Properties

Label 162.2.g.b.25.5
Level $162$
Weight $2$
Character 162.25
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 25.5
Character \(\chi\) \(=\) 162.25
Dual form 162.2.g.b.13.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.893633 - 0.448799i) q^{2} +(1.51179 - 0.845280i) q^{3} +(0.597159 - 0.802123i) q^{4} +(-0.379535 + 1.26773i) q^{5} +(0.971622 - 1.43386i) q^{6} +(-0.768169 + 1.78082i) q^{7} +(0.173648 - 0.984808i) q^{8} +(1.57100 - 2.55577i) q^{9} +O(q^{10})\) \(q+(0.893633 - 0.448799i) q^{2} +(1.51179 - 0.845280i) q^{3} +(0.597159 - 0.802123i) q^{4} +(-0.379535 + 1.26773i) q^{5} +(0.971622 - 1.43386i) q^{6} +(-0.768169 + 1.78082i) q^{7} +(0.173648 - 0.984808i) q^{8} +(1.57100 - 2.55577i) q^{9} +(0.229793 + 1.30322i) q^{10} +(-2.10911 - 0.499867i) q^{11} +(0.224758 - 1.71741i) q^{12} +(-1.69934 + 1.11767i) q^{13} +(0.112768 + 1.93615i) q^{14} +(0.497815 + 2.23736i) q^{15} +(-0.286803 - 0.957990i) q^{16} +(-7.02180 - 2.55572i) q^{17} +(0.256873 - 2.98898i) q^{18} +(2.13356 - 0.776551i) q^{19} +(0.790236 + 1.06147i) q^{20} +(0.343980 + 3.34153i) q^{21} +(-2.10911 + 0.499867i) q^{22} +(1.34938 + 3.12822i) q^{23} +(-0.569919 - 1.63560i) q^{24} +(2.71434 + 1.78525i) q^{25} +(-1.01697 + 1.76145i) q^{26} +(0.214683 - 5.19172i) q^{27} +(0.969715 + 1.67960i) q^{28} +(-0.282496 + 4.85027i) q^{29} +(1.44899 + 1.77596i) q^{30} +(5.07563 + 0.593256i) q^{31} +(-0.686242 - 0.727374i) q^{32} +(-3.61105 + 1.02709i) q^{33} +(-7.42191 + 0.867497i) q^{34} +(-1.96605 - 1.64972i) q^{35} +(-1.11190 - 2.78634i) q^{36} +(4.70814 - 3.95060i) q^{37} +(1.55810 - 1.65149i) q^{38} +(-1.62429 + 3.12610i) q^{39} +(1.18257 + 0.593908i) q^{40} +(-6.98634 - 3.50867i) q^{41} +(1.80707 + 2.83173i) q^{42} +(-4.77609 + 5.06236i) q^{43} +(-1.66043 + 1.39326i) q^{44} +(2.64378 + 2.96162i) q^{45} +(2.60979 + 2.18988i) q^{46} +(4.18562 - 0.489229i) q^{47} +(-1.24336 - 1.20585i) q^{48} +(2.22247 + 2.35568i) q^{49} +(3.22684 + 0.377163i) q^{50} +(-12.7758 + 2.07167i) q^{51} +(-0.118264 + 2.03051i) q^{52} +(-5.39818 - 9.34993i) q^{53} +(-2.13819 - 4.73584i) q^{54} +(1.43418 - 2.48407i) q^{55} +(1.62037 + 1.06573i) q^{56} +(2.56908 - 2.97743i) q^{57} +(1.92435 + 4.46115i) q^{58} +(6.72062 - 1.59282i) q^{59} +(2.09191 + 0.936749i) q^{60} +(-5.37986 - 7.22641i) q^{61} +(4.80200 - 1.74779i) q^{62} +(3.34456 + 4.76093i) q^{63} +(-0.939693 - 0.342020i) q^{64} +(-0.771954 - 2.57851i) q^{65} +(-2.76599 + 2.53848i) q^{66} +(0.661912 + 11.3646i) q^{67} +(-6.24313 + 4.10617i) q^{68} +(4.68420 + 3.58860i) q^{69} +(-2.49732 - 0.591876i) q^{70} +(0.518333 + 2.93961i) q^{71} +(-2.24414 - 1.99094i) q^{72} +(1.80390 - 10.2304i) q^{73} +(2.43432 - 5.64339i) q^{74} +(5.61253 + 0.404540i) q^{75} +(0.651182 - 2.17510i) q^{76} +(2.51032 - 3.37195i) q^{77} +(-0.0485295 + 3.52257i) q^{78} +(9.16461 - 4.60264i) q^{79} +1.32333 q^{80} +(-4.06390 - 8.03024i) q^{81} -7.81791 q^{82} +(3.24547 - 1.62994i) q^{83} +(2.88573 + 1.71951i) q^{84} +(5.90499 - 7.93178i) q^{85} +(-1.99609 + 6.66740i) q^{86} +(3.67276 + 7.57137i) q^{87} +(-0.858516 + 1.99026i) q^{88} +(1.42927 - 8.10577i) q^{89} +(3.69174 + 1.46007i) q^{90} +(-0.684990 - 3.88477i) q^{91} +(3.31501 + 0.785672i) q^{92} +(8.17474 - 3.39345i) q^{93} +(3.52084 - 2.31569i) q^{94} +(0.174701 + 2.99951i) q^{95} +(-1.65229 - 0.519568i) q^{96} +(-2.30761 - 7.70796i) q^{97} +(3.04330 + 1.10767i) q^{98} +(-4.59096 + 4.60509i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.893633 0.448799i 0.631894 0.317349i
\(3\) 1.51179 0.845280i 0.872831 0.488023i
\(4\) 0.597159 0.802123i 0.298579 0.401062i
\(5\) −0.379535 + 1.26773i −0.169733 + 0.566948i 0.830222 + 0.557433i \(0.188214\pi\)
−0.999955 + 0.00951452i \(0.996971\pi\)
\(6\) 0.971622 1.43386i 0.396663 0.585370i
\(7\) −0.768169 + 1.78082i −0.290341 + 0.673085i −0.999489 0.0319744i \(-0.989821\pi\)
0.709148 + 0.705060i \(0.249080\pi\)
\(8\) 0.173648 0.984808i 0.0613939 0.348182i
\(9\) 1.57100 2.55577i 0.523668 0.851923i
\(10\) 0.229793 + 1.30322i 0.0726671 + 0.412115i
\(11\) −2.10911 0.499867i −0.635919 0.150716i −0.100004 0.994987i \(-0.531885\pi\)
−0.535916 + 0.844271i \(0.680034\pi\)
\(12\) 0.224758 1.71741i 0.0648821 0.495772i
\(13\) −1.69934 + 1.11767i −0.471312 + 0.309987i −0.762854 0.646571i \(-0.776202\pi\)
0.291541 + 0.956558i \(0.405832\pi\)
\(14\) 0.112768 + 1.93615i 0.0301385 + 0.517458i
\(15\) 0.497815 + 2.23736i 0.128535 + 0.577683i
\(16\) −0.286803 0.957990i −0.0717008 0.239497i
\(17\) −7.02180 2.55572i −1.70304 0.619854i −0.706870 0.707343i \(-0.749893\pi\)
−0.996165 + 0.0874893i \(0.972116\pi\)
\(18\) 0.256873 2.98898i 0.0605456 0.704510i
\(19\) 2.13356 0.776551i 0.489471 0.178153i −0.0854813 0.996340i \(-0.527243\pi\)
0.574952 + 0.818187i \(0.305021\pi\)
\(20\) 0.790236 + 1.06147i 0.176702 + 0.237352i
\(21\) 0.343980 + 3.34153i 0.0750626 + 0.729182i
\(22\) −2.10911 + 0.499867i −0.449663 + 0.106572i
\(23\) 1.34938 + 3.12822i 0.281366 + 0.652279i 0.999027 0.0441139i \(-0.0140465\pi\)
−0.717661 + 0.696393i \(0.754787\pi\)
\(24\) −0.569919 1.63560i −0.116334 0.333866i
\(25\) 2.71434 + 1.78525i 0.542867 + 0.357049i
\(26\) −1.01697 + 1.76145i −0.199445 + 0.345449i
\(27\) 0.214683 5.19172i 0.0413159 0.999146i
\(28\) 0.969715 + 1.67960i 0.183259 + 0.317414i
\(29\) −0.282496 + 4.85027i −0.0524582 + 0.900673i 0.864735 + 0.502229i \(0.167487\pi\)
−0.917193 + 0.398444i \(0.869550\pi\)
\(30\) 1.44899 + 1.77596i 0.264548 + 0.324244i
\(31\) 5.07563 + 0.593256i 0.911610 + 0.106552i 0.558952 0.829200i \(-0.311204\pi\)
0.352658 + 0.935752i \(0.385278\pi\)
\(32\) −0.686242 0.727374i −0.121312 0.128583i
\(33\) −3.61105 + 1.02709i −0.628603 + 0.178794i
\(34\) −7.42191 + 0.867497i −1.27285 + 0.148775i
\(35\) −1.96605 1.64972i −0.332324 0.278853i
\(36\) −1.11190 2.78634i −0.185317 0.464389i
\(37\) 4.70814 3.95060i 0.774013 0.649474i −0.167720 0.985835i \(-0.553640\pi\)
0.941733 + 0.336360i \(0.109196\pi\)
\(38\) 1.55810 1.65149i 0.252757 0.267907i
\(39\) −1.62429 + 3.12610i −0.260095 + 0.500577i
\(40\) 1.18257 + 0.593908i 0.186981 + 0.0939052i
\(41\) −6.98634 3.50867i −1.09108 0.547962i −0.190077 0.981769i \(-0.560874\pi\)
−0.901006 + 0.433807i \(0.857170\pi\)
\(42\) 1.80707 + 2.83173i 0.278837 + 0.436945i
\(43\) −4.77609 + 5.06236i −0.728347 + 0.772003i −0.980676 0.195639i \(-0.937322\pi\)
0.252329 + 0.967641i \(0.418803\pi\)
\(44\) −1.66043 + 1.39326i −0.250319 + 0.210042i
\(45\) 2.64378 + 2.96162i 0.394112 + 0.441492i
\(46\) 2.60979 + 2.18988i 0.384793 + 0.322880i
\(47\) 4.18562 0.489229i 0.610535 0.0713614i 0.194794 0.980844i \(-0.437596\pi\)
0.415741 + 0.909483i \(0.363522\pi\)
\(48\) −1.24336 1.20585i −0.179463 0.174049i
\(49\) 2.22247 + 2.35568i 0.317496 + 0.336526i
\(50\) 3.22684 + 0.377163i 0.456344 + 0.0533389i
\(51\) −12.7758 + 2.07167i −1.78896 + 0.290092i
\(52\) −0.118264 + 2.03051i −0.0164002 + 0.281581i
\(53\) −5.39818 9.34993i −0.741497 1.28431i −0.951813 0.306678i \(-0.900783\pi\)
0.210316 0.977633i \(-0.432551\pi\)
\(54\) −2.13819 4.73584i −0.290971 0.644466i
\(55\) 1.43418 2.48407i 0.193384 0.334952i
\(56\) 1.62037 + 1.06573i 0.216531 + 0.142415i
\(57\) 2.56908 2.97743i 0.340283 0.394370i
\(58\) 1.92435 + 4.46115i 0.252680 + 0.585777i
\(59\) 6.72062 1.59282i 0.874950 0.207367i 0.231481 0.972839i \(-0.425643\pi\)
0.643469 + 0.765472i \(0.277495\pi\)
\(60\) 2.09191 + 0.936749i 0.270065 + 0.120934i
\(61\) −5.37986 7.22641i −0.688820 0.925246i 0.310862 0.950455i \(-0.399382\pi\)
−0.999682 + 0.0252087i \(0.991975\pi\)
\(62\) 4.80200 1.74779i 0.609855 0.221969i
\(63\) 3.34456 + 4.76093i 0.421374 + 0.599821i
\(64\) −0.939693 0.342020i −0.117462 0.0427525i
\(65\) −0.771954 2.57851i −0.0957491 0.319824i
\(66\) −2.76599 + 2.53848i −0.340470 + 0.312465i
\(67\) 0.661912 + 11.3646i 0.0808654 + 1.38841i 0.757860 + 0.652417i \(0.226245\pi\)
−0.676994 + 0.735988i \(0.736718\pi\)
\(68\) −6.24313 + 4.10617i −0.757091 + 0.497946i
\(69\) 4.68420 + 3.58860i 0.563911 + 0.432016i
\(70\) −2.49732 0.591876i −0.298487 0.0707427i
\(71\) 0.518333 + 2.93961i 0.0615148 + 0.348868i 0.999994 + 0.00353124i \(0.00112403\pi\)
−0.938479 + 0.345336i \(0.887765\pi\)
\(72\) −2.24414 1.99094i −0.264474 0.234635i
\(73\) 1.80390 10.2304i 0.211131 1.19738i −0.676365 0.736567i \(-0.736446\pi\)
0.887496 0.460816i \(-0.152443\pi\)
\(74\) 2.43432 5.64339i 0.282984 0.656031i
\(75\) 5.61253 + 0.404540i 0.648079 + 0.0467122i
\(76\) 0.651182 2.17510i 0.0746956 0.249501i
\(77\) 2.51032 3.37195i 0.286078 0.384269i
\(78\) −0.0485295 + 3.52257i −0.00549489 + 0.398852i
\(79\) 9.16461 4.60264i 1.03110 0.517837i 0.148968 0.988842i \(-0.452405\pi\)
0.882131 + 0.471005i \(0.156108\pi\)
\(80\) 1.32333 0.147953
\(81\) −4.06390 8.03024i −0.451544 0.892249i
\(82\) −7.81791 −0.863344
\(83\) 3.24547 1.62994i 0.356237 0.178909i −0.261675 0.965156i \(-0.584275\pi\)
0.617912 + 0.786247i \(0.287979\pi\)
\(84\) 2.88573 + 1.71951i 0.314859 + 0.187614i
\(85\) 5.90499 7.93178i 0.640486 0.860323i
\(86\) −1.99609 + 6.66740i −0.215244 + 0.718964i
\(87\) 3.67276 + 7.57137i 0.393762 + 0.811736i
\(88\) −0.858516 + 1.99026i −0.0915181 + 0.212163i
\(89\) 1.42927 8.10577i 0.151502 0.859210i −0.810413 0.585860i \(-0.800757\pi\)
0.961915 0.273350i \(-0.0881319\pi\)
\(90\) 3.69174 + 1.46007i 0.389144 + 0.153905i
\(91\) −0.684990 3.88477i −0.0718065 0.407235i
\(92\) 3.31501 + 0.785672i 0.345614 + 0.0819120i
\(93\) 8.17474 3.39345i 0.847681 0.351885i
\(94\) 3.52084 2.31569i 0.363147 0.238846i
\(95\) 0.174701 + 2.99951i 0.0179240 + 0.307743i
\(96\) −1.65229 0.519568i −0.168636 0.0530282i
\(97\) −2.30761 7.70796i −0.234302 0.782624i −0.991576 0.129527i \(-0.958654\pi\)
0.757274 0.653098i \(-0.226531\pi\)
\(98\) 3.04330 + 1.10767i 0.307420 + 0.111892i
\(99\) −4.59096 + 4.60509i −0.461409 + 0.462829i
\(100\) 3.05288 1.11116i 0.305288 0.111116i
\(101\) 11.1155 + 14.9307i 1.10603 + 1.48566i 0.855678 + 0.517509i \(0.173141\pi\)
0.250357 + 0.968153i \(0.419452\pi\)
\(102\) −10.4871 + 7.58507i −1.03838 + 0.751033i
\(103\) −17.5969 + 4.17055i −1.73388 + 0.410937i −0.971660 0.236383i \(-0.924038\pi\)
−0.762218 + 0.647320i \(0.775890\pi\)
\(104\) 0.805606 + 1.86761i 0.0789962 + 0.183134i
\(105\) −4.36673 0.832153i −0.426149 0.0812098i
\(106\) −9.02023 5.93270i −0.876122 0.576235i
\(107\) 2.04335 3.53919i 0.197538 0.342146i −0.750192 0.661221i \(-0.770039\pi\)
0.947730 + 0.319075i \(0.103372\pi\)
\(108\) −4.03620 3.27248i −0.388383 0.314895i
\(109\) −6.16219 10.6732i −0.590231 1.02231i −0.994201 0.107538i \(-0.965703\pi\)
0.403970 0.914772i \(-0.367630\pi\)
\(110\) 0.166780 2.86350i 0.0159019 0.273024i
\(111\) 3.77834 9.95216i 0.358625 0.944617i
\(112\) 1.92632 + 0.225154i 0.182020 + 0.0212751i
\(113\) 10.6469 + 11.2851i 1.00158 + 1.06161i 0.998100 + 0.0616189i \(0.0196263\pi\)
0.00348030 + 0.999994i \(0.498892\pi\)
\(114\) 0.959545 3.81373i 0.0898696 0.357189i
\(115\) −4.47789 + 0.523390i −0.417565 + 0.0488064i
\(116\) 3.72182 + 3.12298i 0.345562 + 0.289961i
\(117\) 0.186845 + 6.09899i 0.0172739 + 0.563852i
\(118\) 5.29091 4.43960i 0.487068 0.408698i
\(119\) 9.94520 10.5413i 0.911675 0.966319i
\(120\) 2.28981 0.101739i 0.209030 0.00928742i
\(121\) −5.63150 2.82824i −0.511954 0.257113i
\(122\) −8.05082 4.04328i −0.728887 0.366061i
\(123\) −13.5277 + 0.601048i −1.21975 + 0.0541946i
\(124\) 3.50682 3.71701i 0.314922 0.333798i
\(125\) −8.36204 + 7.01659i −0.747924 + 0.627583i
\(126\) 5.12551 + 2.75349i 0.456616 + 0.245300i
\(127\) 13.4767 + 11.3083i 1.19586 + 1.00345i 0.999739 + 0.0228661i \(0.00727913\pi\)
0.196121 + 0.980580i \(0.437165\pi\)
\(128\) −0.993238 + 0.116093i −0.0877907 + 0.0102613i
\(129\) −2.94132 + 11.6903i −0.258969 + 1.02928i
\(130\) −1.84708 1.95779i −0.161999 0.171709i
\(131\) −4.78234 0.558975i −0.417835 0.0488379i −0.0954217 0.995437i \(-0.530420\pi\)
−0.322413 + 0.946599i \(0.604494\pi\)
\(132\) −1.33251 + 3.50984i −0.115980 + 0.305493i
\(133\) −0.256037 + 4.39599i −0.0222013 + 0.381181i
\(134\) 5.69192 + 9.85870i 0.491707 + 0.851662i
\(135\) 6.50023 + 2.24260i 0.559451 + 0.193012i
\(136\) −3.73622 + 6.47132i −0.320378 + 0.554911i
\(137\) 0.519408 + 0.341620i 0.0443760 + 0.0291866i 0.571503 0.820600i \(-0.306360\pi\)
−0.527127 + 0.849786i \(0.676731\pi\)
\(138\) 5.79651 + 1.10462i 0.493432 + 0.0940317i
\(139\) 1.16974 + 2.71177i 0.0992164 + 0.230010i 0.960594 0.277956i \(-0.0896570\pi\)
−0.861377 + 0.507966i \(0.830398\pi\)
\(140\) −2.49732 + 0.591876i −0.211062 + 0.0500227i
\(141\) 5.91423 4.27763i 0.498068 0.360242i
\(142\) 1.78249 + 2.39430i 0.149584 + 0.200926i
\(143\) 4.14278 1.50785i 0.346436 0.126093i
\(144\) −2.89897 0.772002i −0.241581 0.0643335i
\(145\) −6.04164 2.19898i −0.501731 0.182615i
\(146\) −2.97939 9.95185i −0.246576 0.823621i
\(147\) 5.35111 + 1.68268i 0.441352 + 0.138785i
\(148\) −0.357360 6.13564i −0.0293748 0.504347i
\(149\) −1.10328 + 0.725642i −0.0903846 + 0.0594469i −0.593897 0.804541i \(-0.702411\pi\)
0.503512 + 0.863988i \(0.332041\pi\)
\(150\) 5.19710 2.15739i 0.424341 0.176150i
\(151\) −1.68015 0.398202i −0.136728 0.0324052i 0.161682 0.986843i \(-0.448308\pi\)
−0.298410 + 0.954438i \(0.596456\pi\)
\(152\) −0.394265 2.23599i −0.0319791 0.181363i
\(153\) −17.5631 + 13.9310i −1.41989 + 1.12626i
\(154\) 0.729978 4.13991i 0.0588233 0.333604i
\(155\) −2.67847 + 6.20939i −0.215140 + 0.498750i
\(156\) 1.53756 + 3.16966i 0.123103 + 0.253776i
\(157\) −3.15286 + 10.5313i −0.251625 + 0.840487i 0.735082 + 0.677979i \(0.237144\pi\)
−0.986707 + 0.162509i \(0.948041\pi\)
\(158\) 6.12413 8.22614i 0.487210 0.654436i
\(159\) −16.0642 9.57213i −1.27397 0.759119i
\(160\) 1.18257 0.593908i 0.0934903 0.0469526i
\(161\) −6.60734 −0.520731
\(162\) −7.23560 5.35221i −0.568482 0.420509i
\(163\) −18.8589 −1.47714 −0.738570 0.674177i \(-0.764498\pi\)
−0.738570 + 0.674177i \(0.764498\pi\)
\(164\) −6.98634 + 3.50867i −0.545541 + 0.273981i
\(165\) 0.0684383 4.96767i 0.00532791 0.386732i
\(166\) 2.16874 2.91313i 0.168327 0.226103i
\(167\) −2.91724 + 9.74426i −0.225743 + 0.754033i 0.767812 + 0.640676i \(0.221346\pi\)
−0.993554 + 0.113357i \(0.963839\pi\)
\(168\) 3.35050 + 0.241497i 0.258497 + 0.0186319i
\(169\) −3.51047 + 8.13820i −0.270037 + 0.626015i
\(170\) 1.71712 9.73826i 0.131697 0.746890i
\(171\) 1.36714 6.67283i 0.104548 0.510284i
\(172\) 1.20855 + 6.85404i 0.0921513 + 0.522616i
\(173\) −18.1978 4.31295i −1.38355 0.327908i −0.529594 0.848251i \(-0.677656\pi\)
−0.853957 + 0.520344i \(0.825804\pi\)
\(174\) 6.68013 + 5.11769i 0.506419 + 0.387971i
\(175\) −5.26427 + 3.46236i −0.397941 + 0.261730i
\(176\) 0.126031 + 2.16386i 0.00949993 + 0.163107i
\(177\) 8.81377 8.08881i 0.662484 0.607992i
\(178\) −2.36062 7.88504i −0.176936 0.591008i
\(179\) 16.1486 + 5.87760i 1.20700 + 0.439312i 0.865662 0.500628i \(-0.166898\pi\)
0.341338 + 0.939941i \(0.389120\pi\)
\(180\) 3.95434 0.352085i 0.294739 0.0262429i
\(181\) −21.3524 + 7.77164i −1.58711 + 0.577661i −0.976735 0.214450i \(-0.931204\pi\)
−0.610376 + 0.792112i \(0.708982\pi\)
\(182\) −2.35561 3.16414i −0.174610 0.234541i
\(183\) −14.2415 6.37730i −1.05276 0.471424i
\(184\) 3.31501 0.785672i 0.244386 0.0579205i
\(185\) 3.22141 + 7.46806i 0.236842 + 0.549062i
\(186\) 5.78224 6.70132i 0.423974 0.491364i
\(187\) 13.5322 + 8.90026i 0.989571 + 0.650851i
\(188\) 2.10706 3.64953i 0.153673 0.266169i
\(189\) 9.08058 + 4.37043i 0.660515 + 0.317902i
\(190\) 1.50230 + 2.60205i 0.108988 + 0.188773i
\(191\) −0.341122 + 5.85684i −0.0246827 + 0.423786i 0.963220 + 0.268713i \(0.0865984\pi\)
−0.987903 + 0.155073i \(0.950439\pi\)
\(192\) −1.70972 + 0.277242i −0.123388 + 0.0200082i
\(193\) 11.7776 + 1.37661i 0.847771 + 0.0990903i 0.528875 0.848699i \(-0.322614\pi\)
0.318896 + 0.947790i \(0.396688\pi\)
\(194\) −5.52148 5.85243i −0.396419 0.420180i
\(195\) −3.34659 3.24564i −0.239654 0.232425i
\(196\) 3.21671 0.375980i 0.229765 0.0268557i
\(197\) 2.29618 + 1.92672i 0.163596 + 0.137273i 0.720911 0.693028i \(-0.243724\pi\)
−0.557315 + 0.830301i \(0.688168\pi\)
\(198\) −2.03587 + 6.17568i −0.144683 + 0.438886i
\(199\) 15.4208 12.9396i 1.09315 0.917261i 0.0962034 0.995362i \(-0.469330\pi\)
0.996945 + 0.0781009i \(0.0248856\pi\)
\(200\) 2.22946 2.36309i 0.157647 0.167096i
\(201\) 10.6069 + 16.6213i 0.748155 + 1.17238i
\(202\) 16.6341 + 8.35395i 1.17037 + 0.587782i
\(203\) −8.42044 4.22890i −0.590999 0.296811i
\(204\) −5.96742 + 11.4849i −0.417803 + 0.804101i
\(205\) 7.09962 7.52516i 0.495859 0.525580i
\(206\) −13.8535 + 11.6244i −0.965216 + 0.809913i
\(207\) 10.1149 + 1.46574i 0.703033 + 0.101876i
\(208\) 1.55810 + 1.30740i 0.108034 + 0.0906517i
\(209\) −4.88807 + 0.571333i −0.338115 + 0.0395199i
\(210\) −4.27572 + 1.21615i −0.295053 + 0.0839220i
\(211\) −9.85383 10.4445i −0.678366 0.719026i 0.293133 0.956072i \(-0.405302\pi\)
−0.971498 + 0.237046i \(0.923821\pi\)
\(212\) −10.7234 1.25338i −0.736484 0.0860826i
\(213\) 3.26840 + 4.00593i 0.223947 + 0.274482i
\(214\) 0.237620 4.07979i 0.0162434 0.278888i
\(215\) −4.60503 7.97615i −0.314061 0.543969i
\(216\) −5.07556 1.11295i −0.345348 0.0757269i
\(217\) −4.95542 + 8.58304i −0.336396 + 0.582655i
\(218\) −10.2969 6.77236i −0.697392 0.458682i
\(219\) −5.92047 16.9911i −0.400068 1.14815i
\(220\) −1.13610 2.63377i −0.0765957 0.177569i
\(221\) 14.7889 3.50503i 0.994808 0.235774i
\(222\) −1.09007 10.5893i −0.0731607 0.710707i
\(223\) 6.68444 + 8.97876i 0.447623 + 0.601262i 0.967466 0.252999i \(-0.0814171\pi\)
−0.519843 + 0.854262i \(0.674010\pi\)
\(224\) 1.82247 0.663324i 0.121769 0.0443202i
\(225\) 8.82691 4.13258i 0.588460 0.275506i
\(226\) 14.5792 + 5.30639i 0.969794 + 0.352976i
\(227\) −4.56463 15.2469i −0.302965 1.01197i −0.964945 0.262453i \(-0.915469\pi\)
0.661980 0.749522i \(-0.269717\pi\)
\(228\) −0.854119 3.83872i −0.0565654 0.254225i
\(229\) 0.625990 + 10.7478i 0.0413666 + 0.710236i 0.953695 + 0.300776i \(0.0972458\pi\)
−0.912328 + 0.409460i \(0.865717\pi\)
\(230\) −3.76669 + 2.47739i −0.248368 + 0.163354i
\(231\) 0.944833 7.21959i 0.0621655 0.475014i
\(232\) 4.72753 + 1.12045i 0.310378 + 0.0735608i
\(233\) 2.99957 + 17.0114i 0.196508 + 1.11445i 0.910254 + 0.414050i \(0.135886\pi\)
−0.713746 + 0.700405i \(0.753003\pi\)
\(234\) 2.90419 + 5.36640i 0.189853 + 0.350812i
\(235\) −0.968376 + 5.49193i −0.0631699 + 0.358254i
\(236\) 2.73564 6.34193i 0.178075 0.412824i
\(237\) 9.96442 14.7049i 0.647259 0.955184i
\(238\) 4.15643 13.8834i 0.269421 0.899930i
\(239\) 14.5713 19.5727i 0.942540 1.26605i −0.0213560 0.999772i \(-0.506798\pi\)
0.963896 0.266279i \(-0.0857942\pi\)
\(240\) 2.00059 1.11858i 0.129138 0.0722042i
\(241\) 24.9082 12.5094i 1.60448 0.805800i 0.604522 0.796588i \(-0.293364\pi\)
0.999958 0.00921168i \(-0.00293221\pi\)
\(242\) −6.30180 −0.405095
\(243\) −12.9316 8.70488i −0.829559 0.558418i
\(244\) −9.00910 −0.576748
\(245\) −3.82988 + 1.92344i −0.244682 + 0.122884i
\(246\) −11.8190 + 6.60832i −0.753553 + 0.421331i
\(247\) −2.75771 + 3.70424i −0.175469 + 0.235695i
\(248\) 1.46562 4.89550i 0.0930668 0.310865i
\(249\) 3.52871 5.20745i 0.223623 0.330009i
\(250\) −4.32356 + 10.0231i −0.273446 + 0.633918i
\(251\) −2.51752 + 14.2776i −0.158904 + 0.901192i 0.796224 + 0.605001i \(0.206827\pi\)
−0.955129 + 0.296191i \(0.904284\pi\)
\(252\) 5.81608 + 0.160284i 0.366379 + 0.0100969i
\(253\) −1.28230 7.27226i −0.0806172 0.457203i
\(254\) 17.1183 + 4.05712i 1.07410 + 0.254566i
\(255\) 2.22252 16.9825i 0.139179 1.06349i
\(256\) −0.835488 + 0.549509i −0.0522180 + 0.0343443i
\(257\) −1.18052 20.2687i −0.0736386 1.26433i −0.809470 0.587161i \(-0.800246\pi\)
0.735832 0.677165i \(-0.236792\pi\)
\(258\) 2.61816 + 11.7669i 0.162999 + 0.732578i
\(259\) 3.41864 + 11.4191i 0.212424 + 0.709546i
\(260\) −2.52926 0.920575i −0.156858 0.0570916i
\(261\) 11.9524 + 8.34179i 0.739833 + 0.516344i
\(262\) −4.52452 + 1.64679i −0.279526 + 0.101739i
\(263\) 5.30489 + 7.12570i 0.327114 + 0.439390i 0.935007 0.354629i \(-0.115393\pi\)
−0.607894 + 0.794018i \(0.707985\pi\)
\(264\) 0.384436 + 3.73454i 0.0236604 + 0.229845i
\(265\) 13.9020 3.29484i 0.853994 0.202400i
\(266\) 1.74411 + 4.04331i 0.106938 + 0.247911i
\(267\) −4.69090 13.4623i −0.287078 0.823881i
\(268\) 9.51107 + 6.25553i 0.580981 + 0.382117i
\(269\) 0.798719 1.38342i 0.0486987 0.0843487i −0.840649 0.541581i \(-0.817826\pi\)
0.889347 + 0.457232i \(0.151159\pi\)
\(270\) 6.81530 0.913242i 0.414766 0.0555781i
\(271\) 10.0971 + 17.4887i 0.613355 + 1.06236i 0.990671 + 0.136277i \(0.0435137\pi\)
−0.377316 + 0.926084i \(0.623153\pi\)
\(272\) −0.434484 + 7.45980i −0.0263444 + 0.452317i
\(273\) −4.31928 5.29394i −0.261415 0.320404i
\(274\) 0.617479 + 0.0721729i 0.0373033 + 0.00436013i
\(275\) −4.83244 5.12208i −0.291407 0.308873i
\(276\) 5.67571 1.61434i 0.341637 0.0971721i
\(277\) 1.65097 0.192970i 0.0991970 0.0115945i −0.0663496 0.997796i \(-0.521135\pi\)
0.165547 + 0.986202i \(0.447061\pi\)
\(278\) 2.26236 + 1.89835i 0.135688 + 0.113855i
\(279\) 9.49006 12.0401i 0.568155 0.720823i
\(280\) −1.96605 + 1.64972i −0.117494 + 0.0985894i
\(281\) −8.32617 + 8.82522i −0.496698 + 0.526469i −0.926420 0.376492i \(-0.877130\pi\)
0.429722 + 0.902961i \(0.358612\pi\)
\(282\) 3.36535 6.47693i 0.200404 0.385696i
\(283\) −12.6764 6.36632i −0.753533 0.378439i 0.0301938 0.999544i \(-0.490388\pi\)
−0.783727 + 0.621105i \(0.786684\pi\)
\(284\) 2.66746 + 1.33965i 0.158284 + 0.0794934i
\(285\) 2.79954 + 4.38695i 0.165830 + 0.259860i
\(286\) 3.02540 3.20674i 0.178896 0.189618i
\(287\) 11.6150 9.74613i 0.685611 0.575296i
\(288\) −2.93709 + 0.611168i −0.173069 + 0.0360134i
\(289\) 29.7511 + 24.9642i 1.75007 + 1.46848i
\(290\) −6.38590 + 0.746405i −0.374993 + 0.0438304i
\(291\) −10.0040 9.70222i −0.586445 0.568754i
\(292\) −7.12886 7.55615i −0.417185 0.442190i
\(293\) −19.9431 2.33102i −1.16509 0.136179i −0.488517 0.872555i \(-0.662462\pi\)
−0.676573 + 0.736375i \(0.736536\pi\)
\(294\) 5.53711 0.897878i 0.322931 0.0523653i
\(295\) −0.531441 + 9.12449i −0.0309417 + 0.531248i
\(296\) −3.07302 5.32263i −0.178616 0.309371i
\(297\) −3.04796 + 10.8426i −0.176861 + 0.629149i
\(298\) −0.660264 + 1.14361i −0.0382481 + 0.0662476i
\(299\) −5.78939 3.80774i −0.334809 0.220207i
\(300\) 3.67606 4.26037i 0.212238 0.245972i
\(301\) −5.34629 12.3941i −0.308155 0.714383i
\(302\) −1.68015 + 0.398202i −0.0966816 + 0.0229140i
\(303\) 29.4249 + 13.1764i 1.69042 + 0.756962i
\(304\) −1.35584 1.82121i −0.0777626 0.104453i
\(305\) 11.2030 4.07756i 0.641482 0.233480i
\(306\) −9.44273 + 20.3315i −0.539805 + 1.16228i
\(307\) −24.0050 8.73709i −1.37004 0.498652i −0.450893 0.892578i \(-0.648894\pi\)
−0.919142 + 0.393926i \(0.871117\pi\)
\(308\) −1.20566 4.02717i −0.0686987 0.229470i
\(309\) −23.0776 + 21.1793i −1.31284 + 1.20485i
\(310\) 0.393201 + 6.75101i 0.0223323 + 0.383431i
\(311\) 8.61224 5.66436i 0.488355 0.321196i −0.281340 0.959608i \(-0.590779\pi\)
0.769695 + 0.638412i \(0.220408\pi\)
\(312\) 2.79655 + 2.14246i 0.158324 + 0.121293i
\(313\) −11.2681 2.67060i −0.636913 0.150951i −0.100541 0.994933i \(-0.532057\pi\)
−0.536372 + 0.843982i \(0.680205\pi\)
\(314\) 1.90893 + 10.8261i 0.107727 + 0.610952i
\(315\) −7.30497 + 2.43307i −0.411588 + 0.137088i
\(316\) 1.78084 10.0997i 0.100180 0.568150i
\(317\) −9.27900 + 21.5111i −0.521160 + 1.20819i 0.430935 + 0.902383i \(0.358184\pi\)
−0.952095 + 0.305802i \(0.901075\pi\)
\(318\) −18.6515 1.34436i −1.04592 0.0753879i
\(319\) 3.02031 10.0885i 0.169105 0.564849i
\(320\) 0.790236 1.06147i 0.0441756 0.0593381i
\(321\) 0.0975076 7.07770i 0.00544235 0.395039i
\(322\) −5.90453 + 2.96537i −0.329047 + 0.165253i
\(323\) −16.9660 −0.944015
\(324\) −8.86803 1.53558i −0.492668 0.0853100i
\(325\) −6.60790 −0.366540
\(326\) −16.8529 + 8.46384i −0.933395 + 0.468769i
\(327\) −18.3378 10.9269i −1.01408 0.604258i
\(328\) −4.66853 + 6.27093i −0.257777 + 0.346254i
\(329\) −2.34404 + 7.82963i −0.129231 + 0.431661i
\(330\) −2.16833 4.46998i −0.119362 0.246064i
\(331\) 0.0953783 0.221112i 0.00524246 0.0121534i −0.915575 0.402148i \(-0.868264\pi\)
0.920817 + 0.389994i \(0.127523\pi\)
\(332\) 0.630651 3.57660i 0.0346115 0.196291i
\(333\) −2.70031 18.2393i −0.147976 0.999508i
\(334\) 1.76627 + 10.0170i 0.0966462 + 0.548108i
\(335\) −14.6585 3.47413i −0.800879 0.189812i
\(336\) 3.10250 1.28789i 0.169255 0.0702603i
\(337\) −6.75532 + 4.44304i −0.367986 + 0.242028i −0.720011 0.693962i \(-0.755863\pi\)
0.352026 + 0.935990i \(0.385493\pi\)
\(338\) 0.515341 + 8.84805i 0.0280308 + 0.481271i
\(339\) 25.6350 + 8.06102i 1.39230 + 0.437815i
\(340\) −2.83605 9.47306i −0.153806 0.513749i
\(341\) −10.4085 3.78838i −0.563651 0.205152i
\(342\) −1.77304 6.57663i −0.0958752 0.355624i
\(343\) −18.6595 + 6.79152i −1.00752 + 0.366708i
\(344\) 4.15609 + 5.58260i 0.224081 + 0.300994i
\(345\) −6.32720 + 4.57632i −0.340645 + 0.246381i
\(346\) −18.1978 + 4.31295i −0.978318 + 0.231866i
\(347\) −3.71942 8.62258i −0.199669 0.462884i 0.788735 0.614733i \(-0.210736\pi\)
−0.988404 + 0.151849i \(0.951477\pi\)
\(348\) 8.26639 + 1.57530i 0.443125 + 0.0844449i
\(349\) −2.98629 1.96411i −0.159853 0.105137i 0.467062 0.884224i \(-0.345312\pi\)
−0.626915 + 0.779088i \(0.715683\pi\)
\(350\) −3.15041 + 5.45668i −0.168397 + 0.291672i
\(351\) 5.43782 + 9.06244i 0.290249 + 0.483717i
\(352\) 1.08377 + 1.87714i 0.0577649 + 0.100052i
\(353\) −0.231753 + 3.97905i −0.0123350 + 0.211783i 0.986509 + 0.163709i \(0.0523457\pi\)
−0.998844 + 0.0480749i \(0.984691\pi\)
\(354\) 4.24603 11.1840i 0.225674 0.594425i
\(355\) −3.92337 0.458576i −0.208231 0.0243387i
\(356\) −5.64833 5.98688i −0.299361 0.317304i
\(357\) 6.12468 24.3427i 0.324153 1.28835i
\(358\) 17.0687 1.99505i 0.902111 0.105442i
\(359\) 17.0190 + 14.2806i 0.898227 + 0.753702i 0.969843 0.243730i \(-0.0783711\pi\)
−0.0716159 + 0.997432i \(0.522816\pi\)
\(360\) 3.37571 2.08934i 0.177916 0.110118i
\(361\) −10.6058 + 8.89934i −0.558201 + 0.468386i
\(362\) −15.5933 + 16.5279i −0.819565 + 0.868688i
\(363\) −10.9043 + 0.484488i −0.572327 + 0.0254290i
\(364\) −3.52512 1.77038i −0.184766 0.0927931i
\(365\) 12.2848 + 6.16968i 0.643018 + 0.322936i
\(366\) −15.5888 + 0.692627i −0.814841 + 0.0362042i
\(367\) −8.65683 + 9.17571i −0.451883 + 0.478968i −0.912760 0.408496i \(-0.866053\pi\)
0.460877 + 0.887464i \(0.347535\pi\)
\(368\) 2.60979 2.18988i 0.136045 0.114155i
\(369\) −19.9429 + 12.3433i −1.03819 + 0.642568i
\(370\) 6.23041 + 5.22794i 0.323904 + 0.271787i
\(371\) 20.7972 2.43085i 1.07974 0.126203i
\(372\) 2.15965 8.58358i 0.111973 0.445038i
\(373\) −2.77388 2.94015i −0.143626 0.152235i 0.651567 0.758591i \(-0.274112\pi\)
−0.795193 + 0.606356i \(0.792631\pi\)
\(374\) 16.0872 + 1.88033i 0.831851 + 0.0972294i
\(375\) −6.71065 + 17.6759i −0.346536 + 0.912777i
\(376\) 0.245029 4.20698i 0.0126364 0.216959i
\(377\) −4.94096 8.55800i −0.254473 0.440759i
\(378\) 10.0761 0.169799i 0.518261 0.00873354i
\(379\) 18.2374 31.5882i 0.936795 1.62258i 0.165392 0.986228i \(-0.447111\pi\)
0.771402 0.636348i \(-0.219556\pi\)
\(380\) 2.51030 + 1.65105i 0.128776 + 0.0846971i
\(381\) 29.9325 + 5.70413i 1.53349 + 0.292232i
\(382\) 2.32371 + 5.38696i 0.118891 + 0.275621i
\(383\) −3.77992 + 0.895858i −0.193145 + 0.0457762i −0.326050 0.945353i \(-0.605718\pi\)
0.132905 + 0.991129i \(0.457570\pi\)
\(384\) −1.40343 + 1.01507i −0.0716187 + 0.0518002i
\(385\) 3.32198 + 4.46219i 0.169304 + 0.227414i
\(386\) 11.1427 4.05560i 0.567148 0.206425i
\(387\) 5.43496 + 20.1596i 0.276275 + 1.02477i
\(388\) −7.56074 2.75188i −0.383838 0.139706i
\(389\) 7.91140 + 26.4259i 0.401124 + 1.33985i 0.885359 + 0.464909i \(0.153913\pi\)
−0.484235 + 0.874938i \(0.660902\pi\)
\(390\) −4.44726 1.39846i −0.225196 0.0708138i
\(391\) −1.48022 25.4144i −0.0748578 1.28526i
\(392\) 2.70582 1.77965i 0.136665 0.0898857i
\(393\) −7.70237 + 3.19736i −0.388533 + 0.161286i
\(394\) 2.91665 + 0.691259i 0.146939 + 0.0348251i
\(395\) 2.35664 + 13.3651i 0.118575 + 0.672474i
\(396\) 0.952322 + 6.43248i 0.0478560 + 0.323244i
\(397\) 0.343883 1.95026i 0.0172590 0.0978806i −0.974961 0.222374i \(-0.928619\pi\)
0.992220 + 0.124493i \(0.0397305\pi\)
\(398\) 7.97323 18.4840i 0.399662 0.926521i
\(399\) 3.32877 + 6.86223i 0.166647 + 0.343541i
\(400\) 0.931767 3.11232i 0.0465884 0.155616i
\(401\) 15.0228 20.1791i 0.750203 1.00770i −0.249028 0.968496i \(-0.580111\pi\)
0.999231 0.0392012i \(-0.0124813\pi\)
\(402\) 16.9383 + 10.0930i 0.844808 + 0.503393i
\(403\) −9.28829 + 4.66475i −0.462683 + 0.232368i
\(404\) 18.6140 0.926081
\(405\) 11.7226 2.10419i 0.582501 0.104558i
\(406\) −9.42271 −0.467641
\(407\) −11.9047 + 5.97878i −0.590096 + 0.296357i
\(408\) −0.178291 + 12.9414i −0.00882670 + 0.640695i
\(409\) 18.9183 25.4117i 0.935450 1.25653i −0.0309600 0.999521i \(-0.509856\pi\)
0.966410 0.257006i \(-0.0827361\pi\)
\(410\) 2.96717 9.91103i 0.146538 0.489471i
\(411\) 1.07400 + 0.0774117i 0.0529765 + 0.00381844i
\(412\) −7.16287 + 16.6054i −0.352889 + 0.818089i
\(413\) −2.32606 + 13.1917i −0.114458 + 0.649123i
\(414\) 9.69681 3.22972i 0.476572 0.158732i
\(415\) 0.834558 + 4.73301i 0.0409668 + 0.232334i
\(416\) 1.97912 + 0.469061i 0.0970345 + 0.0229976i
\(417\) 4.06061 + 3.11086i 0.198849 + 0.152340i
\(418\) −4.11172 + 2.70432i −0.201111 + 0.132273i
\(419\) 0.100748 + 1.72977i 0.00492185 + 0.0845049i 0.999875 0.0158403i \(-0.00504233\pi\)
−0.994953 + 0.100345i \(0.968005\pi\)
\(420\) −3.27512 + 3.00573i −0.159809 + 0.146664i
\(421\) −8.06168 26.9279i −0.392902 1.31238i −0.894416 0.447235i \(-0.852409\pi\)
0.501514 0.865149i \(-0.332777\pi\)
\(422\) −13.4932 4.91111i −0.656837 0.239069i
\(423\) 5.32527 11.4661i 0.258923 0.557499i
\(424\) −10.1453 + 3.69257i −0.492698 + 0.179327i
\(425\) −14.4969 19.4727i −0.703204 0.944566i
\(426\) 4.71861 + 2.11297i 0.228617 + 0.102374i
\(427\) 17.0015 4.02944i 0.822762 0.194998i
\(428\) −1.61866 3.75247i −0.0782408 0.181383i
\(429\) 4.98844 5.78135i 0.240844 0.279126i
\(430\) −7.69490 5.06102i −0.371081 0.244064i
\(431\) −0.567396 + 0.982759i −0.0273305 + 0.0473378i −0.879367 0.476144i \(-0.842034\pi\)
0.852037 + 0.523482i \(0.175367\pi\)
\(432\) −5.03518 + 1.28334i −0.242255 + 0.0617445i
\(433\) 8.75124 + 15.1576i 0.420558 + 0.728427i 0.995994 0.0894194i \(-0.0285011\pi\)
−0.575436 + 0.817846i \(0.695168\pi\)
\(434\) −0.576264 + 9.89408i −0.0276616 + 0.474931i
\(435\) −10.9924 + 1.78249i −0.527046 + 0.0854639i
\(436\) −12.2410 1.43077i −0.586240 0.0685216i
\(437\) 5.30820 + 5.62636i 0.253926 + 0.269146i
\(438\) −12.9163 12.5267i −0.617165 0.598547i
\(439\) −16.5282 + 1.93187i −0.788849 + 0.0922032i −0.500971 0.865464i \(-0.667024\pi\)
−0.287878 + 0.957667i \(0.592950\pi\)
\(440\) −2.19729 1.84374i −0.104752 0.0878970i
\(441\) 9.51208 1.97933i 0.452956 0.0942540i
\(442\) 11.6428 9.76945i 0.553790 0.464685i
\(443\) 18.5257 19.6360i 0.880180 0.932937i −0.118014 0.993012i \(-0.537653\pi\)
0.998194 + 0.0600754i \(0.0191341\pi\)
\(444\) −5.72659 8.97372i −0.271772 0.425874i
\(445\) 9.73351 + 4.88835i 0.461412 + 0.231730i
\(446\) 10.0031 + 5.02374i 0.473660 + 0.237881i
\(447\) −1.05456 + 2.02960i −0.0498791 + 0.0959968i
\(448\) 1.33092 1.41069i 0.0628800 0.0666489i
\(449\) 14.6102 12.2594i 0.689499 0.578558i −0.229266 0.973364i \(-0.573633\pi\)
0.918765 + 0.394806i \(0.129188\pi\)
\(450\) 6.03331 7.65452i 0.284413 0.360838i
\(451\) 12.9811 + 10.8924i 0.611254 + 0.512903i
\(452\) 15.4100 1.80117i 0.724823 0.0847197i
\(453\) −2.87662 + 0.818198i −0.135155 + 0.0384423i
\(454\) −10.9219 11.5766i −0.512591 0.543315i
\(455\) 5.18484 + 0.606021i 0.243069 + 0.0284107i
\(456\) −2.48608 3.04707i −0.116421 0.142692i
\(457\) −0.570163 + 9.78932i −0.0266711 + 0.457925i 0.958362 + 0.285558i \(0.0921788\pi\)
−0.985033 + 0.172368i \(0.944858\pi\)
\(458\) 5.38302 + 9.32367i 0.251532 + 0.435666i
\(459\) −14.7761 + 35.9065i −0.689687 + 1.67597i
\(460\) −2.25419 + 3.90436i −0.105102 + 0.182042i
\(461\) −12.2701 8.07018i −0.571476 0.375866i 0.230635 0.973040i \(-0.425920\pi\)
−0.802111 + 0.597175i \(0.796290\pi\)
\(462\) −2.39581 6.87570i −0.111463 0.319887i
\(463\) −12.0622 27.9633i −0.560577 1.29956i −0.929060 0.369930i \(-0.879382\pi\)
0.368482 0.929635i \(-0.379877\pi\)
\(464\) 4.72753 1.12045i 0.219470 0.0520154i
\(465\) 1.19940 + 11.6513i 0.0556207 + 0.540318i
\(466\) 10.3152 + 13.8558i 0.477844 + 0.641855i
\(467\) −4.51390 + 1.64293i −0.208879 + 0.0760256i −0.444340 0.895858i \(-0.646562\pi\)
0.235462 + 0.971884i \(0.424340\pi\)
\(468\) 5.00372 + 3.49219i 0.231297 + 0.161427i
\(469\) −20.7467 7.55118i −0.957994 0.348681i
\(470\) 1.59940 + 5.34238i 0.0737749 + 0.246425i
\(471\) 4.13543 + 18.5861i 0.190550 + 0.856402i
\(472\) −0.401594 6.89511i −0.0184849 0.317373i
\(473\) 12.6038 8.28964i 0.579523 0.381158i
\(474\) 2.30500 17.6128i 0.105872 0.808982i
\(475\) 7.17752 + 1.70110i 0.329327 + 0.0780520i
\(476\) −2.51656 14.2721i −0.115346 0.654161i
\(477\) −32.3768 0.892263i −1.48243 0.0408539i
\(478\) 4.23720 24.0304i 0.193805 1.09912i
\(479\) −1.04518 + 2.42300i −0.0477555 + 0.110710i −0.940424 0.340005i \(-0.889571\pi\)
0.892668 + 0.450714i \(0.148831\pi\)
\(480\) 1.28577 1.89747i 0.0586873 0.0866070i
\(481\) −3.58525 + 11.9756i −0.163473 + 0.546039i
\(482\) 16.6446 22.3576i 0.758141 1.01836i
\(483\) −9.98889 + 5.58505i −0.454510 + 0.254129i
\(484\) −5.63150 + 2.82824i −0.255977 + 0.128557i
\(485\) 10.6475 0.483476
\(486\) −15.4628 1.97530i −0.701407 0.0896013i
\(487\) 30.3949 1.37732 0.688662 0.725082i \(-0.258198\pi\)
0.688662 + 0.725082i \(0.258198\pi\)
\(488\) −8.05082 + 4.04328i −0.364444 + 0.183030i
\(489\) −28.5106 + 15.9410i −1.28929 + 0.720877i
\(490\) −2.55927 + 3.43769i −0.115616 + 0.155299i
\(491\) −5.83806 + 19.5005i −0.263468 + 0.880045i 0.719221 + 0.694782i \(0.244499\pi\)
−0.982689 + 0.185263i \(0.940686\pi\)
\(492\) −7.59605 + 11.2098i −0.342456 + 0.505376i
\(493\) 14.3796 33.3356i 0.647624 1.50136i
\(494\) −0.801915 + 4.54789i −0.0360799 + 0.204619i
\(495\) −4.09560 7.56790i −0.184084 0.340152i
\(496\) −0.887374 5.03255i −0.0398443 0.225968i
\(497\) −5.63307 1.33506i −0.252678 0.0598857i
\(498\) 0.816271 6.23723i 0.0365780 0.279497i
\(499\) −0.982338 + 0.646094i −0.0439755 + 0.0289231i −0.571306 0.820737i \(-0.693563\pi\)
0.527331 + 0.849660i \(0.323193\pi\)
\(500\) 0.634701 + 10.8974i 0.0283847 + 0.487347i
\(501\) 3.82638 + 17.1971i 0.170950 + 0.768311i
\(502\) 4.15802 + 13.8888i 0.185582 + 0.619886i
\(503\) 29.3121 + 10.6687i 1.30696 + 0.475696i 0.899258 0.437418i \(-0.144107\pi\)
0.407705 + 0.913114i \(0.366329\pi\)
\(504\) 5.26938 2.46702i 0.234717 0.109890i
\(505\) −23.1469 + 8.42479i −1.03002 + 0.374898i
\(506\) −4.40968 5.92323i −0.196034 0.263320i
\(507\) 1.57196 + 15.2706i 0.0698133 + 0.678189i
\(508\) 17.1183 4.05712i 0.759503 0.180005i
\(509\) 0.914081 + 2.11908i 0.0405159 + 0.0939265i 0.937272 0.348598i \(-0.113342\pi\)
−0.896756 + 0.442525i \(0.854083\pi\)
\(510\) −5.63564 16.1736i −0.249550 0.716180i
\(511\) 16.8328 + 11.0711i 0.744641 + 0.489758i
\(512\) −0.500000 + 0.866025i −0.0220971 + 0.0382733i
\(513\) −3.57359 11.2435i −0.157778 0.496414i
\(514\) −10.1515 17.5829i −0.447764 0.775550i
\(515\) 1.39150 23.8911i 0.0613168 1.05277i
\(516\) 7.62066 + 9.34029i 0.335481 + 0.411184i
\(517\) −9.07246 1.06042i −0.399007 0.0466372i
\(518\) 8.17987 + 8.67016i 0.359403 + 0.380945i
\(519\) −31.1568 + 8.86195i −1.36763 + 0.388996i
\(520\) −2.67338 + 0.312474i −0.117236 + 0.0137029i
\(521\) −20.8735 17.5150i −0.914485 0.767344i 0.0584819 0.998288i \(-0.481374\pi\)
−0.972967 + 0.230944i \(0.925818\pi\)
\(522\) 14.4248 + 2.09028i 0.631357 + 0.0914891i
\(523\) 20.3758 17.0974i 0.890973 0.747615i −0.0774318 0.996998i \(-0.524672\pi\)
0.968405 + 0.249382i \(0.0802276\pi\)
\(524\) −3.30418 + 3.50223i −0.144344 + 0.152996i
\(525\) −5.03179 + 9.68413i −0.219605 + 0.422650i
\(526\) 7.93863 + 3.98693i 0.346141 + 0.173838i
\(527\) −34.1238 17.1376i −1.48646 0.746527i
\(528\) 2.01960 + 3.16477i 0.0878920 + 0.137729i
\(529\) 7.81863 8.28727i 0.339941 0.360316i
\(530\) 10.9446 9.18359i 0.475402 0.398910i
\(531\) 6.48725 19.6787i 0.281523 0.853981i
\(532\) 3.37323 + 2.83048i 0.146248 + 0.122717i
\(533\) 15.7937 1.84602i 0.684102 0.0799600i
\(534\) −10.2338 9.92511i −0.442861 0.429501i
\(535\) 3.71122 + 3.93367i 0.160450 + 0.170067i
\(536\) 11.3069 + 1.32158i 0.488383 + 0.0570837i
\(537\) 29.3814 4.76438i 1.26790 0.205598i
\(538\) 0.0928827 1.59474i 0.00400446 0.0687539i
\(539\) −3.50990 6.07932i −0.151182 0.261855i
\(540\) 5.68051 3.87480i 0.244450 0.166745i
\(541\) 1.08463 1.87864i 0.0466321 0.0807692i −0.841767 0.539841i \(-0.818484\pi\)
0.888399 + 0.459071i \(0.151818\pi\)
\(542\) 16.8720 + 11.0969i 0.724714 + 0.476652i
\(543\) −25.7111 + 29.7978i −1.10337 + 1.27875i
\(544\) 2.95968 + 6.86131i 0.126895 + 0.294176i
\(545\) 15.8696 3.76116i 0.679778 0.161110i
\(546\) −6.23577 2.79235i −0.266866 0.119502i
\(547\) −14.1538 19.0118i −0.605171 0.812886i 0.388939 0.921264i \(-0.372842\pi\)
−0.994110 + 0.108378i \(0.965434\pi\)
\(548\) 0.584191 0.212628i 0.0249554 0.00908302i
\(549\) −26.9208 + 2.39697i −1.14895 + 0.102300i
\(550\) −6.61721 2.40847i −0.282159 0.102697i
\(551\) 3.16376 + 10.5677i 0.134781 + 0.450199i
\(552\) 4.34748 3.98988i 0.185041 0.169821i
\(553\) 1.15649 + 19.8561i 0.0491788 + 0.844367i
\(554\) 1.38875 0.913398i 0.0590025 0.0388065i
\(555\) 11.1827 + 8.56713i 0.474678 + 0.363654i
\(556\) 2.87370 + 0.681079i 0.121872 + 0.0288842i
\(557\) −2.15153 12.2019i −0.0911633 0.517013i −0.995856 0.0909475i \(-0.971010\pi\)
0.904692 0.426065i \(-0.140101\pi\)
\(558\) 3.07703 15.0186i 0.130261 0.635787i
\(559\) 2.45814 13.9408i 0.103968 0.589632i
\(560\) −1.01654 + 2.35660i −0.0429566 + 0.0995847i
\(561\) 27.9810 + 2.01681i 1.18136 + 0.0851499i
\(562\) −3.47978 + 11.6233i −0.146786 + 0.490299i
\(563\) −27.7670 + 37.2976i −1.17024 + 1.57191i −0.424875 + 0.905252i \(0.639682\pi\)
−0.745366 + 0.666655i \(0.767725\pi\)
\(564\) 0.100548 7.29837i 0.00423382 0.307317i
\(565\) −18.3474 + 9.21440i −0.771880 + 0.387653i
\(566\) −14.1852 −0.596250
\(567\) 17.4221 1.06847i 0.731661 0.0448717i
\(568\) 2.98496 0.125246
\(569\) 20.7775 10.4349i 0.871038 0.437452i 0.0436265 0.999048i \(-0.486109\pi\)
0.827411 + 0.561596i \(0.189813\pi\)
\(570\) 4.47062 + 2.66389i 0.187253 + 0.111578i
\(571\) −9.27277 + 12.4555i −0.388053 + 0.521246i −0.952629 0.304135i \(-0.901633\pi\)
0.564575 + 0.825381i \(0.309040\pi\)
\(572\) 1.26442 4.22344i 0.0528679 0.176591i
\(573\) 4.43497 + 9.14265i 0.185273 + 0.381940i
\(574\) 6.00548 13.9223i 0.250664 0.581104i
\(575\) −1.92197 + 10.9000i −0.0801516 + 0.454562i
\(576\) −2.35038 + 1.86432i −0.0979327 + 0.0776801i
\(577\) 5.56862 + 31.5812i 0.231825 + 1.31474i 0.849199 + 0.528074i \(0.177086\pi\)
−0.617374 + 0.786670i \(0.711803\pi\)
\(578\) 37.7905 + 8.95651i 1.57188 + 0.372542i
\(579\) 18.9689 7.87425i 0.788319 0.327243i
\(580\) −5.37167 + 3.53300i −0.223046 + 0.146700i
\(581\) 0.409547 + 7.03166i 0.0169909 + 0.291722i
\(582\) −13.2942 4.18043i −0.551064 0.173284i
\(583\) 6.71162 + 22.4184i 0.277967 + 0.928474i
\(584\) −9.76177 3.55299i −0.403945 0.147024i
\(585\) −7.80281 2.07791i −0.322606 0.0859109i
\(586\) −18.8680 + 6.86739i −0.779429 + 0.283689i
\(587\) −20.4031 27.4061i −0.842127 1.13117i −0.989846 0.142143i \(-0.954601\pi\)
0.147719 0.989029i \(-0.452807\pi\)
\(588\) 4.54518 3.28742i 0.187440 0.135571i
\(589\) 11.2898 2.67574i 0.465189 0.110252i
\(590\) 3.62015 + 8.39245i 0.149039 + 0.345512i
\(591\) 5.09995 + 0.971881i 0.209784 + 0.0399778i
\(592\) −5.13494 3.37730i −0.211045 0.138806i
\(593\) 5.78538 10.0206i 0.237577 0.411496i −0.722441 0.691432i \(-0.756980\pi\)
0.960019 + 0.279936i \(0.0903134\pi\)
\(594\) 2.14238 + 11.0572i 0.0879029 + 0.453682i
\(595\) 9.58901 + 16.6087i 0.393111 + 0.680889i
\(596\) −0.0767819 + 1.31829i −0.00314511 + 0.0539994i
\(597\) 12.3754 32.5967i 0.506490 1.33410i
\(598\) −6.88250 0.804448i −0.281446 0.0328963i
\(599\) −15.6147 16.5506i −0.638000 0.676241i 0.325008 0.945711i \(-0.394633\pi\)
−0.963009 + 0.269470i \(0.913151\pi\)
\(600\) 1.37300 5.45702i 0.0560525 0.222782i
\(601\) 4.24750 0.496462i 0.173259 0.0202511i −0.0290209 0.999579i \(-0.509239\pi\)
0.202280 + 0.979328i \(0.435165\pi\)
\(602\) −10.3401 8.67635i −0.421430 0.353622i
\(603\) 30.0851 + 16.1621i 1.22516 + 0.658172i
\(604\) −1.32272 + 1.10990i −0.0538208 + 0.0451610i
\(605\) 5.72281 6.06583i 0.232665 0.246611i
\(606\) 32.2086 1.43106i 1.30839 0.0581329i
\(607\) 9.54035 + 4.79135i 0.387231 + 0.194475i 0.631754 0.775169i \(-0.282335\pi\)
−0.244523 + 0.969643i \(0.578631\pi\)
\(608\) −2.02898 1.01899i −0.0822859 0.0413255i
\(609\) −16.3045 + 0.724426i −0.660693 + 0.0293552i
\(610\) 8.18136 8.67174i 0.331254 0.351108i
\(611\) −6.56599 + 5.50952i −0.265632 + 0.222891i
\(612\) 0.686443 + 22.4068i 0.0277478 + 0.905741i
\(613\) 7.81287 + 6.55577i 0.315559 + 0.264785i 0.786785 0.617227i \(-0.211744\pi\)
−0.471226 + 0.882012i \(0.656188\pi\)
\(614\) −25.3728 + 2.96566i −1.02396 + 0.119684i
\(615\) 4.37225 17.3776i 0.176306 0.700733i
\(616\) −2.88481 3.05772i −0.116232 0.123199i
\(617\) −33.5712 3.92391i −1.35153 0.157971i −0.590682 0.806905i \(-0.701141\pi\)
−0.760845 + 0.648934i \(0.775215\pi\)
\(618\) −11.1176 + 29.2837i −0.447215 + 1.17796i
\(619\) 1.53303 26.3211i 0.0616177 1.05793i −0.815839 0.578279i \(-0.803725\pi\)
0.877457 0.479656i \(-0.159238\pi\)
\(620\) 3.38122 + 5.85645i 0.135793 + 0.235201i
\(621\) 16.5305 6.33403i 0.663347 0.254176i
\(622\) 5.15402 8.92702i 0.206657 0.357941i
\(623\) 13.3370 + 8.77186i 0.534334 + 0.351437i
\(624\) 3.46063 + 0.659480i 0.138536 + 0.0264003i
\(625\) 0.712447 + 1.65164i 0.0284979 + 0.0660655i
\(626\) −11.2681 + 2.67060i −0.450365 + 0.106739i
\(627\) −6.90678 + 4.99552i −0.275830 + 0.199502i
\(628\) 6.56463 + 8.81782i 0.261957 + 0.351869i
\(629\) −43.1562 + 15.7076i −1.72075 + 0.626302i
\(630\) −5.43600 + 5.45273i −0.216575 + 0.217242i
\(631\) −16.7461 6.09507i −0.666650 0.242641i −0.0135452 0.999908i \(-0.504312\pi\)
−0.653105 + 0.757267i \(0.726534\pi\)
\(632\) −2.94130 9.82462i −0.116999 0.390802i
\(633\) −23.7254 7.46054i −0.942999 0.296530i
\(634\) 1.36216 + 23.3875i 0.0540984 + 0.928834i
\(635\) −19.4507 + 12.7929i −0.771878 + 0.507672i
\(636\) −17.2709 + 7.16940i −0.684836 + 0.284285i
\(637\) −6.40961 1.51911i −0.253958 0.0601892i
\(638\) −1.82868 10.3709i −0.0723981 0.410590i
\(639\) 8.32726 + 3.29340i 0.329421 + 0.130285i
\(640\) 0.229793 1.30322i 0.00908338 0.0515144i
\(641\) 8.32976 19.3106i 0.329006 0.762721i −0.670772 0.741663i \(-0.734037\pi\)
0.999778 0.0210581i \(-0.00670349\pi\)
\(642\) −3.08933 6.36862i −0.121926 0.251350i
\(643\) −0.298435 + 0.996842i −0.0117691 + 0.0393116i −0.963672 0.267087i \(-0.913939\pi\)
0.951903 + 0.306399i \(0.0991241\pi\)
\(644\) −3.94563 + 5.29990i −0.155480 + 0.208845i
\(645\) −13.7039 8.16571i −0.539591 0.321524i
\(646\) −15.1614 + 7.61434i −0.596517 + 0.299582i
\(647\) −3.98241 −0.156565 −0.0782823 0.996931i \(-0.524944\pi\)
−0.0782823 + 0.996931i \(0.524944\pi\)
\(648\) −8.61393 + 2.60772i −0.338387 + 0.102441i
\(649\) −14.9707 −0.587651
\(650\) −5.90504 + 2.96562i −0.231615 + 0.116321i
\(651\) −0.236470 + 17.1645i −0.00926800 + 0.672728i
\(652\) −11.2617 + 15.1271i −0.441043 + 0.592424i
\(653\) −4.59762 + 15.3571i −0.179919 + 0.600970i 0.819685 + 0.572815i \(0.194149\pi\)
−0.999604 + 0.0281555i \(0.991037\pi\)
\(654\) −21.2912 1.53463i −0.832553 0.0600087i
\(655\) 2.52369 5.85058i 0.0986089 0.228601i
\(656\) −1.35757 + 7.69914i −0.0530040 + 0.300601i
\(657\) −23.3127 20.6824i −0.909515 0.806898i
\(658\) 1.41922 + 8.04881i 0.0553271 + 0.313775i
\(659\) −5.19134 1.23037i −0.202226 0.0479284i 0.128254 0.991741i \(-0.459063\pi\)
−0.330480 + 0.943813i \(0.607211\pi\)
\(660\) −3.94381 3.02138i −0.153513 0.117607i
\(661\) 5.47643 3.60191i 0.213009 0.140098i −0.438522 0.898721i \(-0.644498\pi\)
0.651530 + 0.758623i \(0.274127\pi\)
\(662\) −0.0140016 0.240398i −0.000544188 0.00934334i
\(663\) 19.3949 17.7996i 0.753236 0.691279i
\(664\) −1.04160 3.47920i −0.0404221 0.135019i
\(665\) −5.47577 1.99302i −0.212341 0.0772859i
\(666\) −10.5989 15.0873i −0.410698 0.584623i
\(667\) −15.5539 + 5.66116i −0.602250 + 0.219201i
\(668\) 6.07404 + 8.15885i 0.235012 + 0.315675i
\(669\) 17.6950 + 7.92375i 0.684129 + 0.306350i
\(670\) −14.6585 + 3.47413i −0.566307 + 0.134217i
\(671\) 7.73445 + 17.9305i 0.298585 + 0.692198i
\(672\) 2.19449 2.54330i 0.0846543 0.0981100i
\(673\) −15.1546 9.96731i −0.584165 0.384212i 0.222753 0.974875i \(-0.428496\pi\)
−0.806918 + 0.590663i \(0.798866\pi\)
\(674\) −4.04274 + 7.00223i −0.155720 + 0.269716i
\(675\) 9.85122 13.7088i 0.379174 0.527652i
\(676\) 4.43152 + 7.67563i 0.170443 + 0.295216i
\(677\) 1.04089 17.8714i 0.0400046 0.686853i −0.917376 0.398023i \(-0.869697\pi\)
0.957380 0.288830i \(-0.0932664\pi\)
\(678\) 26.5260 4.30137i 1.01873 0.165193i
\(679\) 15.4991 + 1.81158i 0.594800 + 0.0695222i
\(680\) −6.78589 7.19262i −0.260227 0.275824i
\(681\) −19.7887 19.1917i −0.758304 0.735429i
\(682\) −11.0016 + 1.28590i −0.421273 + 0.0492397i
\(683\) 19.3775 + 16.2596i 0.741459 + 0.622158i 0.933229 0.359282i \(-0.116978\pi\)
−0.191770 + 0.981440i \(0.561423\pi\)
\(684\) −4.53604 5.08135i −0.173440 0.194290i
\(685\) −0.630217 + 0.528815i −0.0240793 + 0.0202050i
\(686\) −13.6267 + 14.4435i −0.520272 + 0.551456i
\(687\) 10.0313 + 15.7193i 0.382717 + 0.599729i
\(688\) 6.21949 + 3.12354i 0.237116 + 0.119084i
\(689\) 19.6235 + 9.85530i 0.747596 + 0.375457i
\(690\) −3.60035 + 6.92920i −0.137063 + 0.263790i
\(691\) −3.92984 + 4.16539i −0.149498 + 0.158459i −0.797795 0.602929i \(-0.794000\pi\)
0.648297 + 0.761388i \(0.275482\pi\)
\(692\) −14.3265 + 12.0213i −0.544611 + 0.456983i
\(693\) −4.67419 11.7131i −0.177558 0.444945i
\(694\) −7.19360 6.03614i −0.273065 0.229129i
\(695\) −3.88176 + 0.453713i −0.147244 + 0.0172103i
\(696\) 8.09411 2.30221i 0.306807 0.0872651i
\(697\) 40.0894 + 42.4923i 1.51850 + 1.60951i
\(698\) −3.55014 0.414952i −0.134375 0.0157062i
\(699\) 18.9141 + 23.1822i 0.715398 + 0.876830i
\(700\) −0.366361 + 6.29017i −0.0138471 + 0.237746i
\(701\) 17.6846 + 30.6306i 0.667937 + 1.15690i 0.978480 + 0.206342i \(0.0661559\pi\)
−0.310543 + 0.950559i \(0.600511\pi\)
\(702\) 8.92663 + 5.65800i 0.336914 + 0.213547i
\(703\) 6.97724 12.0849i 0.263151 0.455792i
\(704\) 1.81095 + 1.19108i 0.0682526 + 0.0448905i
\(705\) 3.17824 + 9.12118i 0.119700 + 0.343524i
\(706\) 1.57869 + 3.65982i 0.0594148 + 0.137739i
\(707\) −35.1275 + 8.32536i −1.32110 + 0.313108i
\(708\) −1.22500 11.9000i −0.0460382 0.447231i
\(709\) −3.93861 5.29048i −0.147918 0.198688i 0.721989 0.691905i \(-0.243228\pi\)
−0.869906 + 0.493217i \(0.835821\pi\)
\(710\) −3.71186 + 1.35101i −0.139304 + 0.0507024i
\(711\) 2.63435 30.6534i 0.0987959 1.14959i
\(712\) −7.73444 2.81510i −0.289860 0.105501i
\(713\) 4.99313 + 16.6782i 0.186994 + 0.624604i
\(714\) −5.45176 24.5022i −0.204027 0.916971i
\(715\) 0.339222 + 5.82422i 0.0126862 + 0.217813i
\(716\) 14.3578 9.44328i 0.536577 0.352912i
\(717\) 5.48434 41.9066i 0.204817 1.56503i
\(718\) 21.6178 + 5.12352i 0.806771 + 0.191208i
\(719\) −8.53090 48.3811i −0.318149 1.80431i −0.553993 0.832521i \(-0.686897\pi\)
0.235845 0.971791i \(-0.424214\pi\)
\(720\) 2.07895 3.38212i 0.0774780 0.126044i
\(721\) 6.09044 34.5406i 0.226820 1.28636i
\(722\) −5.48369 + 12.7126i −0.204082 + 0.473115i
\(723\) 27.0820 39.9660i 1.00719 1.48635i
\(724\) −6.51696 + 21.7682i −0.242201 + 0.809007i
\(725\) −9.42572 + 12.6609i −0.350063 + 0.470216i
\(726\) −9.52699 + 5.32679i −0.353580 + 0.197696i
\(727\) −32.4735 + 16.3088i −1.20438 + 0.604860i −0.933785 0.357835i \(-0.883515\pi\)
−0.270590 + 0.962695i \(0.587219\pi\)
\(728\) −3.94470 −0.146200
\(729\) −26.9078 2.22915i −0.996586 0.0825612i
\(730\) 13.7471 0.508802
\(731\) 46.4747 23.3405i 1.71893 0.863279i
\(732\) −13.6198 + 7.61521i −0.503404 + 0.281466i
\(733\) −5.43505 + 7.30054i −0.200748 + 0.269652i −0.891085 0.453837i \(-0.850055\pi\)
0.690337 + 0.723488i \(0.257462\pi\)
\(734\) −3.61798 + 12.0849i −0.133542 + 0.446062i
\(735\) −4.16412 + 6.14515i −0.153596 + 0.226667i
\(736\) 1.34938 3.12822i 0.0497389 0.115308i
\(737\) 4.28474 24.3000i 0.157831 0.895102i
\(738\) −12.2820 + 19.9808i −0.452105 + 0.735502i
\(739\) −1.83509 10.4073i −0.0675048 0.382839i −0.999778 0.0210830i \(-0.993289\pi\)
0.932273 0.361756i \(-0.117823\pi\)
\(740\) 7.91399 + 1.87565i 0.290924 + 0.0689503i
\(741\) −1.03794 + 7.93106i −0.0381298 + 0.291355i
\(742\) 17.4941 11.5061i 0.642229 0.422401i
\(743\) 1.62018 + 27.8173i 0.0594385 + 1.02052i 0.887772 + 0.460284i \(0.152252\pi\)
−0.828333 + 0.560235i \(0.810711\pi\)
\(744\) −1.92237 8.63982i −0.0704775 0.316751i
\(745\) −0.501186 1.67408i −0.0183620 0.0613335i
\(746\) −3.79837 1.38249i −0.139068 0.0506167i
\(747\) 0.932906 10.8553i 0.0341332 0.397175i
\(748\) 15.2200 5.53961i 0.556497 0.202548i
\(749\) 4.73300 + 6.35752i 0.172940 + 0.232299i
\(750\) 1.93605 + 18.8075i 0.0706947 + 0.686751i
\(751\) 2.57908 0.611252i 0.0941118 0.0223049i −0.183290 0.983059i \(-0.558675\pi\)
0.277402 + 0.960754i \(0.410527\pi\)
\(752\) −1.66913 3.86947i −0.0608667 0.141105i
\(753\) 8.26259 + 23.7127i 0.301105 + 0.864137i
\(754\) −8.25623 5.43021i −0.300674 0.197757i
\(755\) 1.14249 1.97885i 0.0415794 0.0720177i
\(756\) 8.92817 4.67390i 0.324714 0.169988i
\(757\) −7.00766 12.1376i −0.254698 0.441149i 0.710116 0.704085i \(-0.248643\pi\)
−0.964813 + 0.262936i \(0.915309\pi\)
\(758\) 2.12083 36.4132i 0.0770319 1.32259i
\(759\) −8.08565 9.91021i −0.293491 0.359718i
\(760\) 2.98428 + 0.348812i 0.108251 + 0.0126527i
\(761\) 12.0637 + 12.7867i 0.437308 + 0.463519i 0.908117 0.418716i \(-0.137520\pi\)
−0.470810 + 0.882235i \(0.656038\pi\)
\(762\) 29.3087 8.33628i 1.06174 0.301991i
\(763\) 23.7407 2.77489i 0.859470 0.100458i
\(764\) 4.49421 + 3.77109i 0.162595 + 0.136433i
\(765\) −10.9950 27.5526i −0.397526 0.996168i
\(766\) −2.97580 + 2.49699i −0.107520 + 0.0902200i
\(767\) −9.64037 + 10.2182i −0.348094 + 0.368958i