Properties

Label 162.2.g.b.25.2
Level $162$
Weight $2$
Character 162.25
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 25.2
Character \(\chi\) \(=\) 162.25
Dual form 162.2.g.b.13.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.893633 - 0.448799i) q^{2} +(-0.977769 + 1.42967i) q^{3} +(0.597159 - 0.802123i) q^{4} +(-1.15296 + 3.85116i) q^{5} +(-0.232129 + 1.71643i) q^{6} +(-0.663579 + 1.53835i) q^{7} +(0.173648 - 0.984808i) q^{8} +(-1.08794 - 2.79578i) q^{9} +O(q^{10})\) \(q+(0.893633 - 0.448799i) q^{2} +(-0.977769 + 1.42967i) q^{3} +(0.597159 - 0.802123i) q^{4} +(-1.15296 + 3.85116i) q^{5} +(-0.232129 + 1.71643i) q^{6} +(-0.663579 + 1.53835i) q^{7} +(0.173648 - 0.984808i) q^{8} +(-1.08794 - 2.79578i) q^{9} +(0.698073 + 3.95897i) q^{10} +(0.0131573 + 0.00311835i) q^{11} +(0.562892 + 1.63803i) q^{12} +(3.84080 - 2.52614i) q^{13} +(0.0974140 + 1.67253i) q^{14} +(-4.37857 - 5.41390i) q^{15} +(-0.286803 - 0.957990i) q^{16} +(4.83704 + 1.76054i) q^{17} +(-2.22696 - 2.01014i) q^{18} +(2.66092 - 0.968497i) q^{19} +(2.40060 + 3.22457i) q^{20} +(-1.55051 - 2.45285i) q^{21} +(0.0131573 - 0.00311835i) q^{22} +(-0.253001 - 0.586523i) q^{23} +(1.23817 + 1.21117i) q^{24} +(-9.32465 - 6.13292i) q^{25} +(2.29854 - 3.98119i) q^{26} +(5.06081 + 1.17823i) q^{27} +(0.837684 + 1.45091i) q^{28} +(-0.262835 + 4.51270i) q^{29} +(-6.34259 - 2.87294i) q^{30} +(-9.48738 - 1.10892i) q^{31} +(-0.686242 - 0.727374i) q^{32} +(-0.0173231 + 0.0157617i) q^{33} +(5.11267 - 0.597585i) q^{34} +(-5.15935 - 4.32920i) q^{35} +(-2.89223 - 0.796865i) q^{36} +(6.03321 - 5.06246i) q^{37} +(1.94323 - 2.05970i) q^{38} +(-0.143865 + 7.96107i) q^{39} +(3.59244 + 1.80419i) q^{40} +(6.30010 + 3.16403i) q^{41} +(-2.48643 - 1.49608i) q^{42} +(4.34864 - 4.60929i) q^{43} +(0.0103583 - 0.00869166i) q^{44} +(12.0213 - 0.966392i) q^{45} +(-0.489321 - 0.410589i) q^{46} +(-11.3730 + 1.32931i) q^{47} +(1.65004 + 0.526657i) q^{48} +(2.87751 + 3.04998i) q^{49} +(-11.0853 - 1.29568i) q^{50} +(-7.24650 + 5.19399i) q^{51} +(0.267296 - 4.58930i) q^{52} +(-2.96943 - 5.14321i) q^{53} +(5.05129 - 1.21838i) q^{54} +(-0.0271791 + 0.0470757i) q^{55} +(1.39975 + 0.920630i) q^{56} +(-1.21713 + 4.75122i) q^{57} +(1.79042 + 4.15065i) q^{58} +(-2.42002 + 0.573555i) q^{59} +(-6.95732 + 0.279198i) q^{60} +(1.39556 + 1.87456i) q^{61} +(-8.97591 + 3.26697i) q^{62} +(5.02282 + 0.181594i) q^{63} +(-0.939693 - 0.342020i) q^{64} +(5.30025 + 17.7041i) q^{65} +(-0.00840662 + 0.0218597i) q^{66} +(0.232730 + 3.99581i) q^{67} +(4.30065 - 2.82858i) q^{68} +(1.08591 + 0.211774i) q^{69} +(-6.55350 - 1.55321i) q^{70} +(-1.01165 - 5.73737i) q^{71} +(-2.94223 + 0.585927i) q^{72} +(1.45371 - 8.24441i) q^{73} +(3.11944 - 7.23168i) q^{74} +(17.8854 - 7.33464i) q^{75} +(0.812139 - 2.71273i) q^{76} +(-0.0135280 + 0.0181713i) q^{77} +(3.44436 + 7.17884i) q^{78} +(-4.39144 + 2.20546i) q^{79} +4.02004 q^{80} +(-6.63278 + 6.08327i) q^{81} +7.04998 q^{82} +(13.5542 - 6.80719i) q^{83} +(-2.89339 - 0.221040i) q^{84} +(-12.3570 + 16.5984i) q^{85} +(1.81744 - 6.07068i) q^{86} +(-6.19470 - 4.78814i) q^{87} +(0.00535572 - 0.0124160i) q^{88} +(1.34899 - 7.65049i) q^{89} +(10.3089 - 6.25877i) q^{90} +(1.33740 + 7.58479i) q^{91} +(-0.621545 - 0.147309i) q^{92} +(10.8619 - 12.4796i) q^{93} +(-9.56667 + 6.29210i) q^{94} +(0.661893 + 11.3643i) q^{95} +(1.71089 - 0.269899i) q^{96} +(0.923670 + 3.08527i) q^{97} +(3.94027 + 1.43414i) q^{98} +(-0.00559615 - 0.0401776i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.893633 0.448799i 0.631894 0.317349i
\(3\) −0.977769 + 1.42967i −0.564515 + 0.825423i
\(4\) 0.597159 0.802123i 0.298579 0.401062i
\(5\) −1.15296 + 3.85116i −0.515620 + 1.72229i 0.161920 + 0.986804i \(0.448231\pi\)
−0.677540 + 0.735486i \(0.736954\pi\)
\(6\) −0.232129 + 1.71643i −0.0947664 + 0.700728i
\(7\) −0.663579 + 1.53835i −0.250809 + 0.581441i −0.996382 0.0849824i \(-0.972917\pi\)
0.745573 + 0.666424i \(0.232176\pi\)
\(8\) 0.173648 0.984808i 0.0613939 0.348182i
\(9\) −1.08794 2.79578i −0.362646 0.931927i
\(10\) 0.698073 + 3.95897i 0.220750 + 1.25194i
\(11\) 0.0131573 + 0.00311835i 0.00396709 + 0.000940217i 0.232599 0.972573i \(-0.425277\pi\)
−0.228632 + 0.973513i \(0.573425\pi\)
\(12\) 0.562892 + 1.63803i 0.162493 + 0.472859i
\(13\) 3.84080 2.52614i 1.06525 0.700624i 0.109254 0.994014i \(-0.465154\pi\)
0.955993 + 0.293390i \(0.0947834\pi\)
\(14\) 0.0974140 + 1.67253i 0.0260350 + 0.447003i
\(15\) −4.37857 5.41390i −1.13054 1.39786i
\(16\) −0.286803 0.957990i −0.0717008 0.239497i
\(17\) 4.83704 + 1.76054i 1.17315 + 0.426993i 0.853779 0.520635i \(-0.174305\pi\)
0.319375 + 0.947628i \(0.396527\pi\)
\(18\) −2.22696 2.01014i −0.524900 0.473794i
\(19\) 2.66092 0.968497i 0.610457 0.222188i −0.0182459 0.999834i \(-0.505808\pi\)
0.628703 + 0.777645i \(0.283586\pi\)
\(20\) 2.40060 + 3.22457i 0.536791 + 0.721035i
\(21\) −1.55051 2.45285i −0.338349 0.535256i
\(22\) 0.0131573 0.00311835i 0.00280516 0.000664834i
\(23\) −0.253001 0.586523i −0.0527544 0.122298i 0.889801 0.456350i \(-0.150843\pi\)
−0.942555 + 0.334051i \(0.891584\pi\)
\(24\) 1.23817 + 1.21117i 0.252740 + 0.247230i
\(25\) −9.32465 6.13292i −1.86493 1.22658i
\(26\) 2.29854 3.98119i 0.450781 0.780775i
\(27\) 5.06081 + 1.17823i 0.973953 + 0.226751i
\(28\) 0.837684 + 1.45091i 0.158307 + 0.274196i
\(29\) −0.262835 + 4.51270i −0.0488072 + 0.837987i 0.881722 + 0.471769i \(0.156384\pi\)
−0.930529 + 0.366218i \(0.880653\pi\)
\(30\) −6.34259 2.87294i −1.15799 0.524524i
\(31\) −9.48738 1.10892i −1.70398 0.199167i −0.792321 0.610105i \(-0.791127\pi\)
−0.911663 + 0.410938i \(0.865201\pi\)
\(32\) −0.686242 0.727374i −0.121312 0.128583i
\(33\) −0.0173231 + 0.0157617i −0.00301556 + 0.00274376i
\(34\) 5.11267 0.597585i 0.876815 0.102485i
\(35\) −5.15935 4.32920i −0.872088 0.731769i
\(36\) −2.89223 0.796865i −0.482039 0.132811i
\(37\) 6.03321 5.06246i 0.991853 0.832264i 0.00601844 0.999982i \(-0.498084\pi\)
0.985835 + 0.167718i \(0.0536398\pi\)
\(38\) 1.94323 2.05970i 0.315233 0.334127i
\(39\) −0.143865 + 7.96107i −0.0230368 + 1.27479i
\(40\) 3.59244 + 1.80419i 0.568015 + 0.285268i
\(41\) 6.30010 + 3.16403i 0.983910 + 0.494138i 0.866625 0.498960i \(-0.166285\pi\)
0.117285 + 0.993098i \(0.462581\pi\)
\(42\) −2.48643 1.49608i −0.383664 0.230850i
\(43\) 4.34864 4.60929i 0.663162 0.702911i −0.305248 0.952273i \(-0.598739\pi\)
0.968410 + 0.249362i \(0.0802209\pi\)
\(44\) 0.0103583 0.00869166i 0.00156158 0.00131032i
\(45\) 12.0213 0.966392i 1.79204 0.144061i
\(46\) −0.489321 0.410589i −0.0721465 0.0605381i
\(47\) −11.3730 + 1.32931i −1.65892 + 0.193900i −0.893321 0.449419i \(-0.851631\pi\)
−0.765598 + 0.643319i \(0.777557\pi\)
\(48\) 1.65004 + 0.526657i 0.238163 + 0.0760164i
\(49\) 2.87751 + 3.04998i 0.411073 + 0.435712i
\(50\) −11.0853 1.29568i −1.56769 0.183237i
\(51\) −7.24650 + 5.19399i −1.01471 + 0.727305i
\(52\) 0.267296 4.58930i 0.0370673 0.636421i
\(53\) −2.96943 5.14321i −0.407883 0.706474i 0.586769 0.809754i \(-0.300399\pi\)
−0.994652 + 0.103280i \(0.967066\pi\)
\(54\) 5.05129 1.21838i 0.687394 0.165801i
\(55\) −0.0271791 + 0.0470757i −0.00366484 + 0.00634768i
\(56\) 1.39975 + 0.920630i 0.187049 + 0.123024i
\(57\) −1.21713 + 4.75122i −0.161213 + 0.629314i
\(58\) 1.79042 + 4.15065i 0.235093 + 0.545007i
\(59\) −2.42002 + 0.573555i −0.315060 + 0.0746705i −0.385103 0.922873i \(-0.625834\pi\)
0.0700438 + 0.997544i \(0.477686\pi\)
\(60\) −6.95732 + 0.279198i −0.898186 + 0.0360443i
\(61\) 1.39556 + 1.87456i 0.178683 + 0.240013i 0.882437 0.470431i \(-0.155902\pi\)
−0.703754 + 0.710444i \(0.748494\pi\)
\(62\) −8.97591 + 3.26697i −1.13994 + 0.414905i
\(63\) 5.02282 + 0.181594i 0.632816 + 0.0228787i
\(64\) −0.939693 0.342020i −0.117462 0.0427525i
\(65\) 5.30025 + 17.7041i 0.657415 + 2.19592i
\(66\) −0.00840662 + 0.0218597i −0.00103478 + 0.00269075i
\(67\) 0.232730 + 3.99581i 0.0284324 + 0.488166i 0.982226 + 0.187703i \(0.0601042\pi\)
−0.953793 + 0.300463i \(0.902859\pi\)
\(68\) 4.30065 2.82858i 0.521530 0.343016i
\(69\) 1.08591 + 0.211774i 0.130729 + 0.0254946i
\(70\) −6.55350 1.55321i −0.783293 0.185644i
\(71\) −1.01165 5.73737i −0.120061 0.680901i −0.984119 0.177509i \(-0.943196\pi\)
0.864058 0.503392i \(-0.167915\pi\)
\(72\) −2.94223 + 0.585927i −0.346745 + 0.0690521i
\(73\) 1.45371 8.24441i 0.170144 0.964935i −0.773457 0.633849i \(-0.781474\pi\)
0.943601 0.331086i \(-0.107415\pi\)
\(74\) 3.11944 7.23168i 0.362628 0.840666i
\(75\) 17.8854 7.33464i 2.06523 0.846931i
\(76\) 0.812139 2.71273i 0.0931587 0.311172i
\(77\) −0.0135280 + 0.0181713i −0.00154166 + 0.00207081i
\(78\) 3.44436 + 7.17884i 0.389997 + 0.812844i
\(79\) −4.39144 + 2.20546i −0.494076 + 0.248134i −0.678348 0.734741i \(-0.737304\pi\)
0.184272 + 0.982875i \(0.441007\pi\)
\(80\) 4.02004 0.449454
\(81\) −6.63278 + 6.08327i −0.736976 + 0.675919i
\(82\) 7.04998 0.778541
\(83\) 13.5542 6.80719i 1.48777 0.747186i 0.495191 0.868784i \(-0.335098\pi\)
0.992579 + 0.121598i \(0.0388018\pi\)
\(84\) −2.89339 0.221040i −0.315695 0.0241174i
\(85\) −12.3570 + 16.5984i −1.34031 + 1.80035i
\(86\) 1.81744 6.07068i 0.195980 0.654619i
\(87\) −6.19470 4.78814i −0.664141 0.513343i
\(88\) 0.00535572 0.0124160i 0.000570922 0.00132355i
\(89\) 1.34899 7.65049i 0.142992 0.810950i −0.825965 0.563722i \(-0.809369\pi\)
0.968957 0.247229i \(-0.0795199\pi\)
\(90\) 10.3089 6.25877i 1.08666 0.659732i
\(91\) 1.33740 + 7.58479i 0.140198 + 0.795102i
\(92\) −0.621545 0.147309i −0.0648006 0.0153580i
\(93\) 10.8619 12.4796i 1.12632 1.29407i
\(94\) −9.56667 + 6.29210i −0.986726 + 0.648980i
\(95\) 0.661893 + 11.3643i 0.0679088 + 1.16595i
\(96\) 1.71089 0.269899i 0.174617 0.0275464i
\(97\) 0.923670 + 3.08527i 0.0937845 + 0.313262i 0.991990 0.126313i \(-0.0403143\pi\)
−0.898206 + 0.439575i \(0.855129\pi\)
\(98\) 3.94027 + 1.43414i 0.398027 + 0.144870i
\(99\) −0.00559615 0.0401776i −0.000562434 0.00403800i
\(100\) −10.4877 + 3.81719i −1.04877 + 0.381719i
\(101\) 2.80596 + 3.76905i 0.279203 + 0.375035i 0.919498 0.393094i \(-0.128595\pi\)
−0.640295 + 0.768129i \(0.721188\pi\)
\(102\) −4.14465 + 7.89375i −0.410382 + 0.781598i
\(103\) −0.976984 + 0.231550i −0.0962651 + 0.0228153i −0.278466 0.960446i \(-0.589826\pi\)
0.182201 + 0.983261i \(0.441678\pi\)
\(104\) −1.82081 4.22111i −0.178545 0.413914i
\(105\) 11.2340 3.14322i 1.09633 0.306747i
\(106\) −4.96185 3.26346i −0.481937 0.316975i
\(107\) −2.95229 + 5.11352i −0.285409 + 0.494343i −0.972708 0.232032i \(-0.925463\pi\)
0.687299 + 0.726374i \(0.258796\pi\)
\(108\) 3.96719 3.35580i 0.381743 0.322912i
\(109\) 4.08609 + 7.07731i 0.391376 + 0.677883i 0.992631 0.121174i \(-0.0386659\pi\)
−0.601255 + 0.799057i \(0.705333\pi\)
\(110\) −0.00316065 + 0.0542663i −0.000301357 + 0.00517409i
\(111\) 1.33859 + 13.5754i 0.127054 + 1.28852i
\(112\) 1.66404 + 0.194498i 0.157237 + 0.0183784i
\(113\) −14.2211 15.0735i −1.33781 1.41800i −0.831366 0.555725i \(-0.812441\pi\)
−0.506445 0.862272i \(-0.669041\pi\)
\(114\) 1.04467 + 4.79209i 0.0978427 + 0.448820i
\(115\) 2.55049 0.298110i 0.237835 0.0277989i
\(116\) 3.46278 + 2.90562i 0.321511 + 0.269780i
\(117\) −11.2411 7.98977i −1.03924 0.738654i
\(118\) −1.90520 + 1.59865i −0.175388 + 0.147168i
\(119\) −5.91808 + 6.27280i −0.542510 + 0.575027i
\(120\) −6.09198 + 3.37194i −0.556119 + 0.307814i
\(121\) −9.82980 4.93671i −0.893618 0.448792i
\(122\) 2.08842 + 1.04884i 0.189077 + 0.0949579i
\(123\) −10.6836 + 5.91340i −0.963305 + 0.533193i
\(124\) −6.55496 + 6.94785i −0.588653 + 0.623935i
\(125\) 18.9722 15.9195i 1.69692 1.42389i
\(126\) 4.57006 2.09196i 0.407133 0.186367i
\(127\) 6.11180 + 5.12841i 0.542334 + 0.455072i 0.872335 0.488908i \(-0.162605\pi\)
−0.330001 + 0.943981i \(0.607049\pi\)
\(128\) −0.993238 + 0.116093i −0.0877907 + 0.0102613i
\(129\) 2.33782 + 10.7240i 0.205834 + 0.944193i
\(130\) 12.6820 + 13.4422i 1.11229 + 1.17896i
\(131\) −8.15164 0.952790i −0.712212 0.0832456i −0.247731 0.968829i \(-0.579685\pi\)
−0.464481 + 0.885583i \(0.653759\pi\)
\(132\) 0.00229821 + 0.0233075i 0.000200033 + 0.00202865i
\(133\) −0.275847 + 4.73610i −0.0239189 + 0.410672i
\(134\) 2.00129 + 3.46634i 0.172885 + 0.299446i
\(135\) −10.3725 + 18.1315i −0.892720 + 1.56051i
\(136\) 2.57374 4.45784i 0.220696 0.382257i
\(137\) −10.6949 7.03413i −0.913725 0.600967i 0.00321342 0.999995i \(-0.498977\pi\)
−0.916939 + 0.399028i \(0.869348\pi\)
\(138\) 1.06545 0.298109i 0.0906973 0.0253767i
\(139\) −7.43815 17.2436i −0.630896 1.46258i −0.870727 0.491766i \(-0.836352\pi\)
0.239832 0.970814i \(-0.422908\pi\)
\(140\) −6.55350 + 1.55321i −0.553872 + 0.131270i
\(141\) 9.21966 17.5594i 0.776435 1.47877i
\(142\) −3.47898 4.67307i −0.291949 0.392156i
\(143\) 0.0584121 0.0212603i 0.00488467 0.00177787i
\(144\) −2.36631 + 1.84407i −0.197192 + 0.153673i
\(145\) −17.0761 6.21518i −1.41809 0.516143i
\(146\) −2.40100 8.01990i −0.198708 0.663731i
\(147\) −7.17402 + 1.13173i −0.591703 + 0.0933431i
\(148\) −0.457937 7.86247i −0.0376422 0.646291i
\(149\) −1.82353 + 1.19935i −0.149389 + 0.0982549i −0.622003 0.783015i \(-0.713681\pi\)
0.472614 + 0.881270i \(0.343311\pi\)
\(150\) 12.6912 14.5814i 1.03623 1.19057i
\(151\) 14.4265 + 3.41914i 1.17401 + 0.278245i 0.770930 0.636920i \(-0.219792\pi\)
0.403079 + 0.915165i \(0.367940\pi\)
\(152\) −0.491719 2.78867i −0.0398836 0.226191i
\(153\) −0.340316 15.4387i −0.0275129 1.24814i
\(154\) −0.00393383 + 0.0223099i −0.000316997 + 0.00179778i
\(155\) 15.2092 35.2589i 1.22163 2.83206i
\(156\) 6.29985 + 4.86942i 0.504392 + 0.389866i
\(157\) −2.31347 + 7.72751i −0.184635 + 0.616723i 0.814687 + 0.579901i \(0.196909\pi\)
−0.999322 + 0.0368220i \(0.988277\pi\)
\(158\) −2.93452 + 3.94175i −0.233458 + 0.313589i
\(159\) 10.2565 + 0.783545i 0.813395 + 0.0621392i
\(160\) 3.59244 1.80419i 0.284007 0.142634i
\(161\) 1.07016 0.0843407
\(162\) −3.19711 + 8.41300i −0.251188 + 0.660987i
\(163\) 17.6946 1.38595 0.692973 0.720964i \(-0.256300\pi\)
0.692973 + 0.720964i \(0.256300\pi\)
\(164\) 6.30010 3.16403i 0.491955 0.247069i
\(165\) −0.0407280 0.0848864i −0.00317067 0.00660840i
\(166\) 9.05744 12.1663i 0.702994 0.944285i
\(167\) 2.41890 8.07967i 0.187180 0.625224i −0.811958 0.583715i \(-0.801598\pi\)
0.999138 0.0415086i \(-0.0132164\pi\)
\(168\) −2.68483 + 1.10102i −0.207139 + 0.0849458i
\(169\) 3.22137 7.46796i 0.247797 0.574459i
\(170\) −3.59331 + 20.3787i −0.275594 + 1.56297i
\(171\) −5.60262 6.38569i −0.428443 0.488326i
\(172\) −1.10039 6.24063i −0.0839040 0.475843i
\(173\) −7.51741 1.78166i −0.571538 0.135457i −0.0653230 0.997864i \(-0.520808\pi\)
−0.506215 + 0.862407i \(0.668956\pi\)
\(174\) −7.68470 1.49866i −0.582575 0.113613i
\(175\) 15.6222 10.2749i 1.18093 0.776709i
\(176\) −0.000786224 0.0134989i −5.92639e−5 0.00101752i
\(177\) 1.54622 4.02064i 0.116221 0.302210i
\(178\) −2.22803 7.44215i −0.166998 0.557813i
\(179\) −16.7997 6.11459i −1.25567 0.457026i −0.373355 0.927689i \(-0.621793\pi\)
−0.882313 + 0.470663i \(0.844015\pi\)
\(180\) 6.40348 10.2197i 0.477287 0.761730i
\(181\) −12.8524 + 4.67788i −0.955309 + 0.347704i −0.772193 0.635388i \(-0.780840\pi\)
−0.183115 + 0.983091i \(0.558618\pi\)
\(182\) 4.59919 + 6.17779i 0.340915 + 0.457928i
\(183\) −4.04455 + 0.162308i −0.298982 + 0.0119982i
\(184\) −0.621545 + 0.147309i −0.0458209 + 0.0108598i
\(185\) 12.5403 + 29.0717i 0.921980 + 2.13739i
\(186\) 4.10567 16.0270i 0.301042 1.17515i
\(187\) 0.0581526 + 0.0382476i 0.00425254 + 0.00279694i
\(188\) −5.72520 + 9.91634i −0.417553 + 0.723223i
\(189\) −5.17078 + 7.00344i −0.376119 + 0.509425i
\(190\) 5.69176 + 9.85842i 0.412924 + 0.715205i
\(191\) −0.157227 + 2.69948i −0.0113765 + 0.195327i 0.987831 + 0.155530i \(0.0497084\pi\)
−0.999208 + 0.0397977i \(0.987329\pi\)
\(192\) 1.40778 1.00904i 0.101598 0.0728210i
\(193\) −9.73944 1.13838i −0.701060 0.0819422i −0.241907 0.970299i \(-0.577773\pi\)
−0.459153 + 0.888357i \(0.651847\pi\)
\(194\) 2.21009 + 2.34256i 0.158675 + 0.168186i
\(195\) −30.4935 9.73285i −2.18368 0.696984i
\(196\) 4.16479 0.486794i 0.297485 0.0347710i
\(197\) −1.84963 1.55203i −0.131781 0.110577i 0.574515 0.818494i \(-0.305191\pi\)
−0.706296 + 0.707917i \(0.749635\pi\)
\(198\) −0.0230326 0.0333925i −0.00163685 0.00237310i
\(199\) −10.4578 + 8.77512i −0.741332 + 0.622052i −0.933195 0.359370i \(-0.882992\pi\)
0.191863 + 0.981422i \(0.438547\pi\)
\(200\) −7.65896 + 8.11802i −0.541570 + 0.574031i
\(201\) −5.94027 3.57425i −0.418994 0.252108i
\(202\) 4.19904 + 2.10884i 0.295443 + 0.148377i
\(203\) −6.76769 3.39886i −0.474999 0.238553i
\(204\) −0.161089 + 8.91423i −0.0112785 + 0.624121i
\(205\) −19.4489 + 20.6147i −1.35837 + 1.43979i
\(206\) −0.769146 + 0.645390i −0.0535889 + 0.0449664i
\(207\) −1.36454 + 1.34544i −0.0948421 + 0.0935143i
\(208\) −3.52157 2.95494i −0.244177 0.204889i
\(209\) 0.0380308 0.00444516i 0.00263064 0.000307478i
\(210\) 8.62839 7.85070i 0.595416 0.541749i
\(211\) 4.10053 + 4.34631i 0.282292 + 0.299212i 0.852968 0.521963i \(-0.174800\pi\)
−0.570676 + 0.821175i \(0.693319\pi\)
\(212\) −5.89871 0.689460i −0.405125 0.0473523i
\(213\) 9.19174 + 4.16349i 0.629808 + 0.285277i
\(214\) −0.343321 + 5.89460i −0.0234690 + 0.402946i
\(215\) 12.7373 + 22.0616i 0.868677 + 1.50459i
\(216\) 2.03913 4.77932i 0.138745 0.325192i
\(217\) 8.00153 13.8591i 0.543179 0.940814i
\(218\) 6.82775 + 4.49068i 0.462434 + 0.304147i
\(219\) 10.3654 + 10.1395i 0.700430 + 0.685161i
\(220\) 0.0215302 + 0.0499127i 0.00145157 + 0.00336511i
\(221\) 23.0255 5.45714i 1.54886 0.367087i
\(222\) 7.28886 + 11.5307i 0.489196 + 0.773890i
\(223\) 7.99100 + 10.7338i 0.535117 + 0.718787i 0.984662 0.174470i \(-0.0558213\pi\)
−0.449545 + 0.893258i \(0.648414\pi\)
\(224\) 1.57433 0.573009i 0.105189 0.0382858i
\(225\) −7.00167 + 32.7419i −0.466778 + 2.18280i
\(226\) −19.4734 7.08776i −1.29535 0.471470i
\(227\) 6.69929 + 22.3772i 0.444647 + 1.48523i 0.827526 + 0.561427i \(0.189747\pi\)
−0.382879 + 0.923798i \(0.625067\pi\)
\(228\) 3.08424 + 3.81352i 0.204259 + 0.252557i
\(229\) 0.586644 + 10.0723i 0.0387665 + 0.665596i 0.960587 + 0.277979i \(0.0896646\pi\)
−0.921821 + 0.387617i \(0.873298\pi\)
\(230\) 2.14541 1.41106i 0.141464 0.0930425i
\(231\) −0.0127518 0.0371081i −0.000839005 0.00244153i
\(232\) 4.39850 + 1.04246i 0.288776 + 0.0684411i
\(233\) −0.251712 1.42753i −0.0164902 0.0935207i 0.975452 0.220213i \(-0.0706751\pi\)
−0.991942 + 0.126692i \(0.959564\pi\)
\(234\) −13.6312 2.09493i −0.891099 0.136950i
\(235\) 7.99321 45.3318i 0.521420 2.95712i
\(236\) −0.985073 + 2.28366i −0.0641228 + 0.148653i
\(237\) 1.14072 8.43477i 0.0740975 0.547897i
\(238\) −2.47336 + 8.26161i −0.160324 + 0.535521i
\(239\) 12.7023 17.0622i 0.821644 1.10366i −0.171317 0.985216i \(-0.554802\pi\)
0.992961 0.118443i \(-0.0377904\pi\)
\(240\) −3.93067 + 5.74735i −0.253724 + 0.370990i
\(241\) 8.20274 4.11957i 0.528385 0.265365i −0.164545 0.986369i \(-0.552616\pi\)
0.692930 + 0.721005i \(0.256319\pi\)
\(242\) −10.9998 −0.707095
\(243\) −2.21177 15.4308i −0.141885 0.989883i
\(244\) 2.33700 0.149611
\(245\) −15.0636 + 7.56523i −0.962379 + 0.483325i
\(246\) −6.89325 + 10.0792i −0.439498 + 0.642625i
\(247\) 7.77352 10.4417i 0.494617 0.664387i
\(248\) −2.73954 + 9.15069i −0.173961 + 0.581069i
\(249\) −3.52084 + 26.0340i −0.223124 + 1.64984i
\(250\) 9.80946 22.7409i 0.620405 1.43826i
\(251\) −1.06851 + 6.05983i −0.0674439 + 0.382493i 0.932338 + 0.361589i \(0.117766\pi\)
−0.999781 + 0.0209042i \(0.993345\pi\)
\(252\) 3.14508 3.92048i 0.198122 0.246967i
\(253\) −0.00149984 0.00850603i −9.42943e−5 0.000534769i
\(254\) 7.76333 + 1.83994i 0.487114 + 0.115448i
\(255\) −11.6480 33.8959i −0.729423 2.12264i
\(256\) −0.835488 + 0.549509i −0.0522180 + 0.0343443i
\(257\) 0.554373 + 9.51822i 0.0345808 + 0.593730i 0.970438 + 0.241350i \(0.0775903\pi\)
−0.935857 + 0.352380i \(0.885373\pi\)
\(258\) 6.90206 + 8.53408i 0.429704 + 0.531308i
\(259\) 3.78433 + 12.6405i 0.235147 + 0.785444i
\(260\) 17.3659 + 6.32068i 1.07699 + 0.391992i
\(261\) 12.9025 4.17470i 0.798642 0.258408i
\(262\) −7.71218 + 2.80700i −0.476460 + 0.173417i
\(263\) −9.89545 13.2919i −0.610180 0.819613i 0.384446 0.923147i \(-0.374392\pi\)
−0.994626 + 0.103534i \(0.966985\pi\)
\(264\) 0.0125141 + 0.0197969i 0.000770191 + 0.00121841i
\(265\) 23.2309 5.50583i 1.42706 0.338221i
\(266\) 1.87905 + 4.35614i 0.115212 + 0.267092i
\(267\) 9.61871 + 9.40902i 0.588656 + 0.575823i
\(268\) 3.34411 + 2.19946i 0.204274 + 0.134353i
\(269\) −10.1199 + 17.5282i −0.617023 + 1.06871i 0.373003 + 0.927830i \(0.378328\pi\)
−0.990026 + 0.140885i \(0.955005\pi\)
\(270\) −1.13177 + 20.8581i −0.0688771 + 1.26938i
\(271\) 6.66484 + 11.5438i 0.404860 + 0.701239i 0.994305 0.106570i \(-0.0339868\pi\)
−0.589445 + 0.807809i \(0.700654\pi\)
\(272\) 0.299299 5.13876i 0.0181477 0.311583i
\(273\) −12.1514 5.50412i −0.735439 0.333124i
\(274\) −12.7142 1.48608i −0.768093 0.0897772i
\(275\) −0.103563 0.109770i −0.00624509 0.00661941i
\(276\) 0.818331 0.744573i 0.0492578 0.0448181i
\(277\) 29.4197 3.43867i 1.76766 0.206610i 0.830861 0.556480i \(-0.187848\pi\)
0.936798 + 0.349870i \(0.113774\pi\)
\(278\) −14.3859 12.0712i −0.862807 0.723981i
\(279\) 7.22139 + 27.7311i 0.432333 + 1.66022i
\(280\) −5.15935 + 4.32920i −0.308330 + 0.258719i
\(281\) 1.06165 1.12528i 0.0633324 0.0671285i −0.694933 0.719075i \(-0.744566\pi\)
0.758265 + 0.651946i \(0.226047\pi\)
\(282\) 0.358338 19.8294i 0.0213387 1.18083i
\(283\) −5.12108 2.57190i −0.304417 0.152884i 0.290033 0.957017i \(-0.406334\pi\)
−0.594450 + 0.804133i \(0.702630\pi\)
\(284\) −5.20620 2.61465i −0.308931 0.155151i
\(285\) −16.8944 10.1653i −1.00074 0.602142i
\(286\) 0.0426574 0.0452142i 0.00252238 0.00267357i
\(287\) −9.04799 + 7.59217i −0.534086 + 0.448151i
\(288\) −1.28699 + 2.70992i −0.0758366 + 0.159683i
\(289\) 7.27472 + 6.10421i 0.427925 + 0.359071i
\(290\) −18.0491 + 2.10964i −1.05988 + 0.123882i
\(291\) −5.31407 1.69614i −0.311516 0.0994292i
\(292\) −5.74493 6.08927i −0.336197 0.356348i
\(293\) 1.24181 + 0.145147i 0.0725476 + 0.00847960i 0.152289 0.988336i \(-0.451335\pi\)
−0.0797417 + 0.996816i \(0.525410\pi\)
\(294\) −5.90302 + 4.23104i −0.344271 + 0.246759i
\(295\) 0.581336 9.98116i 0.0338467 0.581126i
\(296\) −3.93790 6.82064i −0.228886 0.396442i
\(297\) 0.0629127 + 0.0312837i 0.00365056 + 0.00181527i
\(298\) −1.09130 + 1.89018i −0.0632171 + 0.109495i
\(299\) −2.45336 1.61360i −0.141882 0.0933171i
\(300\) 4.79715 18.7263i 0.276964 1.08116i
\(301\) 4.20504 + 9.74837i 0.242374 + 0.561887i
\(302\) 14.4265 3.41914i 0.830150 0.196749i
\(303\) −8.13209 + 0.326342i −0.467176 + 0.0187478i
\(304\) −1.69097 2.27137i −0.0969838 0.130272i
\(305\) −8.82826 + 3.21322i −0.505505 + 0.183989i
\(306\) −7.23298 13.6438i −0.413482 0.779962i
\(307\) 17.2059 + 6.26242i 0.981990 + 0.357415i 0.782614 0.622508i \(-0.213886\pi\)
0.199376 + 0.979923i \(0.436108\pi\)
\(308\) 0.00649725 + 0.0217023i 0.000370215 + 0.00123660i
\(309\) 0.624224 1.62317i 0.0355109 0.0923390i
\(310\) −2.23272 38.3343i −0.126810 2.17724i
\(311\) 13.9855 9.19840i 0.793044 0.521593i −0.0871569 0.996195i \(-0.527778\pi\)
0.880201 + 0.474601i \(0.157408\pi\)
\(312\) 7.81514 + 1.52410i 0.442445 + 0.0862854i
\(313\) 12.0680 + 2.86018i 0.682126 + 0.161667i 0.557048 0.830480i \(-0.311934\pi\)
0.125078 + 0.992147i \(0.460082\pi\)
\(314\) 1.40071 + 7.94384i 0.0790468 + 0.448297i
\(315\) −6.49046 + 19.1343i −0.365696 + 1.07810i
\(316\) −0.853333 + 4.83949i −0.0480037 + 0.272243i
\(317\) −8.84525 + 20.5056i −0.496799 + 1.15171i 0.466801 + 0.884362i \(0.345406\pi\)
−0.963600 + 0.267347i \(0.913853\pi\)
\(318\) 9.51722 3.90292i 0.533699 0.218865i
\(319\) −0.0175304 + 0.0585555i −0.000981512 + 0.00327848i
\(320\) 2.40060 3.22457i 0.134198 0.180259i
\(321\) −4.42401 9.22066i −0.246924 0.514647i
\(322\) 0.956333 0.480288i 0.0532944 0.0267654i
\(323\) 14.5761 0.811034
\(324\) 0.918707 + 8.95299i 0.0510393 + 0.497388i
\(325\) −51.3067 −2.84599
\(326\) 15.8124 7.94131i 0.875771 0.439829i
\(327\) −14.1135 1.07820i −0.780478 0.0596245i
\(328\) 4.20996 5.65496i 0.232456 0.312243i
\(329\) 5.50193 18.3777i 0.303331 1.01320i
\(330\) −0.0744928 0.0575786i −0.00410069 0.00316960i
\(331\) −7.60331 + 17.6265i −0.417916 + 0.968838i 0.571080 + 0.820895i \(0.306525\pi\)
−0.988996 + 0.147944i \(0.952735\pi\)
\(332\) 2.63382 14.9371i 0.144550 0.819782i
\(333\) −20.7173 11.3599i −1.13530 0.622518i
\(334\) −1.46455 8.30586i −0.0801364 0.454476i
\(335\) −15.6568 3.71074i −0.855424 0.202739i
\(336\) −1.90511 + 2.18886i −0.103933 + 0.119412i
\(337\) 12.3063 8.09396i 0.670365 0.440906i −0.168167 0.985759i \(-0.553785\pi\)
0.838532 + 0.544853i \(0.183414\pi\)
\(338\) −0.472899 8.11936i −0.0257223 0.441635i
\(339\) 35.4552 5.59317i 1.92566 0.303779i
\(340\) 5.93483 + 19.8237i 0.321862 + 1.07509i
\(341\) −0.121371 0.0441753i −0.00657260 0.00239223i
\(342\) −7.87258 3.19201i −0.425700 0.172604i
\(343\) −17.6217 + 6.41378i −0.951483 + 0.346311i
\(344\) −3.78413 5.08297i −0.204027 0.274056i
\(345\) −2.06759 + 3.93786i −0.111315 + 0.212007i
\(346\) −7.51741 + 1.78166i −0.404139 + 0.0957826i
\(347\) −3.89123 9.02089i −0.208892 0.484267i 0.781269 0.624194i \(-0.214572\pi\)
−0.990162 + 0.139927i \(0.955313\pi\)
\(348\) −7.53989 + 2.10963i −0.404181 + 0.113088i
\(349\) −21.6854 14.2627i −1.16079 0.763464i −0.185122 0.982716i \(-0.559268\pi\)
−0.975668 + 0.219252i \(0.929638\pi\)
\(350\) 9.34916 16.1932i 0.499734 0.865564i
\(351\) 22.4139 8.25893i 1.19637 0.440829i
\(352\) −0.00676091 0.0117102i −0.000360358 0.000624158i
\(353\) 0.0720294 1.23670i 0.00383374 0.0658227i −0.995849 0.0910246i \(-0.970986\pi\)
0.999682 + 0.0252019i \(0.00802285\pi\)
\(354\) −0.422707 4.28692i −0.0224666 0.227847i
\(355\) 23.2619 + 2.71893i 1.23461 + 0.144306i
\(356\) −5.33108 5.65061i −0.282546 0.299482i
\(357\) −3.18155 14.5943i −0.168385 0.772411i
\(358\) −17.7570 + 2.07549i −0.938485 + 0.109693i
\(359\) 9.38496 + 7.87492i 0.495319 + 0.415622i 0.855928 0.517095i \(-0.172987\pi\)
−0.360609 + 0.932717i \(0.617431\pi\)
\(360\) 1.13577 12.0065i 0.0598606 0.632799i
\(361\) −8.41232 + 7.05878i −0.442754 + 0.371515i
\(362\) −9.38586 + 9.94843i −0.493310 + 0.522878i
\(363\) 16.6692 9.22645i 0.874904 0.484263i
\(364\) 6.88258 + 3.45656i 0.360745 + 0.181173i
\(365\) 30.0744 + 15.1040i 1.57417 + 0.790577i
\(366\) −3.54150 + 1.96023i −0.185117 + 0.102463i
\(367\) 6.89289 7.30603i 0.359806 0.381372i −0.522031 0.852926i \(-0.674825\pi\)
0.881837 + 0.471555i \(0.156307\pi\)
\(368\) −0.489321 + 0.410589i −0.0255076 + 0.0214034i
\(369\) 1.99182 21.0560i 0.103690 1.09613i
\(370\) 24.2537 + 20.3513i 1.26089 + 1.05801i
\(371\) 9.88250 1.15510i 0.513074 0.0599697i
\(372\) −3.52393 16.1648i −0.182707 0.838108i
\(373\) −23.8751 25.3061i −1.23620 1.31030i −0.934094 0.357026i \(-0.883791\pi\)
−0.302110 0.953273i \(-0.597691\pi\)
\(374\) 0.0691326 + 0.00808044i 0.00357476 + 0.000417830i
\(375\) 4.20936 + 42.6896i 0.217371 + 2.20448i
\(376\) −0.665781 + 11.4310i −0.0343351 + 0.589510i
\(377\) 10.3902 + 17.9963i 0.535122 + 0.926858i
\(378\) −1.47764 + 8.57914i −0.0760014 + 0.441264i
\(379\) 4.86589 8.42796i 0.249944 0.432915i −0.713566 0.700588i \(-0.752921\pi\)
0.963510 + 0.267672i \(0.0862545\pi\)
\(380\) 9.51080 + 6.25535i 0.487894 + 0.320893i
\(381\) −13.3079 + 3.72348i −0.681783 + 0.190760i
\(382\) 1.07102 + 2.48290i 0.0547982 + 0.127036i
\(383\) 10.4713 2.48175i 0.535061 0.126812i 0.0458021 0.998951i \(-0.485416\pi\)
0.489258 + 0.872139i \(0.337267\pi\)
\(384\) 0.805182 1.53352i 0.0410893 0.0782571i
\(385\) −0.0543833 0.0730495i −0.00277163 0.00372295i
\(386\) −9.21438 + 3.35376i −0.469000 + 0.170702i
\(387\) −17.6176 7.14324i −0.895554 0.363111i
\(388\) 3.02635 + 1.10150i 0.153639 + 0.0559202i
\(389\) −7.51883 25.1147i −0.381220 1.27336i −0.906417 0.422383i \(-0.861194\pi\)
0.525197 0.850980i \(-0.323992\pi\)
\(390\) −31.6181 + 4.98785i −1.60104 + 0.252570i
\(391\) −0.191181 3.28245i −0.00966845 0.166001i
\(392\) 3.50332 2.30417i 0.176944 0.116378i
\(393\) 9.33259 10.7226i 0.470767 0.540882i
\(394\) −2.34944 0.556827i −0.118363 0.0280526i
\(395\) −3.43043 19.4549i −0.172604 0.978885i
\(396\) −0.0355692 0.0195036i −0.00178742 0.000980093i
\(397\) 2.93006 16.6172i 0.147056 0.833995i −0.818638 0.574310i \(-0.805270\pi\)
0.965694 0.259684i \(-0.0836185\pi\)
\(398\) −5.40715 + 12.5352i −0.271036 + 0.628332i
\(399\) −6.50137 5.02518i −0.325476 0.251574i
\(400\) −3.20093 + 10.6919i −0.160047 + 0.534593i
\(401\) −7.78193 + 10.4529i −0.388611 + 0.521995i −0.952779 0.303665i \(-0.901790\pi\)
0.564168 + 0.825660i \(0.309197\pi\)
\(402\) −6.91254 0.528082i −0.344766 0.0263383i
\(403\) −39.2404 + 19.7073i −1.95471 + 0.981690i
\(404\) 4.69884 0.233776
\(405\) −15.7803 32.5577i −0.784129 1.61780i
\(406\) −7.57324 −0.375854
\(407\) 0.0951675 0.0477949i 0.00471728 0.00236911i
\(408\) 3.85674 + 8.03834i 0.190937 + 0.397957i
\(409\) −15.4125 + 20.7026i −0.762101 + 1.02368i 0.236543 + 0.971621i \(0.423985\pi\)
−0.998644 + 0.0520579i \(0.983422\pi\)
\(410\) −8.12836 + 27.1506i −0.401431 + 1.34087i
\(411\) 20.5136 8.41244i 1.01186 0.414955i
\(412\) −0.397683 + 0.921933i −0.0195924 + 0.0454204i
\(413\) 0.723546 4.10343i 0.0356034 0.201917i
\(414\) −0.615567 + 1.81473i −0.0302535 + 0.0891891i
\(415\) 10.5881 + 60.0479i 0.519748 + 2.94764i
\(416\) −4.47316 1.06016i −0.219315 0.0519786i
\(417\) 31.9255 + 6.22609i 1.56340 + 0.304893i
\(418\) 0.0319906 0.0210405i 0.00156471 0.00102913i
\(419\) 0.0325942 + 0.559620i 0.00159233 + 0.0273392i 0.999011 0.0444698i \(-0.0141598\pi\)
−0.997418 + 0.0718090i \(0.977123\pi\)
\(420\) 4.18723 10.8881i 0.204316 0.531283i
\(421\) −0.596418 1.99217i −0.0290676 0.0970926i 0.942225 0.334981i \(-0.108730\pi\)
−0.971292 + 0.237888i \(0.923545\pi\)
\(422\) 5.61499 + 2.04369i 0.273333 + 0.0994852i
\(423\) 16.0895 + 30.3501i 0.782300 + 1.47567i
\(424\) −5.58071 + 2.03121i −0.271023 + 0.0986443i
\(425\) −34.3065 46.0816i −1.66411 2.23529i
\(426\) 10.0826 0.404616i 0.488504 0.0196037i
\(427\) −3.80980 + 0.902938i −0.184369 + 0.0436962i
\(428\) 2.33869 + 5.42169i 0.113045 + 0.262067i
\(429\) −0.0267183 + 0.104298i −0.00128997 + 0.00503555i
\(430\) 21.2837 + 13.9985i 1.02639 + 0.675069i
\(431\) 4.95301 8.57886i 0.238578 0.413229i −0.721729 0.692176i \(-0.756652\pi\)
0.960306 + 0.278947i \(0.0899854\pi\)
\(432\) −0.322723 5.18612i −0.0155270 0.249517i
\(433\) −1.14206 1.97810i −0.0548838 0.0950615i 0.837278 0.546777i \(-0.184145\pi\)
−0.892162 + 0.451716i \(0.850812\pi\)
\(434\) 0.930495 15.9760i 0.0446652 0.766872i
\(435\) 25.5821 18.3362i 1.22657 0.879154i
\(436\) 8.11691 + 0.948731i 0.388730 + 0.0454360i
\(437\) −1.24126 1.31566i −0.0593776 0.0629366i
\(438\) 13.8135 + 4.40896i 0.660033 + 0.210668i
\(439\) −32.2822 + 3.77325i −1.54074 + 0.180087i −0.843650 0.536893i \(-0.819598\pi\)
−0.697094 + 0.716980i \(0.745524\pi\)
\(440\) 0.0416409 + 0.0349408i 0.00198515 + 0.00166574i
\(441\) 5.39653 11.3631i 0.256978 0.541099i
\(442\) 18.1272 15.2105i 0.862221 0.723489i
\(443\) 13.4623 14.2692i 0.639613 0.677950i −0.323753 0.946142i \(-0.604945\pi\)
0.963366 + 0.268192i \(0.0864260\pi\)
\(444\) 11.6885 + 7.03298i 0.554713 + 0.333770i
\(445\) 27.9079 + 14.0159i 1.32296 + 0.664416i
\(446\) 11.9583 + 6.00570i 0.566244 + 0.284378i
\(447\) 0.0683038 3.77974i 0.00323066 0.178776i
\(448\) 1.14971 1.21862i 0.0543186 0.0575743i
\(449\) −7.24842 + 6.08214i −0.342074 + 0.287034i −0.797598 0.603189i \(-0.793896\pi\)
0.455524 + 0.890223i \(0.349452\pi\)
\(450\) 8.43763 + 32.4016i 0.397754 + 1.52743i
\(451\) 0.0730260 + 0.0612761i 0.00343866 + 0.00288538i
\(452\) −20.5831 + 2.40582i −0.968147 + 0.113160i
\(453\) −18.9940 + 17.2820i −0.892416 + 0.811981i
\(454\) 16.0296 + 16.9903i 0.752304 + 0.797396i
\(455\) −30.7522 3.59441i −1.44168 0.168509i
\(456\) 4.46768 + 2.02368i 0.209218 + 0.0947675i
\(457\) 1.42592 24.4821i 0.0667017 1.14522i −0.784411 0.620242i \(-0.787035\pi\)
0.851113 0.524983i \(-0.175928\pi\)
\(458\) 5.04468 + 8.73764i 0.235722 + 0.408283i
\(459\) 22.4050 + 14.6089i 1.04578 + 0.681885i
\(460\) 1.28393 2.22383i 0.0598634 0.103686i
\(461\) 18.8285 + 12.3837i 0.876932 + 0.576767i 0.906221 0.422804i \(-0.138954\pi\)
−0.0292894 + 0.999571i \(0.509324\pi\)
\(462\) −0.0280495 0.0274380i −0.00130498 0.00127653i
\(463\) −7.14555 16.5652i −0.332082 0.769852i −0.999679 0.0253295i \(-0.991936\pi\)
0.667597 0.744522i \(-0.267323\pi\)
\(464\) 4.39850 1.04246i 0.204195 0.0483951i
\(465\) 35.5376 + 56.2192i 1.64802 + 2.60710i
\(466\) −0.865613 1.16272i −0.0400988 0.0538620i
\(467\) 5.17094 1.88207i 0.239283 0.0870918i −0.219595 0.975591i \(-0.570474\pi\)
0.458878 + 0.888499i \(0.348251\pi\)
\(468\) −13.1215 + 4.24557i −0.606541 + 0.196251i
\(469\) −6.30139 2.29352i −0.290971 0.105905i
\(470\) −13.2019 44.0973i −0.608956 2.03406i
\(471\) −8.78579 10.8632i −0.404828 0.500551i
\(472\) 0.144610 + 2.48285i 0.00665620 + 0.114282i
\(473\) 0.0715900 0.0470855i 0.00329171 0.00216499i
\(474\) −2.76613 8.04953i −0.127053 0.369727i
\(475\) −30.7519 7.28833i −1.41099 0.334412i
\(476\) 1.49753 + 8.49289i 0.0686390 + 0.389271i
\(477\) −11.1487 + 13.8974i −0.510465 + 0.636317i
\(478\) 3.69371 20.9481i 0.168946 0.958143i
\(479\) −15.6255 + 36.2239i −0.713946 + 1.65511i 0.0408608 + 0.999165i \(0.486990\pi\)
−0.754807 + 0.655947i \(0.772269\pi\)
\(480\) −0.933169 + 6.90010i −0.0425931 + 0.314945i
\(481\) 10.3839 34.6846i 0.473465 1.58148i
\(482\) 5.48137 7.36276i 0.249670 0.335365i
\(483\) −1.04637 + 1.52999i −0.0476116 + 0.0696167i
\(484\) −9.82980 + 4.93671i −0.446809 + 0.224396i
\(485\) −12.9468 −0.587885
\(486\) −8.90181 12.7968i −0.403795 0.580474i
\(487\) −6.31620 −0.286214 −0.143107 0.989707i \(-0.545709\pi\)
−0.143107 + 0.989707i \(0.545709\pi\)
\(488\) 2.08842 1.04884i 0.0945383 0.0474789i
\(489\) −17.3012 + 25.2975i −0.782387 + 1.14399i
\(490\) −10.0661 + 13.5211i −0.454739 + 0.610820i
\(491\) −0.0319262 + 0.106641i −0.00144081 + 0.00481264i −0.958707 0.284396i \(-0.908207\pi\)
0.957266 + 0.289209i \(0.0933921\pi\)
\(492\) −1.63651 + 12.1008i −0.0737795 + 0.545545i
\(493\) −9.21612 + 21.3654i −0.415073 + 0.962248i
\(494\) 2.26047 12.8198i 0.101703 0.576788i
\(495\) 0.161182 + 0.0247716i 0.00724461 + 0.00111340i
\(496\) 1.65868 + 9.40685i 0.0744770 + 0.422380i
\(497\) 9.49740 + 2.25092i 0.426017 + 0.100968i
\(498\) 8.53770 + 24.8450i 0.382584 + 1.11333i
\(499\) 9.41139 6.18997i 0.421312 0.277101i −0.321100 0.947045i \(-0.604052\pi\)
0.742411 + 0.669944i \(0.233682\pi\)
\(500\) −1.44004 24.7245i −0.0644004 1.10571i
\(501\) 9.18618 + 11.3583i 0.410408 + 0.507451i
\(502\) 1.76479 + 5.89481i 0.0787664 + 0.263098i
\(503\) −4.38661 1.59659i −0.195589 0.0711886i 0.242368 0.970184i \(-0.422076\pi\)
−0.437958 + 0.898996i \(0.644298\pi\)
\(504\) 1.05104 4.91498i 0.0468170 0.218931i
\(505\) −17.7504 + 6.46061i −0.789881 + 0.287493i
\(506\) −0.00515781 0.00692814i −0.000229292 0.000307993i
\(507\) 7.52701 + 11.9074i 0.334286 + 0.528828i
\(508\) 7.76333 1.83994i 0.344442 0.0816342i
\(509\) 5.23832 + 12.1438i 0.232184 + 0.538264i 0.993981 0.109553i \(-0.0349418\pi\)
−0.761797 + 0.647816i \(0.775683\pi\)
\(510\) −25.6214 25.0629i −1.13454 1.10980i
\(511\) 11.7181 + 7.70713i 0.518379 + 0.340944i
\(512\) −0.500000 + 0.866025i −0.0220971 + 0.0382733i
\(513\) 14.6075 1.76619i 0.644938 0.0779793i
\(514\) 4.76717 + 8.25699i 0.210271 + 0.364200i
\(515\) 0.234691 4.02949i 0.0103417 0.177560i
\(516\) 9.99799 + 4.52869i 0.440137 + 0.199364i
\(517\) −0.153783 0.0179747i −0.00676339 0.000790526i
\(518\) 9.05486 + 9.59759i 0.397848 + 0.421694i
\(519\) 9.89748 9.00540i 0.434451 0.395293i
\(520\) 18.3555 2.14545i 0.804941 0.0940841i
\(521\) −23.2776 19.5322i −1.01981 0.855722i −0.0302066 0.999544i \(-0.509617\pi\)
−0.989604 + 0.143821i \(0.954061\pi\)
\(522\) 9.65646 9.52126i 0.422652 0.416734i
\(523\) 12.9993 10.9077i 0.568418 0.476959i −0.312702 0.949851i \(-0.601234\pi\)
0.881121 + 0.472892i \(0.156790\pi\)
\(524\) −5.63207 + 5.96965i −0.246038 + 0.260785i
\(525\) −0.585161 + 32.3812i −0.0255385 + 1.41323i
\(526\) −14.8083 7.43700i −0.645672 0.324269i
\(527\) −43.9386 22.0668i −1.91399 0.961244i
\(528\) 0.0200678 + 0.0120748i 0.000873341 + 0.000525488i
\(529\) 15.5036 16.4328i 0.674068 0.714470i
\(530\) 18.2889 15.3462i 0.794419 0.666597i
\(531\) 4.23636 + 6.14185i 0.183843 + 0.266534i
\(532\) 3.63421 + 3.04947i 0.157563 + 0.132211i
\(533\) 32.1902 3.76249i 1.39431 0.162972i
\(534\) 12.8184 + 4.09134i 0.554704 + 0.177050i
\(535\) −16.2891 17.2654i −0.704239 0.746450i
\(536\) 3.97552 + 0.464672i 0.171716 + 0.0200708i
\(537\) 25.1681 18.0394i 1.08608 0.778459i
\(538\) −1.17684 + 20.2056i −0.0507373 + 0.871125i
\(539\) 0.0283495 + 0.0491027i 0.00122110 + 0.00211500i
\(540\) 8.34970 + 19.1474i 0.359314 + 0.823972i
\(541\) −19.9050 + 34.4764i −0.855782 + 1.48226i 0.0201362 + 0.999797i \(0.493590\pi\)
−0.875918 + 0.482460i \(0.839743\pi\)
\(542\) 11.1368 + 7.32478i 0.478366 + 0.314626i
\(543\) 5.87880 22.9486i 0.252283 0.984818i
\(544\) −2.03881 4.72649i −0.0874132 0.202647i
\(545\) −31.9669 + 7.57630i −1.36931 + 0.324533i
\(546\) −13.3292 + 0.534901i −0.570436 + 0.0228916i
\(547\) −2.53512 3.40526i −0.108394 0.145598i 0.744616 0.667493i \(-0.232633\pi\)
−0.853010 + 0.521895i \(0.825225\pi\)
\(548\) −12.0288 + 4.37812i −0.513844 + 0.187024i
\(549\) 3.72258 5.94109i 0.158876 0.253559i
\(550\) −0.141812 0.0516154i −0.00604690 0.00220089i
\(551\) 3.67115 + 12.2625i 0.156396 + 0.522400i
\(552\) 0.397124 1.03264i 0.0169027 0.0439521i
\(553\) −0.478707 8.21907i −0.0203567 0.349511i
\(554\) 24.7471 16.2765i 1.05141 0.691520i
\(555\) −53.8245 10.4968i −2.28472 0.445565i
\(556\) −18.2732 4.33083i −0.774957 0.183668i
\(557\) 3.49887 + 19.8431i 0.148252 + 0.840778i 0.964698 + 0.263357i \(0.0848297\pi\)
−0.816447 + 0.577421i \(0.804059\pi\)
\(558\) 18.8990 + 21.5404i 0.800057 + 0.911880i
\(559\) 5.05858 28.6887i 0.213955 1.21340i
\(560\) −2.66762 + 6.18423i −0.112727 + 0.261331i
\(561\) −0.111541 + 0.0457420i −0.00470928 + 0.00193123i
\(562\) 0.443697 1.48205i 0.0187162 0.0625165i
\(563\) −6.16547 + 8.28167i −0.259844 + 0.349031i −0.912831 0.408339i \(-0.866108\pi\)
0.652987 + 0.757369i \(0.273516\pi\)
\(564\) −8.57921 17.8811i −0.361250 0.752928i
\(565\) 74.4469 37.3886i 3.13200 1.57295i
\(566\) −5.73063 −0.240876
\(567\) −4.95682 14.2403i −0.208167 0.598035i
\(568\) −5.82588 −0.244449
\(569\) −14.7778 + 7.42168i −0.619517 + 0.311133i −0.730733 0.682663i \(-0.760822\pi\)
0.111216 + 0.993796i \(0.464525\pi\)
\(570\) −19.6596 1.50189i −0.823449 0.0629072i
\(571\) −11.7740 + 15.8152i −0.492726 + 0.661846i −0.977042 0.213047i \(-0.931661\pi\)
0.484316 + 0.874893i \(0.339069\pi\)
\(572\) 0.0178279 0.0595495i 0.000745424 0.00248989i
\(573\) −3.70564 2.86425i −0.154805 0.119656i
\(574\) −4.67822 + 10.8453i −0.195265 + 0.452676i
\(575\) −1.23795 + 7.02076i −0.0516260 + 0.292786i
\(576\) 0.0661132 + 2.99927i 0.00275472 + 0.124970i
\(577\) 4.46863 + 25.3429i 0.186031 + 1.05504i 0.924623 + 0.380884i \(0.124380\pi\)
−0.738591 + 0.674153i \(0.764509\pi\)
\(578\) 9.24049 + 2.19004i 0.384354 + 0.0910935i
\(579\) 11.1504 12.8112i 0.463396 0.532413i
\(580\) −15.1825 + 9.98566i −0.630417 + 0.414632i
\(581\) 1.47753 + 25.3683i 0.0612984 + 1.05245i
\(582\) −5.51005 + 0.869229i −0.228399 + 0.0360307i
\(583\) −0.0230315 0.0769307i −0.000953868 0.00318614i
\(584\) −7.86672 2.86325i −0.325527 0.118482i
\(585\) 43.7304 34.0793i 1.80803 1.40900i
\(586\) 1.17487 0.427617i 0.0485334 0.0176647i
\(587\) 20.5379 + 27.5872i 0.847690 + 1.13864i 0.988888 + 0.148663i \(0.0474971\pi\)
−0.141198 + 0.989981i \(0.545096\pi\)
\(588\) −3.37624 + 6.43027i −0.139234 + 0.265180i
\(589\) −26.3192 + 6.23776i −1.08446 + 0.257022i
\(590\) −3.96004 9.18040i −0.163032 0.377951i
\(591\) 4.02740 1.12685i 0.165665 0.0463524i
\(592\) −6.58013 4.32782i −0.270442 0.177872i
\(593\) 9.43328 16.3389i 0.387378 0.670959i −0.604718 0.796440i \(-0.706714\pi\)
0.992096 + 0.125481i \(0.0400474\pi\)
\(594\) 0.0702609 0.000278969i 0.00288284 1.14462e-5i
\(595\) −17.3342 30.0238i −0.710634 1.23085i
\(596\) −0.126906 + 2.17890i −0.00519829 + 0.0892512i
\(597\) −2.32027 23.5313i −0.0949625 0.963070i
\(598\) −2.91659 0.340900i −0.119268 0.0139405i
\(599\) −5.63271 5.97033i −0.230146 0.243941i 0.602001 0.798495i \(-0.294370\pi\)
−0.832148 + 0.554554i \(0.812889\pi\)
\(600\) −4.11744 18.8874i −0.168094 0.771073i
\(601\) 5.46628 0.638917i 0.222974 0.0260620i −0.00387210 0.999993i \(-0.501233\pi\)
0.226846 + 0.973931i \(0.427158\pi\)
\(602\) 8.13282 + 6.82424i 0.331469 + 0.278135i
\(603\) 10.9182 4.99786i 0.444624 0.203528i
\(604\) 11.3575 9.53004i 0.462129 0.387772i
\(605\) 30.3454 32.1643i 1.23372 1.30766i
\(606\) −7.12064 + 3.94131i −0.289256 + 0.160105i
\(607\) −5.82005 2.92294i −0.236229 0.118638i 0.326747 0.945112i \(-0.394047\pi\)
−0.562976 + 0.826473i \(0.690344\pi\)
\(608\) −2.53049 1.27086i −0.102625 0.0515403i
\(609\) 11.4765 6.35230i 0.465051 0.257408i
\(610\) −6.44713 + 6.83356i −0.261037 + 0.276683i
\(611\) −40.3233 + 33.8353i −1.63131 + 1.36883i
\(612\) −12.5869 8.94636i −0.508797 0.361635i
\(613\) 15.4318 + 12.9488i 0.623283 + 0.522997i 0.898834 0.438290i \(-0.144416\pi\)
−0.275550 + 0.961287i \(0.588860\pi\)
\(614\) 18.1863 2.12567i 0.733939 0.0857851i
\(615\) −10.4557 47.9620i −0.421615 1.93401i
\(616\) 0.0155461 + 0.0164779i 0.000626372 + 0.000663915i
\(617\) 9.28251 + 1.08497i 0.373700 + 0.0436792i 0.300870 0.953665i \(-0.402723\pi\)
0.0728296 + 0.997344i \(0.476797\pi\)
\(618\) −0.170651 1.73067i −0.00686458 0.0696177i
\(619\) 0.366677 6.29560i 0.0147380 0.253041i −0.982889 0.184197i \(-0.941032\pi\)
0.997627 0.0688447i \(-0.0219313\pi\)
\(620\) −19.1997 33.2548i −0.771077 1.33554i
\(621\) −0.589331 3.26637i −0.0236490 0.131075i
\(622\) 8.36965 14.4967i 0.335592 0.581263i
\(623\) 10.8740 + 7.15192i 0.435656 + 0.286536i
\(624\) 7.66788 2.14544i 0.306961 0.0858863i
\(625\) 17.3318 + 40.1795i 0.693270 + 1.60718i
\(626\) 12.0680 2.86018i 0.482336 0.114316i
\(627\) −0.0308302 + 0.0587180i −0.00123124 + 0.00234497i
\(628\) 4.81691 + 6.47023i 0.192216 + 0.258190i
\(629\) 38.0955 13.8656i 1.51897 0.552859i
\(630\) 2.78737 + 20.0120i 0.111051 + 0.797295i
\(631\) −34.1219 12.4194i −1.35837 0.494407i −0.442821 0.896610i \(-0.646022\pi\)
−0.915550 + 0.402203i \(0.868244\pi\)
\(632\) 1.40939 + 4.70770i 0.0560626 + 0.187262i
\(633\) −10.2232 + 1.61274i −0.406335 + 0.0641007i
\(634\) 1.29849 + 22.2942i 0.0515696 + 0.885416i
\(635\) −26.7970 + 17.6246i −1.06340 + 0.699412i
\(636\) 6.75327 7.75910i 0.267785 0.307668i
\(637\) 18.7566 + 4.44540i 0.743164 + 0.176133i
\(638\) 0.0106140 + 0.0601947i 0.000420210 + 0.00238313i
\(639\) −14.9398 + 9.07026i −0.591010 + 0.358814i
\(640\) 0.698073 3.95897i 0.0275938 0.156492i
\(641\) −11.6086 + 26.9118i −0.458513 + 1.06295i 0.519511 + 0.854464i \(0.326114\pi\)
−0.978025 + 0.208490i \(0.933145\pi\)
\(642\) −8.09166 6.25439i −0.319353 0.246841i
\(643\) −10.6916 + 35.7124i −0.421635 + 1.40836i 0.438701 + 0.898633i \(0.355439\pi\)
−0.860336 + 0.509727i \(0.829746\pi\)
\(644\) 0.639057 0.858403i 0.0251824 0.0338258i
\(645\) −43.9951 3.36100i −1.73231 0.132339i
\(646\) 13.0257 6.54173i 0.512487 0.257381i
\(647\) 7.10308 0.279251 0.139625 0.990204i \(-0.455410\pi\)
0.139625 + 0.990204i \(0.455410\pi\)
\(648\) 4.83908 + 7.58837i 0.190097 + 0.298099i
\(649\) −0.0336296 −0.00132008
\(650\) −45.8494 + 23.0264i −1.79836 + 0.903171i
\(651\) 11.9903 + 24.9905i 0.469937 + 0.979456i
\(652\) 10.5665 14.1932i 0.413815 0.555850i
\(653\) 6.10772 20.4012i 0.239014 0.798361i −0.751354 0.659899i \(-0.770599\pi\)
0.990368 0.138462i \(-0.0442158\pi\)
\(654\) −13.0962 + 5.37061i −0.512101 + 0.210008i
\(655\) 13.0679 30.2947i 0.510603 1.18371i
\(656\) 1.22422 6.94288i 0.0477976 0.271074i
\(657\) −24.6311 + 4.90514i −0.960951 + 0.191368i
\(658\) −3.33120 18.8922i −0.129864 0.736494i
\(659\) 5.77964 + 1.36980i 0.225143 + 0.0533599i 0.341639 0.939831i \(-0.389018\pi\)
−0.116496 + 0.993191i \(0.537166\pi\)
\(660\) −0.0924104 0.0180218i −0.00359707 0.000701499i
\(661\) −16.2750 + 10.7042i −0.633023 + 0.416346i −0.825062 0.565042i \(-0.808860\pi\)
0.192040 + 0.981387i \(0.438490\pi\)
\(662\) 1.11617 + 19.1639i 0.0433813 + 0.744828i
\(663\) −14.7117 + 38.2548i −0.571354 + 1.48569i
\(664\) −4.35011 14.5304i −0.168817 0.563888i
\(665\) −17.9214 6.52287i −0.694963 0.252946i
\(666\) −23.6120 0.853664i −0.914945 0.0330788i
\(667\) 2.71330 0.987559i 0.105059 0.0382384i
\(668\) −5.03643 6.76510i −0.194865 0.261749i
\(669\) −23.1592 + 0.929379i −0.895385 + 0.0359319i
\(670\) −15.6568 + 3.71074i −0.604876 + 0.143358i
\(671\) 0.0125163 + 0.0290161i 0.000483187 + 0.00112015i
\(672\) −0.720114 + 2.81105i −0.0277790 + 0.108439i
\(673\) 0.434211 + 0.285585i 0.0167376 + 0.0110085i 0.557850 0.829942i \(-0.311626\pi\)
−0.541113 + 0.840950i \(0.681997\pi\)
\(674\) 7.36472 12.7561i 0.283678 0.491345i
\(675\) −39.9643 42.0241i −1.53823 1.61751i
\(676\) −4.06656 7.04349i −0.156406 0.270903i
\(677\) −1.17987 + 20.2575i −0.0453460 + 0.778561i 0.896609 + 0.442822i \(0.146023\pi\)
−0.941955 + 0.335738i \(0.891014\pi\)
\(678\) 29.1737 20.9105i 1.12041 0.803063i
\(679\) −5.35916 0.626395i −0.205666 0.0240389i
\(680\) 14.2004 + 15.0516i 0.544562 + 0.577202i
\(681\) −38.5424 12.3019i −1.47695 0.471410i
\(682\) −0.128287 + 0.0149946i −0.00491235 + 0.000574172i
\(683\) 33.8852 + 28.4331i 1.29658 + 1.08796i 0.990725 + 0.135885i \(0.0433879\pi\)
0.305858 + 0.952077i \(0.401057\pi\)
\(684\) −8.46777 + 0.680721i −0.323773 + 0.0260280i
\(685\) 39.4203 33.0776i 1.50617 1.26383i
\(686\) −12.8688 + 13.6402i −0.491334 + 0.520784i
\(687\) −14.9737 9.00966i −0.571282 0.343740i
\(688\) −5.66286 2.84400i −0.215895 0.108426i
\(689\) −24.3974 12.2529i −0.929468 0.466797i
\(690\) −0.0803606 + 4.44693i −0.00305928 + 0.169292i
\(691\) 18.3720 19.4732i 0.698904 0.740795i −0.276550 0.961000i \(-0.589191\pi\)
0.975454 + 0.220205i \(0.0706726\pi\)
\(692\) −5.91820 + 4.96596i −0.224976 + 0.188777i
\(693\) 0.0655207 + 0.0180522i 0.00248893 + 0.000685747i
\(694\) −7.52590 6.31498i −0.285679 0.239713i
\(695\) 74.9836 8.76433i 2.84429 0.332450i
\(696\) −5.79110 + 5.26913i −0.219511 + 0.199726i
\(697\) 24.9034 + 26.3961i 0.943285 + 0.999824i
\(698\) −25.7798 3.01323i −0.975781 0.114052i
\(699\) 2.28702 + 1.03593i 0.0865031 + 0.0391824i
\(700\) 1.08721 18.6667i 0.0410927 0.705535i
\(701\) −18.8061 32.5731i −0.710295 1.23027i −0.964746 0.263182i \(-0.915228\pi\)
0.254451 0.967086i \(-0.418105\pi\)
\(702\) 16.3232 17.4398i 0.616080 0.658223i
\(703\) 11.1509 19.3140i 0.420565 0.728440i
\(704\) −0.0112973 0.00743037i −0.000425784 0.000280042i
\(705\) 56.9941 + 55.7517i 2.14652 + 2.09973i
\(706\) −0.490661 1.13748i −0.0184663 0.0428096i
\(707\) −7.66009 + 1.81548i −0.288087 + 0.0682780i
\(708\) −2.30171 3.64122i −0.0865036 0.136846i
\(709\) −14.3162 19.2300i −0.537657 0.722198i 0.447418 0.894325i \(-0.352344\pi\)
−0.985075 + 0.172127i \(0.944936\pi\)
\(710\) 22.0079 8.01021i 0.825941 0.300618i
\(711\) 10.9436 + 9.87810i 0.410417 + 0.370458i
\(712\) −7.30001 2.65699i −0.273580 0.0995748i
\(713\) 1.74991 + 5.84512i 0.0655348 + 0.218902i
\(714\) −9.39304 11.6141i −0.351526 0.434645i
\(715\) 0.0145298 + 0.249467i 0.000543383 + 0.00932952i
\(716\) −14.9367 + 9.82404i −0.558212 + 0.367142i
\(717\) 11.9734 + 34.8430i 0.447155 + 1.30124i
\(718\) 11.9210 + 2.82532i 0.444887 + 0.105440i
\(719\) 1.44404 + 8.18958i 0.0538537 + 0.305420i 0.999823 0.0188379i \(-0.00599664\pi\)
−0.945969 + 0.324258i \(0.894886\pi\)
\(720\) −4.37355 11.2392i −0.162993 0.418859i
\(721\) 0.292102 1.65659i 0.0108785 0.0616948i
\(722\) −4.34955 + 10.0834i −0.161874 + 0.375265i
\(723\) −2.13074 + 15.7552i −0.0792429 + 0.585943i
\(724\) −3.92266 + 13.1026i −0.145785 + 0.486955i
\(725\) 30.1269 40.4674i 1.11888 1.50292i
\(726\) 10.7553 15.7262i 0.399166 0.583652i
\(727\) −42.7215 + 21.4555i −1.58445 + 0.795742i −0.999878 0.0155984i \(-0.995035\pi\)
−0.584574 + 0.811340i \(0.698738\pi\)
\(728\) 7.70179 0.285448
\(729\) 24.2235 + 11.9256i 0.897168 + 0.441689i
\(730\) 33.6541 1.24560
\(731\) 29.1494 14.6394i 1.07813 0.541457i
\(732\) −2.28505 + 3.34115i −0.0844577 + 0.123492i
\(733\) 12.3666 16.6112i 0.456771 0.613550i −0.512756 0.858535i \(-0.671375\pi\)
0.969527 + 0.244984i \(0.0787828\pi\)
\(734\) 2.88077 9.62243i 0.106331 0.355170i
\(735\) 3.91291 28.9331i 0.144330 1.06721i
\(736\) −0.253001 + 0.586523i −0.00932575 + 0.0216195i
\(737\) −0.00939823 + 0.0533000i −0.000346188 + 0.00196333i
\(738\) −7.66994 19.7102i −0.282334 0.725543i
\(739\) −4.41970 25.0654i −0.162581 0.922045i −0.951523 0.307577i \(-0.900482\pi\)
0.788942 0.614468i \(-0.210629\pi\)
\(740\) 30.8076 + 7.30153i 1.13251 + 0.268410i
\(741\) 7.32746 + 21.3231i 0.269181 + 0.783325i
\(742\) 8.31292 5.46749i 0.305177 0.200718i
\(743\) −1.36294 23.4008i −0.0500015 0.858492i −0.926315 0.376751i \(-0.877041\pi\)
0.876313 0.481742i \(-0.159996\pi\)
\(744\) −10.4039 12.8639i −0.381424 0.471613i
\(745\) −2.51644 8.40550i −0.0921953 0.307954i
\(746\) −32.6929 11.8992i −1.19697 0.435662i
\(747\) −33.7776 30.4889i −1.23586 1.11553i
\(748\) 0.0654056 0.0238057i 0.00239147 0.000870423i
\(749\) −5.90730 7.93489i −0.215848 0.289934i
\(750\) 22.9207 + 36.2597i 0.836945 + 1.32402i
\(751\) 21.6246 5.12511i 0.789091 0.187018i 0.183738 0.982975i \(-0.441180\pi\)
0.605353 + 0.795957i \(0.293032\pi\)
\(752\) 4.53527 + 10.5139i 0.165384 + 0.383404i
\(753\) −7.61883 7.45274i −0.277646 0.271593i
\(754\) 17.3617 + 11.4190i 0.632278 + 0.415856i
\(755\) −29.8008 + 51.6165i −1.08456 + 1.87852i
\(756\) 2.52985 + 8.32977i 0.0920097 + 0.302951i
\(757\) 6.59727 + 11.4268i 0.239782 + 0.415314i 0.960652 0.277756i \(-0.0895908\pi\)
−0.720870 + 0.693071i \(0.756257\pi\)
\(758\) 0.565852 9.71531i 0.0205527 0.352876i
\(759\) 0.0136273 + 0.00617264i 0.000494641 + 0.000224053i
\(760\) 11.3066 + 1.32155i 0.410132 + 0.0479375i
\(761\) 1.31639 + 1.39529i 0.0477190 + 0.0505792i 0.750793 0.660537i \(-0.229671\pi\)
−0.703074 + 0.711116i \(0.748190\pi\)
\(762\) −10.2213 + 9.29999i −0.370277 + 0.336903i
\(763\) −13.5988 + 1.58947i −0.492310 + 0.0575428i
\(764\) 2.07142 + 1.73813i 0.0749415 + 0.0628834i
\(765\) 59.8491 + 16.4896i 2.16385 + 0.596182i
\(766\) 8.24372 6.91731i 0.297858 0.249932i
\(767\) −7.84594 +