6.10483i 0.358593 + 0.235850i
\(671\) −55.2456 13.0934i −2.13273 0.505466i
\(672\) 1.09133 1.92393i 0.0420988 0.0742172i
\(673\) 29.2094 + 3.41408i 1.12594 + 0.131603i 0.658613 0.752482i \(-0.271144\pi\)
0.467325 + 0.884085i \(0.345218\pi\)
\(674\) −16.9144 29.2967i −0.651520 1.12847i
\(675\) −5.66440 + 7.98318i −0.218023 + 0.307273i
\(676\) 4.85770 8.41379i 0.186835 0.323607i
\(677\) −18.6310 + 25.0258i −0.716048 + 0.961819i 0.283948 + 0.958840i \(0.408356\pi\)
−0.999996 + 0.00297909i \(0.999052\pi\)
\(678\) −6.47319 2.30036i −0.248601 0.0883448i
\(679\) −4.18948 13.9938i −0.160777 0.537034i
\(680\) 9.56612 4.80429i 0.366844 0.184236i
\(681\) −15.9943 36.3158i −0.612903 1.39162i
\(682\) −5.56915 + 18.6023i −0.213254 + 0.712317i
\(683\) −3.96194 22.4693i −0.151599 0.859763i −0.961829 0.273651i \(-0.911769\pi\)
0.810230 0.586112i \(-0.199342\pi\)
\(684\) 3.44140 + 4.47851i 0.131585 + 0.171240i
\(685\) 2.53462 14.3745i 0.0968427 0.549222i
\(686\) 14.1158 + 7.08920i 0.538942 + 0.270667i
\(687\) −4.56412 2.95231i −0.174132 0.112638i
\(688\) 0.381165 0.883640i 0.0145318 0.0336884i
\(689\) −4.66190 + 10.8075i −0.177604 + 0.411733i
\(690\) 23.8156 12.1887i 0.906644 0.464016i
\(691\) −8.44467 4.24108i −0.321251 0.161338i 0.280864 0.959747i \(-0.409379\pi\)
−0.602115 + 0.798409i \(0.705675\pi\)
\(692\) −1.39379 + 7.90459i −0.0529840 + 0.300487i
\(693\) 0.940615 21.8907i 0.0357310 0.831558i
\(694\) −2.08665 11.8340i −0.0792080 0.449211i
\(695\) −10.1724 + 33.9781i −0.385860 + 1.28886i
\(696\) −1.35295 + 1.84653i −0.0512834 + 0.0699924i
\(697\) −3.25097 + 1.63270i −0.123139 + 0.0618430i
\(698\) 1.88314 + 6.29012i 0.0712778 + 0.238084i
\(699\) 23.4430 19.9773i 0.886697 0.755612i
\(700\) 1.43659 1.92967i 0.0542980 0.0729348i
\(701\) −6.49526 + 11.2501i −0.245323 + 0.424911i −0.962222 0.272265i \(-0.912227\pi\)
0.716900 + 0.697176i \(0.245561\pi\)
\(702\) 9.41476 0.215193i 0.355337 0.00812193i
\(703\) −3.56956 6.18266i −0.134629 0.233184i
\(704\) −5.68051 0.663957i −0.214092 0.0250238i
\(705\) 34.8826 0.265729i 1.31375 0.0100079i
\(706\) 7.15567 + 1.69592i 0.269307 + 0.0638270i
\(707\) 9.24876 + 6.08300i 0.347835 + 0.228775i
\(708\) −6.74001 + 4.50690i −0.253305 + 0.169380i
\(709\) −4.29279 4.55009i −0.161219 0.170882i 0.641728 0.766932i \(-0.278218\pi\)
−0.802948 + 0.596050i \(0.796736\pi\)
\(710\) −3.21170 + 2.69494i −0.120533 + 0.101139i
\(711\) −29.1302 14.0782i −1.09247 0.527973i
\(712\) 13.1371 + 11.0234i 0.492335 + 0.413118i
\(713\) −1.72739 29.6581i −0.0646911 1.11070i
\(714\) 3.94470 + 12.8200i 0.147627 + 0.479775i
\(715\) 10.9264 + 14.6767i 0.408623 + 0.548876i
\(716\) −18.8252 + 2.20035i −0.703531 + 0.0822310i
\(717\) 1.98656 4.70357i 0.0741895 0.175658i
\(718\) 9.69764 6.37824i 0.361913 0.238034i
\(719\) −12.5735 + 4.57640i −0.468914 + 0.170671i −0.565660 0.824638i \(-0.691379\pi\)
0.0967463 + 0.995309i \(0.469156\pi\)
\(720\) 4.00450 3.46549i 0.149239 0.129151i
\(721\) −20.0008 7.27969i −0.744868 0.271110i
\(722\) −15.0389 + 3.56429i −0.559690 + 0.132649i
\(723\) 11.3782 + 11.8776i 0.423161 + 0.441734i
\(724\) 0.690324 11.8524i 0.0256557 0.440491i
\(725\) −1.70854 + 1.81095i −0.0634537 + 0.0672570i
\(726\) −35.2346 + 13.1292i −1.30768 + 0.487269i
\(727\) −0.647191 1.50036i −0.0240030 0.0556452i 0.905793 0.423720i \(-0.139276\pi\)
−0.929796 + 0.368075i \(0.880017\pi\)
\(728\) −2.31444 −0.0857787
\(729\) −14.5543 22.7415i −0.539047 0.842276i
\(730\) −20.2327 −0.748845
\(731\) 2.31142 + 5.35846i 0.0854908 + 0.198190i
\(732\) 16.1123 6.00380i 0.595529 0.221907i
\(733\) −21.8323 + 23.1409i −0.806394 + 0.854727i −0.991782 0.127938i \(-0.959164\pi\)
0.185389 + 0.982665i \(0.440646\pi\)
\(734\) 0.943792 16.2043i 0.0348360 0.598111i
\(735\) 11.3563 + 11.8547i 0.418883 + 0.437268i
\(736\) 8.51413 2.01789i 0.313835 0.0743803i
\(737\) 33.8226 + 12.3104i 1.24587 + 0.453461i
\(738\) −1.36090 + 1.17772i −0.0500954 + 0.0433526i
\(739\) 16.4196 5.97624i 0.604004 0.219840i −0.0218734 0.999761i \(-0.506963\pi\)
0.625878 + 0.779921i \(0.284741\pi\)
\(740\) −5.59269 + 3.67837i −0.205591 + 0.135219i
\(741\) 2.29937 5.44421i 0.0844696 0.199998i
\(742\) −8.23754 + 0.962831i −0.302410 + 0.0353466i
\(743\) 29.5153 + 39.6459i 1.08281 + 1.45447i 0.879833 + 0.475282i \(0.157654\pi\)
0.202976 + 0.979184i \(0.434939\pi\)
\(744\) −1.72948 5.62067i −0.0634058 0.206064i
\(745\) 0.273693 + 4.69913i 0.0100273 + 0.172163i
\(746\) 18.0665 + 15.1596i 0.661462 + 0.555033i
\(747\) −17.8756 8.63898i −0.654033 0.316084i
\(748\) 26.5677 22.2929i 0.971410 0.815110i
\(749\) −4.98132 5.27989i −0.182013 0.192923i
\(750\) 17.4964 11.6994i 0.638876 0.427203i
\(751\) 0.520103 + 0.342077i 0.0189788 + 0.0124826i 0.558963 0.829193i \(-0.311199\pi\)
−0.539984 + 0.841675i \(0.681570\pi\)
\(752\) 11.1015 + 2.63111i 0.404830 + 0.0959466i
\(753\) −11.2974 + 0.0860617i −0.411701 + 0.00313626i
\(754\) 2.37906 + 0.278072i 0.0866401 + 0.0101268i
\(755\) 6.96677 + 12.0668i 0.253547 + 0.439156i
\(756\) 3.44830 + 5.66936i 0.125413 + 0.206193i
\(757\) −11.7600 + 20.3689i −0.427425 + 0.740322i −0.996643 0.0818644i \(-0.973913\pi\)
0.569218 + 0.822186i \(0.307246\pi\)
\(758\) −7.51729 + 10.0975i −0.273040 + 0.366757i
\(759\) 65.9719 56.2189i 2.39463 2.04062i
\(760\) −0.953174 3.18382i −0.0345752 0.115489i
\(761\) 19.8334 9.96071i 0.718960 0.361075i −0.0514054 0.998678i \(-0.516370\pi\)
0.770366 + 0.637603i \(0.220074\pi\)
\(762\) −6.72437 + 9.17753i −0.243598 + 0.332467i
\(763\) −3.97301 + 13.2708i −0.143833 + 0.480435i
\(764\) 4.46121 + 25.3008i 0.161401 + 0.915349i
\(765\) −1.37864 + 32.0847i −0.0498447 + 1.16002i
\(766\) 5.40588 30.6583i 0.195323 1.10773i
\(767\) 7.58147 + 3.80756i 0.273751 + 0.137483i