Properties

Label 162.2.g.b.103.5
Level $162$
Weight $2$
Character 162.103
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 103.5
Character \(\chi\) \(=\) 162.103
Dual form 162.2.g.b.151.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686242 - 0.727374i) q^{2} +(1.72979 - 0.0885576i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(2.21262 - 0.258618i) q^{5} +(-1.25147 - 1.19743i) q^{6} +(-2.58863 - 1.30006i) q^{7} +(0.766044 - 0.642788i) q^{8} +(2.98432 - 0.306371i) q^{9} +O(q^{10})\) \(q+(-0.686242 - 0.727374i) q^{2} +(1.72979 - 0.0885576i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(2.21262 - 0.258618i) q^{5} +(-1.25147 - 1.19743i) q^{6} +(-2.58863 - 1.30006i) q^{7} +(0.766044 - 0.642788i) q^{8} +(2.98432 - 0.306371i) q^{9} +(-1.70650 - 1.43192i) q^{10} +(2.24105 + 5.19534i) q^{11} +(-0.0121703 + 1.73201i) q^{12} +(-3.63018 - 0.860369i) q^{13} +(0.830796 + 2.77505i) q^{14} +(3.80445 - 0.643297i) q^{15} +(-0.993238 - 0.116093i) q^{16} +(1.29783 - 7.36037i) q^{17} +(-2.27081 - 1.96047i) q^{18} +(-0.140098 - 0.794532i) q^{19} +(0.129528 + 2.22391i) q^{20} +(-4.59290 - 2.01958i) q^{21} +(2.24105 - 5.19534i) q^{22} +(-4.42192 + 2.22077i) q^{23} +(1.26817 - 1.17972i) q^{24} +(-0.0364359 + 0.00863547i) q^{25} +(1.86537 + 3.23092i) q^{26} +(5.13509 - 0.794240i) q^{27} +(1.44837 - 2.50866i) q^{28} +(-1.91151 + 6.38489i) q^{29} +(-3.07869 - 2.32580i) q^{30} +(2.05098 + 1.34895i) q^{31} +(0.597159 + 0.802123i) q^{32} +(4.33662 + 8.78835i) q^{33} +(-6.24436 + 4.10698i) q^{34} +(-6.06386 - 2.20706i) q^{35} +(0.132330 + 2.99708i) q^{36} +(-6.41853 + 2.33615i) q^{37} +(-0.481781 + 0.647144i) q^{38} +(-6.35563 - 1.16677i) q^{39} +(1.52873 - 1.62036i) q^{40} +(2.55518 - 2.70834i) q^{41} +(1.68285 + 4.72667i) q^{42} +(-6.77615 + 9.10195i) q^{43} +(-5.31685 + 1.93518i) q^{44} +(6.52391 - 1.44968i) q^{45} +(4.64984 + 1.69240i) q^{46} +(3.20034 - 2.10490i) q^{47} +(-1.72837 - 0.112857i) q^{48} +(0.830731 + 1.11587i) q^{49} +(0.0312851 + 0.0205765i) q^{50} +(1.59315 - 12.8468i) q^{51} +(1.06999 - 3.57401i) q^{52} +(-1.66998 + 2.89249i) q^{53} +(-4.10162 - 3.19009i) q^{54} +(6.30219 + 10.9157i) q^{55} +(-2.81866 + 0.668036i) q^{56} +(-0.312700 - 1.36196i) q^{57} +(5.95596 - 2.99119i) q^{58} +(-1.15336 + 2.67379i) q^{59} +(0.421000 + 3.83542i) q^{60} +(-0.409169 - 7.02515i) q^{61} +(-0.426276 - 2.41753i) q^{62} +(-8.12358 - 3.08670i) q^{63} +(0.173648 - 0.984808i) q^{64} +(-8.25471 - 0.964837i) q^{65} +(3.41645 - 9.18528i) q^{66} +(-0.117994 - 0.394126i) q^{67} +(7.27245 + 1.72360i) q^{68} +(-7.45231 + 4.23305i) q^{69} +(2.55591 + 5.92527i) q^{70} +(0.709941 + 0.595711i) q^{71} +(2.08919 - 2.15297i) q^{72} +(3.44620 - 2.89170i) q^{73} +(6.10392 + 3.06550i) q^{74} +(-0.0622616 + 0.0181642i) q^{75} +(0.801334 - 0.0936625i) q^{76} +(0.952994 - 16.3623i) q^{77} +(3.51282 + 5.42360i) q^{78} +(1.27120 + 1.34739i) q^{79} -2.22768 q^{80} +(8.81227 - 1.82862i) q^{81} -3.72345 q^{82} +(-2.38885 - 2.53203i) q^{83} +(2.28321 - 4.46770i) q^{84} +(0.968081 - 16.6213i) q^{85} +(11.2706 - 1.31734i) q^{86} +(-2.74107 + 11.2138i) q^{87} +(5.05624 + 2.53934i) q^{88} +(13.5689 - 11.3857i) q^{89} +(-5.53144 - 3.75049i) q^{90} +(8.27866 + 6.94662i) q^{91} +(-1.95990 - 4.54357i) q^{92} +(3.66721 + 2.15176i) q^{93} +(-3.72726 - 0.883376i) q^{94} +(-0.515462 - 1.72176i) q^{95} +(1.10399 + 1.33462i) q^{96} +(3.60360 + 0.421200i) q^{97} +(0.241569 - 1.37001i) q^{98} +(8.27970 + 14.8179i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686242 0.727374i −0.485246 0.514331i
\(3\) 1.72979 0.0885576i 0.998692 0.0511287i
\(4\) −0.0581448 + 0.998308i −0.0290724 + 0.499154i
\(5\) 2.21262 0.258618i 0.989512 0.115657i 0.394091 0.919071i \(-0.371059\pi\)
0.595421 + 0.803414i \(0.296985\pi\)
\(6\) −1.25147 1.19743i −0.510909 0.488848i
\(7\) −2.58863 1.30006i −0.978409 0.491376i −0.113627 0.993523i \(-0.536247\pi\)
−0.864782 + 0.502148i \(0.832543\pi\)
\(8\) 0.766044 0.642788i 0.270838 0.227260i
\(9\) 2.98432 0.306371i 0.994772 0.102124i
\(10\) −1.70650 1.43192i −0.539643 0.452814i
\(11\) 2.24105 + 5.19534i 0.675702 + 1.56645i 0.817097 + 0.576500i \(0.195582\pi\)
−0.141396 + 0.989953i \(0.545159\pi\)
\(12\) −0.0121703 + 1.73201i −0.00351327 + 0.499988i
\(13\) −3.63018 0.860369i −1.00683 0.238623i −0.306062 0.952012i \(-0.599012\pi\)
−0.700769 + 0.713388i \(0.747160\pi\)
\(14\) 0.830796 + 2.77505i 0.222040 + 0.741664i
\(15\) 3.80445 0.643297i 0.982305 0.166099i
\(16\) −0.993238 0.116093i −0.248310 0.0290232i
\(17\) 1.29783 7.36037i 0.314770 1.78515i −0.258733 0.965949i \(-0.583305\pi\)
0.573504 0.819203i \(-0.305584\pi\)
\(18\) −2.27081 1.96047i −0.535234 0.462087i
\(19\) −0.140098 0.794532i −0.0321406 0.182278i 0.964511 0.264042i \(-0.0850558\pi\)
−0.996652 + 0.0817638i \(0.973945\pi\)
\(20\) 0.129528 + 2.22391i 0.0289633 + 0.497281i
\(21\) −4.59290 2.01958i −1.00225 0.440708i
\(22\) 2.24105 5.19534i 0.477793 1.10765i
\(23\) −4.42192 + 2.22077i −0.922034 + 0.463063i −0.845483 0.534003i \(-0.820687\pi\)
−0.0765513 + 0.997066i \(0.524391\pi\)
\(24\) 1.26817 1.17972i 0.258864 0.240810i
\(25\) −0.0364359 + 0.00863547i −0.00728718 + 0.00172709i
\(26\) 1.86537 + 3.23092i 0.365830 + 0.633635i
\(27\) 5.13509 0.794240i 0.988249 0.152852i
\(28\) 1.44837 2.50866i 0.273717 0.474091i
\(29\) −1.91151 + 6.38489i −0.354958 + 1.18564i 0.575054 + 0.818116i \(0.304981\pi\)
−0.930012 + 0.367528i \(0.880204\pi\)
\(30\) −3.07869 2.32580i −0.562089 0.424631i
\(31\) 2.05098 + 1.34895i 0.368366 + 0.242278i 0.720173 0.693794i \(-0.244062\pi\)
−0.351807 + 0.936073i \(0.614433\pi\)
\(32\) 0.597159 + 0.802123i 0.105564 + 0.141797i
\(33\) 4.33662 + 8.78835i 0.754909 + 1.52986i
\(34\) −6.24436 + 4.10698i −1.07090 + 0.704342i
\(35\) −6.06386 2.20706i −1.02498 0.373062i
\(36\) 0.132330 + 2.99708i 0.0220551 + 0.499513i
\(37\) −6.41853 + 2.33615i −1.05520 + 0.384061i −0.810623 0.585569i \(-0.800871\pi\)
−0.244577 + 0.969630i \(0.578649\pi\)
\(38\) −0.481781 + 0.647144i −0.0781552 + 0.104981i
\(39\) −6.35563 1.16677i −1.01771 0.186833i
\(40\) 1.52873 1.62036i 0.241713 0.256201i
\(41\) 2.55518 2.70834i 0.399053 0.422971i −0.496424 0.868080i \(-0.665354\pi\)
0.895476 + 0.445109i \(0.146835\pi\)
\(42\) 1.68285 + 4.72667i 0.259670 + 0.729341i
\(43\) −6.77615 + 9.10195i −1.03335 + 1.38803i −0.114506 + 0.993423i \(0.536528\pi\)
−0.918848 + 0.394612i \(0.870879\pi\)
\(44\) −5.31685 + 1.93518i −0.801546 + 0.291739i
\(45\) 6.52391 1.44968i 0.972527 0.216105i
\(46\) 4.64984 + 1.69240i 0.685581 + 0.249531i
\(47\) 3.20034 2.10490i 0.466818 0.307031i −0.294221 0.955738i \(-0.595060\pi\)
0.761039 + 0.648706i \(0.224690\pi\)
\(48\) −1.72837 0.112857i −0.249469 0.0162895i
\(49\) 0.830731 + 1.11587i 0.118676 + 0.159409i
\(50\) 0.0312851 + 0.0205765i 0.00442438 + 0.00290996i
\(51\) 1.59315 12.8468i 0.223086 1.79891i
\(52\) 1.06999 3.57401i 0.148381 0.495627i
\(53\) −1.66998 + 2.89249i −0.229389 + 0.397314i −0.957627 0.288010i \(-0.907006\pi\)
0.728238 + 0.685324i \(0.240340\pi\)
\(54\) −4.10162 3.19009i −0.558160 0.434116i
\(55\) 6.30219 + 10.9157i 0.849787 + 1.47187i
\(56\) −2.81866 + 0.668036i −0.376660 + 0.0892700i
\(57\) −0.312700 1.36196i −0.0414182 0.180397i
\(58\) 5.95596 2.99119i 0.782055 0.392763i
\(59\) −1.15336 + 2.67379i −0.150155 + 0.348098i −0.976647 0.214850i \(-0.931074\pi\)
0.826492 + 0.562948i \(0.190333\pi\)
\(60\) 0.421000 + 3.83542i 0.0543508 + 0.495150i
\(61\) −0.409169 7.02515i −0.0523887 0.899479i −0.917460 0.397829i \(-0.869764\pi\)
0.865071 0.501650i \(-0.167273\pi\)
\(62\) −0.426276 2.41753i −0.0541371 0.307027i
\(63\) −8.12358 3.08670i −1.02347 0.388888i
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) −8.25471 0.964837i −1.02387 0.119673i
\(66\) 3.41645 9.18528i 0.420536 1.13063i
\(67\) −0.117994 0.394126i −0.0144152 0.0481501i 0.950479 0.310788i \(-0.100593\pi\)
−0.964895 + 0.262638i \(0.915408\pi\)
\(68\) 7.27245 + 1.72360i 0.881915 + 0.209018i
\(69\) −7.45231 + 4.23305i −0.897152 + 0.509600i
\(70\) 2.55591 + 5.92527i 0.305490 + 0.708205i
\(71\) 0.709941 + 0.595711i 0.0842545 + 0.0706979i 0.683942 0.729536i \(-0.260264\pi\)
−0.599688 + 0.800234i \(0.704709\pi\)
\(72\) 2.08919 2.15297i 0.246213 0.253731i
\(73\) 3.44620 2.89170i 0.403347 0.338448i −0.418439 0.908245i \(-0.637423\pi\)
0.821786 + 0.569797i \(0.192978\pi\)
\(74\) 6.10392 + 3.06550i 0.709566 + 0.356357i
\(75\) −0.0622616 + 0.0181642i −0.00718935 + 0.00209742i
\(76\) 0.801334 0.0936625i 0.0919193 0.0107438i
\(77\) 0.952994 16.3623i 0.108604 1.86466i
\(78\) 3.51282 + 5.42360i 0.397748 + 0.614102i
\(79\) 1.27120 + 1.34739i 0.143021 + 0.151593i 0.794924 0.606709i \(-0.207511\pi\)
−0.651903 + 0.758302i \(0.726029\pi\)
\(80\) −2.22768 −0.249062
\(81\) 8.81227 1.82862i 0.979141 0.203180i
\(82\) −3.72345 −0.411186
\(83\) −2.38885 2.53203i −0.262210 0.277927i 0.582871 0.812565i \(-0.301929\pi\)
−0.845081 + 0.534638i \(0.820448\pi\)
\(84\) 2.28321 4.46770i 0.249119 0.487466i
\(85\) 0.968081 16.6213i 0.105003 1.80283i
\(86\) 11.2706 1.31734i 1.21534 0.142053i
\(87\) −2.74107 + 11.2138i −0.293874 + 1.20224i
\(88\) 5.05624 + 2.53934i 0.538997 + 0.270695i
\(89\) 13.5689 11.3857i 1.43830 1.20688i 0.497709 0.867344i \(-0.334175\pi\)
0.940593 0.339535i \(-0.110270\pi\)
\(90\) −5.53144 3.75049i −0.583065 0.395336i
\(91\) 8.27866 + 6.94662i 0.867839 + 0.728203i
\(92\) −1.95990 4.54357i −0.204334 0.473699i
\(93\) 3.66721 + 2.15176i 0.380272 + 0.223127i
\(94\) −3.72726 0.883376i −0.384437 0.0911133i
\(95\) −0.515462 1.72176i −0.0528853 0.176649i
\(96\) 1.10399 + 1.33462i 0.112676 + 0.136214i
\(97\) 3.60360 + 0.421200i 0.365890 + 0.0427664i 0.297052 0.954861i \(-0.403997\pi\)
0.0688382 + 0.997628i \(0.478071\pi\)
\(98\) 0.241569 1.37001i 0.0244022 0.138391i
\(99\) 8.27970 + 14.8179i 0.832141 + 1.48926i
\(100\) −0.00650230 0.0368764i −0.000650230 0.00368764i
\(101\) −0.169381 2.90816i −0.0168541 0.289373i −0.996195 0.0871557i \(-0.972222\pi\)
0.979341 0.202218i \(-0.0648148\pi\)
\(102\) −10.4377 + 7.65719i −1.03349 + 0.758174i
\(103\) 3.13961 7.27843i 0.309355 0.717165i −0.690627 0.723211i \(-0.742665\pi\)
0.999982 + 0.00604605i \(0.00192453\pi\)
\(104\) −3.33391 + 1.67435i −0.326917 + 0.164184i
\(105\) −10.6846 3.28075i −1.04271 0.320168i
\(106\) 3.24993 0.770248i 0.315661 0.0748131i
\(107\) −0.784150 1.35819i −0.0758066 0.131301i 0.825630 0.564212i \(-0.190820\pi\)
−0.901437 + 0.432911i \(0.857486\pi\)
\(108\) 0.494317 + 5.17259i 0.0475657 + 0.497732i
\(109\) 7.99151 13.8417i 0.765448 1.32579i −0.174561 0.984646i \(-0.555851\pi\)
0.940009 0.341149i \(-0.110816\pi\)
\(110\) 3.61498 12.0749i 0.344674 1.15129i
\(111\) −10.8958 + 4.60945i −1.03418 + 0.437510i
\(112\) 2.42020 + 1.59179i 0.228687 + 0.150410i
\(113\) 2.55968 + 3.43825i 0.240794 + 0.323443i 0.906048 0.423174i \(-0.139084\pi\)
−0.665254 + 0.746617i \(0.731677\pi\)
\(114\) −0.776069 + 1.16209i −0.0726855 + 0.108839i
\(115\) −9.20968 + 6.05730i −0.858807 + 0.564846i
\(116\) −6.26294 2.27952i −0.581499 0.211648i
\(117\) −11.0972 1.45543i −1.02594 0.134554i
\(118\) 2.73633 0.995943i 0.251900 0.0916840i
\(119\) −12.9285 + 17.3660i −1.18515 + 1.59194i
\(120\) 2.50087 2.93825i 0.228297 0.268224i
\(121\) −14.4206 + 15.2849i −1.31096 + 1.38954i
\(122\) −4.82912 + 5.11857i −0.437208 + 0.463414i
\(123\) 4.18008 4.91112i 0.376905 0.442821i
\(124\) −1.46592 + 1.96907i −0.131643 + 0.176828i
\(125\) −10.5451 + 3.83809i −0.943178 + 0.343289i
\(126\) 3.32955 + 8.02710i 0.296620 + 0.715111i
\(127\) 11.7885 + 4.29066i 1.04606 + 0.380734i 0.807174 0.590314i \(-0.200996\pi\)
0.238885 + 0.971048i \(0.423218\pi\)
\(128\) −0.835488 + 0.549509i −0.0738474 + 0.0485702i
\(129\) −10.9152 + 16.3445i −0.961034 + 1.43905i
\(130\) 4.96293 + 6.66637i 0.435277 + 0.584679i
\(131\) 1.74145 + 1.14537i 0.152151 + 0.100071i 0.623302 0.781981i \(-0.285791\pi\)
−0.471151 + 0.882053i \(0.656161\pi\)
\(132\) −9.02564 + 3.81829i −0.785581 + 0.332339i
\(133\) −0.670278 + 2.23888i −0.0581204 + 0.194136i
\(134\) −0.205705 + 0.356291i −0.0177702 + 0.0307788i
\(135\) 11.1566 3.08538i 0.960206 0.265547i
\(136\) −3.73696 6.47260i −0.320441 0.555021i
\(137\) 6.61393 1.56753i 0.565066 0.133923i 0.0618529 0.998085i \(-0.480299\pi\)
0.503214 + 0.864162i \(0.332151\pi\)
\(138\) 8.19309 + 2.51571i 0.697443 + 0.214152i
\(139\) −7.06707 + 3.54921i −0.599421 + 0.301040i −0.722516 0.691354i \(-0.757014\pi\)
0.123095 + 0.992395i \(0.460718\pi\)
\(140\) 2.55591 5.92527i 0.216014 0.500777i
\(141\) 5.34950 3.92444i 0.450509 0.330497i
\(142\) −0.0538864 0.925194i −0.00452205 0.0776405i
\(143\) −3.66551 20.7881i −0.306525 1.73839i
\(144\) −2.99970 0.0421582i −0.249975 0.00351318i
\(145\) −2.57819 + 14.6217i −0.214107 + 1.21426i
\(146\) −4.46827 0.522266i −0.369797 0.0432230i
\(147\) 1.53581 + 1.85664i 0.126671 + 0.153133i
\(148\) −1.95900 6.54350i −0.161029 0.537873i
\(149\) 10.0871 + 2.39068i 0.826364 + 0.195852i 0.621974 0.783038i \(-0.286331\pi\)
0.204390 + 0.978890i \(0.434479\pi\)
\(150\) 0.0559386 + 0.0328224i 0.00456737 + 0.00267994i
\(151\) −8.51417 19.7381i −0.692873 1.60626i −0.791524 0.611138i \(-0.790712\pi\)
0.0986508 0.995122i \(-0.468547\pi\)
\(152\) −0.618037 0.518594i −0.0501294 0.0420635i
\(153\) 1.61813 22.3633i 0.130818 1.80796i
\(154\) −12.5555 + 10.5353i −1.01175 + 0.848958i
\(155\) 4.88688 + 2.45429i 0.392524 + 0.197133i
\(156\) 1.53435 6.27703i 0.122846 0.502565i
\(157\) 7.73541 0.904140i 0.617353 0.0721582i 0.198332 0.980135i \(-0.436448\pi\)
0.419021 + 0.907977i \(0.362373\pi\)
\(158\) 0.107708 1.84927i 0.00856876 0.147120i
\(159\) −2.63256 + 5.15128i −0.208775 + 0.408523i
\(160\) 1.52873 + 1.62036i 0.120856 + 0.128100i
\(161\) 14.3338 1.12966
\(162\) −7.37744 5.15494i −0.579626 0.405011i
\(163\) 11.0833 0.868109 0.434054 0.900887i \(-0.357083\pi\)
0.434054 + 0.900887i \(0.357083\pi\)
\(164\) 2.55518 + 2.70834i 0.199526 + 0.211486i
\(165\) 11.8681 + 18.3237i 0.923931 + 1.42650i
\(166\) −0.202406 + 3.47517i −0.0157097 + 0.269726i
\(167\) −8.41089 + 0.983092i −0.650854 + 0.0760739i −0.435112 0.900376i \(-0.643291\pi\)
−0.215742 + 0.976450i \(0.569217\pi\)
\(168\) −4.81652 + 1.40517i −0.371603 + 0.108411i
\(169\) 0.820757 + 0.412200i 0.0631352 + 0.0317077i
\(170\) −12.7542 + 10.7021i −0.978206 + 0.820812i
\(171\) −0.661517 2.32821i −0.0505875 0.178043i
\(172\) −8.69256 7.29392i −0.662801 0.556156i
\(173\) 5.44260 + 12.6174i 0.413793 + 0.959280i 0.989882 + 0.141893i \(0.0453189\pi\)
−0.576089 + 0.817387i \(0.695422\pi\)
\(174\) 10.0376 5.70157i 0.760951 0.432235i
\(175\) 0.105546 + 0.0250148i 0.00797850 + 0.00189094i
\(176\) −1.62275 5.42038i −0.122320 0.408576i
\(177\) −1.75828 + 4.72723i −0.132161 + 0.355320i
\(178\) −17.5932 2.05635i −1.31867 0.154130i
\(179\) −1.56628 + 8.88284i −0.117070 + 0.663935i 0.868635 + 0.495452i \(0.164998\pi\)
−0.985705 + 0.168482i \(0.946113\pi\)
\(180\) 1.06789 + 6.59717i 0.0795962 + 0.491724i
\(181\) 1.98404 + 11.2521i 0.147473 + 0.836358i 0.965349 + 0.260964i \(0.0840404\pi\)
−0.817876 + 0.575395i \(0.804849\pi\)
\(182\) −0.628372 10.7887i −0.0465781 0.799714i
\(183\) −1.32990 12.1158i −0.0983094 0.895624i
\(184\) −1.95990 + 4.54357i −0.144486 + 0.334956i
\(185\) −13.5976 + 6.82896i −0.999713 + 0.502075i
\(186\) −0.951456 4.14406i −0.0697641 0.303857i
\(187\) 41.1481 9.75228i 3.00905 0.713157i
\(188\) 1.91525 + 3.31732i 0.139684 + 0.241940i
\(189\) −14.3254 4.61992i −1.04202 0.336050i
\(190\) −0.898634 + 1.55648i −0.0651938 + 0.112919i
\(191\) 6.03754 20.1668i 0.436861 1.45922i −0.402388 0.915469i \(-0.631820\pi\)
0.839249 0.543748i \(-0.182995\pi\)
\(192\) 0.213162 1.71888i 0.0153836 0.124050i
\(193\) −16.7511 11.0174i −1.20577 0.793048i −0.222453 0.974943i \(-0.571407\pi\)
−0.983318 + 0.181895i \(0.941777\pi\)
\(194\) −2.16657 2.91021i −0.155551 0.208941i
\(195\) −14.3643 0.937944i −1.02865 0.0671675i
\(196\) −1.16228 + 0.764444i −0.0830201 + 0.0546032i
\(197\) 18.6836 + 6.80027i 1.33115 + 0.484499i 0.907014 0.421100i \(-0.138356\pi\)
0.424136 + 0.905599i \(0.360578\pi\)
\(198\) 5.09630 16.1911i 0.362178 1.15065i
\(199\) −21.2644 + 7.73960i −1.50739 + 0.548646i −0.957962 0.286894i \(-0.907377\pi\)
−0.549430 + 0.835540i \(0.685155\pi\)
\(200\) −0.0223608 + 0.0300357i −0.00158114 + 0.00212385i
\(201\) −0.239006 0.671304i −0.0168582 0.0473501i
\(202\) −1.99909 + 2.11891i −0.140655 + 0.149086i
\(203\) 13.2489 14.0430i 0.929891 0.985627i
\(204\) 12.7324 + 2.33743i 0.891448 + 0.163653i
\(205\) 4.95322 6.65333i 0.345948 0.464688i
\(206\) −7.44867 + 2.71109i −0.518973 + 0.188891i
\(207\) −12.5160 + 7.98223i −0.869924 + 0.554803i
\(208\) 3.50575 + 1.27599i 0.243080 + 0.0884740i
\(209\) 3.81390 2.50844i 0.263813 0.173512i
\(210\) 4.94591 + 10.0231i 0.341300 + 0.691659i
\(211\) 8.09444 + 10.8727i 0.557244 + 0.748508i 0.988083 0.153920i \(-0.0491899\pi\)
−0.430839 + 0.902429i \(0.641782\pi\)
\(212\) −2.79050 1.83534i −0.191652 0.126052i
\(213\) 1.28080 + 0.967582i 0.0877590 + 0.0662976i
\(214\) −0.449793 + 1.50241i −0.0307472 + 0.102703i
\(215\) −12.6391 + 21.8916i −0.861979 + 1.49299i
\(216\) 3.42318 3.90920i 0.232918 0.265987i
\(217\) −3.55550 6.15831i −0.241363 0.418053i
\(218\) −15.5522 + 3.68594i −1.05333 + 0.249643i
\(219\) 5.70510 5.30721i 0.385515 0.358628i
\(220\) −11.2637 + 5.65683i −0.759397 + 0.381384i
\(221\) −11.0440 + 25.6029i −0.742900 + 1.72223i
\(222\) 10.8299 + 4.76211i 0.726858 + 0.319612i
\(223\) −1.52468 26.1777i −0.102100 1.75299i −0.528935 0.848662i \(-0.677409\pi\)
0.426835 0.904329i \(-0.359628\pi\)
\(224\) −0.503015 2.85274i −0.0336091 0.190607i
\(225\) −0.106091 + 0.0369339i −0.00707271 + 0.00246226i
\(226\) 0.744331 4.22131i 0.0495122 0.280797i
\(227\) −5.59370 0.653809i −0.371267 0.0433948i −0.0715860 0.997434i \(-0.522806\pi\)
−0.299681 + 0.954040i \(0.596880\pi\)
\(228\) 1.37784 0.232980i 0.0912498 0.0154295i
\(229\) 1.29122 + 4.31297i 0.0853261 + 0.285009i 0.989994 0.141108i \(-0.0450664\pi\)
−0.904668 + 0.426117i \(0.859881\pi\)
\(230\) 10.7260 + 2.54211i 0.707251 + 0.167622i
\(231\) 0.199472 28.3876i 0.0131243 1.86777i
\(232\) 2.63982 + 6.11980i 0.173313 + 0.401785i
\(233\) 18.4568 + 15.4871i 1.20914 + 1.01459i 0.999321 + 0.0368530i \(0.0117333\pi\)
0.209823 + 0.977739i \(0.432711\pi\)
\(234\) 6.55672 + 9.07058i 0.428626 + 0.592963i
\(235\) 6.53677 5.48500i 0.426412 0.357802i
\(236\) −2.60221 1.30688i −0.169389 0.0850705i
\(237\) 2.31822 + 2.21812i 0.150584 + 0.144082i
\(238\) 21.5036 2.51342i 1.39387 0.162921i
\(239\) −0.945595 + 16.2352i −0.0611655 + 1.05017i 0.818478 + 0.574538i \(0.194818\pi\)
−0.879644 + 0.475633i \(0.842219\pi\)
\(240\) −3.85341 + 0.197278i −0.248736 + 0.0127342i
\(241\) −5.62866 5.96603i −0.362574 0.384306i 0.520247 0.854016i \(-0.325840\pi\)
−0.882821 + 0.469710i \(0.844358\pi\)
\(242\) 21.0138 1.35082
\(243\) 15.0814 3.94351i 0.967473 0.252976i
\(244\) 7.03706 0.450501
\(245\) 2.12667 + 2.25414i 0.135868 + 0.144012i
\(246\) −6.44076 + 0.329739i −0.410648 + 0.0210234i
\(247\) −0.175012 + 3.00483i −0.0111357 + 0.191193i
\(248\) 2.43823 0.284988i 0.154827 0.0180967i
\(249\) −4.35643 4.16832i −0.276077 0.264157i
\(250\) 10.0282 + 5.03634i 0.634238 + 0.318526i
\(251\) −9.58840 + 8.04563i −0.605215 + 0.507835i −0.893117 0.449824i \(-0.851487\pi\)
0.287902 + 0.957660i \(0.407042\pi\)
\(252\) 3.55382 7.93036i 0.223870 0.499566i
\(253\) −21.4474 17.9965i −1.34839 1.13143i
\(254\) −4.96884 11.5191i −0.311773 0.722770i
\(255\) 0.202629 28.8370i 0.0126892 1.80585i
\(256\) 0.973045 + 0.230616i 0.0608153 + 0.0144135i
\(257\) −3.76253 12.5677i −0.234700 0.783953i −0.991477 0.130280i \(-0.958412\pi\)
0.756777 0.653673i \(-0.226773\pi\)
\(258\) 19.3791 3.27682i 1.20649 0.204006i
\(259\) 19.6523 + 2.29703i 1.22114 + 0.142730i
\(260\) 1.44317 8.18464i 0.0895018 0.507590i
\(261\) −3.74840 + 19.6401i −0.232020 + 1.21569i
\(262\) −0.361943 2.05268i −0.0223609 0.126815i
\(263\) 0.388598 + 6.67197i 0.0239620 + 0.411411i 0.988866 + 0.148808i \(0.0475438\pi\)
−0.964904 + 0.262603i \(0.915419\pi\)
\(264\) 8.97109 + 3.94474i 0.552132 + 0.242782i
\(265\) −2.94698 + 6.83186i −0.181031 + 0.419678i
\(266\) 2.08848 1.04887i 0.128053 0.0643105i
\(267\) 22.4630 20.8964i 1.37472 1.27884i
\(268\) 0.400320 0.0948775i 0.0244534 0.00579557i
\(269\) 0.548920 + 0.950757i 0.0334682 + 0.0579687i 0.882274 0.470736i \(-0.156011\pi\)
−0.848806 + 0.528704i \(0.822678\pi\)
\(270\) −9.90034 5.99769i −0.602515 0.365008i
\(271\) 4.63384 8.02605i 0.281486 0.487548i −0.690265 0.723557i \(-0.742506\pi\)
0.971751 + 0.236009i \(0.0758394\pi\)
\(272\) −2.14354 + 7.15993i −0.129971 + 0.434135i
\(273\) 14.9355 + 11.2830i 0.903936 + 0.682879i
\(274\) −5.67894 3.73510i −0.343077 0.225645i
\(275\) −0.126519 0.169944i −0.00762938 0.0102480i
\(276\) −3.79258 7.68583i −0.228286 0.462633i
\(277\) −20.7086 + 13.6203i −1.24426 + 0.818363i −0.988914 0.148486i \(-0.952560\pi\)
−0.255346 + 0.966850i \(0.582190\pi\)
\(278\) 7.43132 + 2.70478i 0.445701 + 0.162222i
\(279\) 6.53404 + 3.39733i 0.391182 + 0.203393i
\(280\) −6.06386 + 2.20706i −0.362385 + 0.131897i
\(281\) −1.03043 + 1.38411i −0.0614705 + 0.0825692i −0.831795 0.555083i \(-0.812687\pi\)
0.770325 + 0.637652i \(0.220094\pi\)
\(282\) −6.52558 1.19797i −0.388593 0.0713383i
\(283\) −7.88870 + 8.36154i −0.468935 + 0.497042i −0.918068 0.396423i \(-0.870251\pi\)
0.449133 + 0.893465i \(0.351733\pi\)
\(284\) −0.635983 + 0.674102i −0.0377386 + 0.0400006i
\(285\) −1.04411 2.93263i −0.0618480 0.173714i
\(286\) −12.6053 + 16.9319i −0.745368 + 1.00120i
\(287\) −10.1354 + 3.68899i −0.598274 + 0.217754i
\(288\) 2.02786 + 2.21084i 0.119493 + 0.130275i
\(289\) −36.5159 13.2907i −2.14799 0.781806i
\(290\) 12.4047 8.15868i 0.728427 0.479094i
\(291\) 6.27075 + 0.409460i 0.367598 + 0.0240030i
\(292\) 2.68643 + 3.60850i 0.157211 + 0.211172i
\(293\) −9.63418 6.33650i −0.562835 0.370182i 0.235981 0.971758i \(-0.424170\pi\)
−0.798816 + 0.601575i \(0.794540\pi\)
\(294\) 0.296538 2.39121i 0.0172945 0.139458i
\(295\) −1.86046 + 6.21436i −0.108320 + 0.361814i
\(296\) −3.41523 + 5.91535i −0.198506 + 0.343823i
\(297\) 15.6343 + 24.8986i 0.907197 + 1.44476i
\(298\) −5.18324 8.97764i −0.300257 0.520061i
\(299\) 17.9631 4.25732i 1.03883 0.246207i
\(300\) −0.0145133 0.0632124i −0.000837924 0.00364957i
\(301\) 29.3740 14.7522i 1.69309 0.850301i
\(302\) −8.51417 + 19.7381i −0.489935 + 1.13580i
\(303\) −0.550533 5.01550i −0.0316273 0.288133i
\(304\) 0.0469106 + 0.805424i 0.00269051 + 0.0461943i
\(305\) −2.72216 15.4381i −0.155871 0.883986i
\(306\) −17.3769 + 14.1696i −0.993371 + 0.810024i
\(307\) 3.50034 19.8514i 0.199775 1.13298i −0.705677 0.708533i \(-0.749357\pi\)
0.905452 0.424448i \(-0.139532\pi\)
\(308\) 16.2792 + 1.90276i 0.927593 + 0.108420i
\(309\) 4.78629 12.8682i 0.272283 0.732044i
\(310\) −1.56840 5.23882i −0.0890792 0.297545i
\(311\) −12.5976 2.98568i −0.714343 0.169302i −0.142654 0.989773i \(-0.545564\pi\)
−0.571689 + 0.820470i \(0.693712\pi\)
\(312\) −5.61868 + 3.19152i −0.318095 + 0.180684i
\(313\) 13.5386 + 31.3861i 0.765249 + 1.77405i 0.619921 + 0.784664i \(0.287165\pi\)
0.145328 + 0.989383i \(0.453576\pi\)
\(314\) −5.96601 5.00607i −0.336681 0.282509i
\(315\) −18.7726 4.72878i −1.05772 0.266437i
\(316\) −1.41902 + 1.19070i −0.0798263 + 0.0669822i
\(317\) −4.45315 2.23645i −0.250114 0.125612i 0.319326 0.947645i \(-0.396544\pi\)
−0.569440 + 0.822033i \(0.692840\pi\)
\(318\) 5.55347 1.62017i 0.311423 0.0908546i
\(319\) −37.4554 + 4.37791i −2.09710 + 0.245116i
\(320\) 0.129528 2.22391i 0.00724084 0.124320i
\(321\) −1.47669 2.27993i −0.0824207 0.127253i
\(322\) −9.83647 10.4261i −0.548165 0.581021i
\(323\) −6.02987 −0.335511
\(324\) 1.31313 + 8.90369i 0.0729519 + 0.494649i
\(325\) 0.139699 0.00774909
\(326\) −7.60580 8.06168i −0.421246 0.446495i
\(327\) 12.5978 24.6509i 0.696661 1.36320i
\(328\) 0.216499 3.71715i 0.0119542 0.205245i
\(329\) −11.0210 + 1.28817i −0.607607 + 0.0710190i
\(330\) 5.18381 21.2071i 0.285359 1.16741i
\(331\) −0.339951 0.170730i −0.0186854 0.00938417i 0.439432 0.898276i \(-0.355180\pi\)
−0.458117 + 0.888892i \(0.651476\pi\)
\(332\) 2.66665 2.23758i 0.146351 0.122803i
\(333\) −18.4392 + 8.93827i −1.01046 + 0.489814i
\(334\) 6.48698 + 5.44322i 0.354952 + 0.297840i
\(335\) −0.363002 0.841534i −0.0198329 0.0459779i
\(336\) 4.32739 + 2.53913i 0.236078 + 0.138521i
\(337\) 10.7920 + 2.55776i 0.587879 + 0.139330i 0.513781 0.857921i \(-0.328244\pi\)
0.0740974 + 0.997251i \(0.476392\pi\)
\(338\) −0.263415 0.879866i −0.0143279 0.0478584i
\(339\) 4.73218 + 5.72075i 0.257017 + 0.310708i
\(340\) 16.5369 + 1.93289i 0.896840 + 0.104826i
\(341\) −2.41190 + 13.6786i −0.130612 + 0.740736i
\(342\) −1.23952 + 2.07889i −0.0670256 + 0.112413i
\(343\) 2.82134 + 16.0006i 0.152338 + 0.863952i
\(344\) 0.659788 + 11.3281i 0.0355734 + 0.610772i
\(345\) −15.3944 + 11.2934i −0.828804 + 0.608017i
\(346\) 5.44260 12.6174i 0.292596 0.678313i
\(347\) −6.31802 + 3.17303i −0.339169 + 0.170337i −0.610228 0.792226i \(-0.708922\pi\)
0.271059 + 0.962563i \(0.412626\pi\)
\(348\) −11.0354 3.38846i −0.591560 0.181640i
\(349\) −9.52680 + 2.25789i −0.509958 + 0.120862i −0.477536 0.878612i \(-0.658470\pi\)
−0.0324218 + 0.999474i \(0.510322\pi\)
\(350\) −0.0542347 0.0939373i −0.00289897 0.00502116i
\(351\) −19.3247 1.53484i −1.03147 0.0819236i
\(352\) −2.82904 + 4.90004i −0.150788 + 0.261173i
\(353\) −3.61221 + 12.0656i −0.192258 + 0.642188i 0.806446 + 0.591307i \(0.201388\pi\)
−0.998705 + 0.0508805i \(0.983797\pi\)
\(354\) 4.64507 1.96509i 0.246883 0.104443i
\(355\) 1.72489 + 1.13448i 0.0915475 + 0.0602118i
\(356\) 10.5774 + 14.2080i 0.560604 + 0.753021i
\(357\) −20.8256 + 31.1844i −1.10221 + 1.65045i
\(358\) 7.53599 4.95650i 0.398290 0.261959i
\(359\) 24.1126 + 8.77626i 1.27261 + 0.463193i 0.887982 0.459877i \(-0.152107\pi\)
0.384630 + 0.923071i \(0.374329\pi\)
\(360\) 4.06577 5.30401i 0.214285 0.279546i
\(361\) 17.2425 6.27576i 0.907500 0.330303i
\(362\) 6.82291 9.16477i 0.358604 0.481689i
\(363\) −23.5909 + 27.7166i −1.23820 + 1.45475i
\(364\) −7.41623 + 7.86074i −0.388716 + 0.412015i
\(365\) 6.87726 7.28947i 0.359972 0.381548i
\(366\) −7.90006 + 9.28168i −0.412943 + 0.485161i
\(367\) −2.04913 + 2.75246i −0.106964 + 0.143677i −0.852382 0.522920i \(-0.824843\pi\)
0.745418 + 0.666597i \(0.232250\pi\)
\(368\) 4.64984 1.69240i 0.242389 0.0882226i
\(369\) 6.79572 8.86536i 0.353771 0.461512i
\(370\) 14.2984 + 5.20420i 0.743340 + 0.270553i
\(371\) 8.08336 5.31651i 0.419667 0.276020i
\(372\) −2.36135 + 3.53589i −0.122430 + 0.183327i
\(373\) −2.47132 3.31955i −0.127960 0.171880i 0.733526 0.679661i \(-0.237873\pi\)
−0.861486 + 0.507781i \(0.830466\pi\)
\(374\) −35.3311 23.2376i −1.82693 1.20159i
\(375\) −17.9008 + 7.57291i −0.924393 + 0.391063i
\(376\) 1.09860 3.66959i 0.0566561 0.189245i
\(377\) 12.4325 21.5337i 0.640306 1.10904i
\(378\) 6.47027 + 13.5903i 0.332795 + 0.699010i
\(379\) −10.9856 19.0275i −0.564290 0.977379i −0.997115 0.0759015i \(-0.975817\pi\)
0.432825 0.901478i \(-0.357517\pi\)
\(380\) 1.74882 0.414479i 0.0897127 0.0212623i
\(381\) 20.7715 + 6.37796i 1.06416 + 0.326753i
\(382\) −18.8120 + 9.44774i −0.962505 + 0.483388i
\(383\) 4.12972 9.57376i 0.211019 0.489196i −0.779529 0.626366i \(-0.784541\pi\)
0.990548 + 0.137170i \(0.0438007\pi\)
\(384\) −1.39655 + 1.02452i −0.0712675 + 0.0522824i
\(385\) −2.12297 36.4499i −0.108196 1.85766i
\(386\) 3.48156 + 19.7449i 0.177207 + 1.00499i
\(387\) −17.4336 + 29.2391i −0.886200 + 1.48631i
\(388\) −0.630018 + 3.57301i −0.0319843 + 0.181392i
\(389\) 10.8958 + 1.27354i 0.552439 + 0.0645708i 0.387733 0.921772i \(-0.373258\pi\)
0.164706 + 0.986343i \(0.447332\pi\)
\(390\) 9.17515 + 11.0919i 0.464602 + 0.561659i
\(391\) 10.6068 + 35.4292i 0.536409 + 1.79173i
\(392\) 1.35364 + 0.320819i 0.0683692 + 0.0162038i
\(393\) 3.11376 + 1.82702i 0.157068 + 0.0921611i
\(394\) −7.87512 18.2566i −0.396743 0.919753i
\(395\) 3.16113 + 2.65250i 0.159054 + 0.133462i
\(396\) −15.2743 + 7.40411i −0.767561 + 0.372070i
\(397\) −10.7858 + 9.05040i −0.541326 + 0.454227i −0.871991 0.489522i \(-0.837171\pi\)
0.330665 + 0.943748i \(0.392727\pi\)
\(398\) 20.2221 + 10.1559i 1.01364 + 0.509070i
\(399\) −0.961166 + 3.93215i −0.0481185 + 0.196853i
\(400\) 0.0371921 0.00434713i 0.00185960 0.000217356i
\(401\) 1.54726 26.5654i 0.0772664 1.32661i −0.707452 0.706761i \(-0.750156\pi\)
0.784719 0.619852i \(-0.212807\pi\)
\(402\) −0.324273 + 0.634524i −0.0161732 + 0.0316472i
\(403\) −6.28482 6.66152i −0.313069 0.331834i
\(404\) 2.91309 0.144932
\(405\) 19.0253 6.32504i 0.945373 0.314294i
\(406\) −19.3065 −0.958164
\(407\) −26.5213 28.1110i −1.31461 1.39341i
\(408\) −7.03733 10.8653i −0.348400 0.537911i
\(409\) −0.681583 + 11.7023i −0.0337021 + 0.578643i 0.938613 + 0.344971i \(0.112111\pi\)
−0.972315 + 0.233672i \(0.924926\pi\)
\(410\) −8.23856 + 0.962949i −0.406873 + 0.0475567i
\(411\) 11.3019 3.29721i 0.557480 0.162639i
\(412\) 7.08357 + 3.55750i 0.348982 + 0.175265i
\(413\) 6.46171 5.42202i 0.317960 0.266800i
\(414\) 14.3951 + 3.62608i 0.707480 + 0.178212i
\(415\) −5.94044 4.98462i −0.291605 0.244685i
\(416\) −1.47767 3.42563i −0.0724488 0.167955i
\(417\) −11.9102 + 6.76522i −0.583245 + 0.331294i
\(418\) −4.44183 1.05273i −0.217257 0.0514908i
\(419\) 6.43034 + 21.4788i 0.314143 + 1.04931i 0.958621 + 0.284687i \(0.0918896\pi\)
−0.644478 + 0.764623i \(0.722925\pi\)
\(420\) 3.89645 10.4758i 0.190127 0.511166i
\(421\) 15.9895 + 1.86891i 0.779283 + 0.0910851i 0.496428 0.868078i \(-0.334645\pi\)
0.282854 + 0.959163i \(0.408719\pi\)
\(422\) 2.35379 13.3490i 0.114581 0.649819i
\(423\) 8.90595 7.26218i 0.433022 0.353099i
\(424\) 0.579978 + 3.28922i 0.0281662 + 0.159739i
\(425\) 0.0162726 + 0.279389i 0.000789336 + 0.0135524i
\(426\) −0.175145 1.59561i −0.00848580 0.0773078i
\(427\) −8.07392 + 18.7174i −0.390724 + 0.905801i
\(428\) 1.40148 0.703851i 0.0677433 0.0340219i
\(429\) −8.18149 35.6344i −0.395006 1.72045i
\(430\) 24.5968 5.82955i 1.18616 0.281126i
\(431\) −1.78363 3.08934i −0.0859146 0.148808i 0.819866 0.572555i \(-0.194048\pi\)
−0.905781 + 0.423747i \(0.860715\pi\)
\(432\) −5.19258 + 0.192722i −0.249828 + 0.00927234i
\(433\) −3.88735 + 6.73308i −0.186814 + 0.323571i −0.944186 0.329412i \(-0.893149\pi\)
0.757372 + 0.652983i \(0.226483\pi\)
\(434\) −2.03946 + 6.81227i −0.0978971 + 0.326999i
\(435\) −3.16486 + 25.5206i −0.151743 + 1.22362i
\(436\) 13.3536 + 8.78282i 0.639523 + 0.420621i
\(437\) 2.38398 + 3.20223i 0.114041 + 0.153184i
\(438\) −7.77540 0.507709i −0.371523 0.0242593i
\(439\) −6.60977 + 4.34731i −0.315467 + 0.207486i −0.697361 0.716720i \(-0.745642\pi\)
0.381894 + 0.924206i \(0.375272\pi\)
\(440\) 11.8442 + 4.31095i 0.564652 + 0.205517i
\(441\) 2.82103 + 3.07558i 0.134335 + 0.146456i
\(442\) 26.2017 9.53664i 1.24629 0.453612i
\(443\) 20.4514 27.4710i 0.971676 1.30519i 0.0194437 0.999811i \(-0.493810\pi\)
0.952232 0.305376i \(-0.0987821\pi\)
\(444\) −3.96812 11.1454i −0.188319 0.528936i
\(445\) 27.0783 28.7013i 1.28363 1.36057i
\(446\) −17.9947 + 19.0733i −0.852074 + 0.903146i
\(447\) 17.6602 + 3.24207i 0.835297 + 0.153345i
\(448\) −1.72982 + 2.32355i −0.0817262 + 0.109777i
\(449\) −21.6003 + 7.86187i −1.01938 + 0.371024i −0.797028 0.603942i \(-0.793596\pi\)
−0.222353 + 0.974966i \(0.571374\pi\)
\(450\) 0.0996685 + 0.0518219i 0.00469842 + 0.00244291i
\(451\) 19.7970 + 7.20552i 0.932205 + 0.339295i
\(452\) −3.58126 + 2.35543i −0.168448 + 0.110790i
\(453\) −16.4756 33.3886i −0.774093 1.56873i
\(454\) 3.36306 + 4.51738i 0.157836 + 0.212011i
\(455\) 20.1140 + 13.2292i 0.942959 + 0.620194i
\(456\) −1.11500 0.842325i −0.0522145 0.0394455i
\(457\) −12.1517 + 40.5895i −0.568432 + 1.89870i −0.155835 + 0.987783i \(0.549807\pi\)
−0.412597 + 0.910914i \(0.635378\pi\)
\(458\) 2.25105 3.89894i 0.105185 0.182185i
\(459\) 0.818585 38.8270i 0.0382083 1.81229i
\(460\) −5.51156 9.54630i −0.256978 0.445099i
\(461\) 11.2787 2.67311i 0.525303 0.124499i 0.0405957 0.999176i \(-0.487074\pi\)
0.484707 + 0.874677i \(0.338926\pi\)
\(462\) −20.7853 + 19.3357i −0.967020 + 0.899577i
\(463\) 4.67961 2.35019i 0.217480 0.109222i −0.336724 0.941603i \(-0.609319\pi\)
0.554204 + 0.832381i \(0.313023\pi\)
\(464\) 2.63982 6.11980i 0.122551 0.284105i
\(465\) 8.67061 + 3.81262i 0.402090 + 0.176806i
\(466\) −1.40092 24.0529i −0.0648963 1.11423i
\(467\) −0.229543 1.30180i −0.0106220 0.0602403i 0.979036 0.203687i \(-0.0652925\pi\)
−0.989658 + 0.143447i \(0.954181\pi\)
\(468\) 2.09821 10.9938i 0.0969898 0.508188i
\(469\) −0.206945 + 1.17364i −0.00955583 + 0.0541938i
\(470\) −8.47545 0.990638i −0.390943 0.0456947i
\(471\) 13.3005 2.24900i 0.612856 0.103628i
\(472\) 0.835155 + 2.78961i 0.0384411 + 0.128402i
\(473\) −62.4734 14.8065i −2.87253 0.680802i
\(474\) 0.0225443 3.20838i 0.00103550 0.147366i
\(475\) 0.0119657 + 0.0277397i 0.000549026 + 0.00127279i
\(476\) −16.5849 13.9164i −0.760167 0.637856i
\(477\) −4.09757 + 9.14374i −0.187615 + 0.418663i
\(478\) 12.4580 10.4535i 0.569816 0.478132i
\(479\) −2.60074 1.30614i −0.118831 0.0596790i 0.388391 0.921495i \(-0.373031\pi\)
−0.507221 + 0.861816i \(0.669327\pi\)
\(480\) 2.78786 + 2.66749i 0.127248 + 0.121754i
\(481\) 25.3104 2.95836i 1.15405 0.134890i
\(482\) −0.476913 + 8.18828i −0.0217228 + 0.372966i
\(483\) 24.7945 1.26937i 1.12819 0.0577583i
\(484\) −14.4206 15.2849i −0.655480 0.694768i
\(485\) 8.08231 0.366999
\(486\) −13.2179 8.26362i −0.599576 0.374845i
\(487\) 22.5798 1.02319 0.511594 0.859227i \(-0.329055\pi\)
0.511594 + 0.859227i \(0.329055\pi\)
\(488\) −4.82912 5.11857i −0.218604 0.231707i
\(489\) 19.1717 0.981508i 0.866973 0.0443853i
\(490\) 0.180192 3.09377i 0.00814023 0.139762i
\(491\) −24.4537 + 2.85823i −1.10358 + 0.128990i −0.648320 0.761368i \(-0.724528\pi\)
−0.455261 + 0.890358i \(0.650454\pi\)
\(492\) 4.65976 + 4.45856i 0.210078 + 0.201007i
\(493\) 44.5143 + 22.3559i 2.00482 + 1.00686i
\(494\) 2.30574 1.93474i 0.103740 0.0870482i
\(495\) 22.1520 + 30.6451i 0.995657 + 1.37740i
\(496\) −1.88050 1.57793i −0.0844371 0.0708512i
\(497\) −1.06331 2.46504i −0.0476961 0.110572i
\(498\) −0.0423656 + 6.02923i −0.00189845 + 0.270176i
\(499\) 9.64104 + 2.28497i 0.431592 + 0.102289i 0.440669 0.897670i \(-0.354741\pi\)
−0.00907686 + 0.999959i \(0.502889\pi\)
\(500\) −3.21845 10.7504i −0.143934 0.480772i
\(501\) −14.4620 + 2.44539i −0.646113 + 0.109252i
\(502\) 12.4321 + 1.45311i 0.554873 + 0.0648554i
\(503\) 6.64598 37.6912i 0.296330 1.68057i −0.365419 0.930843i \(-0.619074\pi\)
0.661749 0.749725i \(-0.269814\pi\)
\(504\) −8.20712 + 2.85719i −0.365574 + 0.127269i
\(505\) −1.12688 6.39085i −0.0501455 0.284389i
\(506\) 1.62792 + 27.9502i 0.0723697 + 1.24254i
\(507\) 1.45624 + 0.640333i 0.0646738 + 0.0284382i
\(508\) −4.96884 + 11.5191i −0.220457 + 0.511076i
\(509\) 30.2138 15.1739i 1.33920 0.672572i 0.372393 0.928075i \(-0.378537\pi\)
0.966808 + 0.255503i \(0.0822411\pi\)
\(510\) −21.1144 + 19.6418i −0.934959 + 0.869753i
\(511\) −12.6803 + 3.00528i −0.560943 + 0.132946i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) −1.35046 3.96873i −0.0596244 0.175224i
\(514\) −6.55943 + 11.3613i −0.289324 + 0.501124i
\(515\) 5.06442 16.9163i 0.223165 0.745423i
\(516\) −15.6822 11.8471i −0.690370 0.521541i
\(517\) 18.1078 + 11.9097i 0.796379 + 0.523787i
\(518\) −11.8154 15.8709i −0.519141 0.697327i
\(519\) 10.5319 + 21.3433i 0.462298 + 0.936868i
\(520\) −6.94366 + 4.56691i −0.304499 + 0.200272i
\(521\) −40.7602 14.8355i −1.78574 0.649955i −0.999486 0.0320465i \(-0.989798\pi\)
−0.786250 0.617908i \(-0.787980\pi\)
\(522\) 16.8580 10.7514i 0.737856 0.470576i
\(523\) −32.7107 + 11.9057i −1.43034 + 0.520600i −0.937028 0.349254i \(-0.886435\pi\)
−0.493309 + 0.869854i \(0.664213\pi\)
\(524\) −1.24469 + 1.67190i −0.0543744 + 0.0730374i
\(525\) 0.184787 + 0.0339233i 0.00806475 + 0.00148054i
\(526\) 4.58634 4.86124i 0.199974 0.211960i
\(527\) 12.5906 13.3452i 0.548454 0.581327i
\(528\) −3.28703 9.23238i −0.143050 0.401788i
\(529\) 0.886903 1.19132i 0.0385610 0.0517964i
\(530\) 6.99165 2.54475i 0.303698 0.110537i
\(531\) −2.62282 + 8.33280i −0.113821 + 0.361613i
\(532\) −2.19612 0.799323i −0.0952140 0.0346551i
\(533\) −11.6059 + 7.63335i −0.502709 + 0.330637i
\(534\) −30.6146 1.99903i −1.32482 0.0865066i
\(535\) −2.08627 2.80235i −0.0901975 0.121156i
\(536\) −0.343727 0.226073i −0.0148468 0.00976487i
\(537\) −1.92269 + 15.5041i −0.0829703 + 0.669052i
\(538\) 0.314864 1.05172i 0.0135747 0.0453428i
\(539\) −3.93559 + 6.81664i −0.169518 + 0.293613i
\(540\) 2.43146 + 11.3171i 0.104633 + 0.487011i
\(541\) 6.10522 + 10.5746i 0.262484 + 0.454636i 0.966901 0.255150i \(-0.0821250\pi\)
−0.704417 + 0.709786i \(0.748792\pi\)
\(542\) −9.01787 + 2.13727i −0.387351 + 0.0918038i
\(543\) 4.42842 + 19.2879i 0.190042 + 0.827724i
\(544\) 6.67893 3.35429i 0.286357 0.143814i
\(545\) 14.1024 32.6931i 0.604082 1.40042i
\(546\) −2.04237 18.6066i −0.0874055 0.796287i
\(547\) −0.825872 14.1797i −0.0353117 0.606279i −0.968827 0.247740i \(-0.920312\pi\)
0.933515 0.358539i \(-0.116725\pi\)
\(548\) 1.18031 + 6.69389i 0.0504205 + 0.285949i
\(549\) −3.37339 20.8399i −0.143973 0.889426i
\(550\) −0.0367905 + 0.208649i −0.00156875 + 0.00889684i
\(551\) 5.34080 + 0.624250i 0.227526 + 0.0265939i
\(552\) −2.98784 + 8.03296i −0.127171 + 0.341905i
\(553\) −1.53897 5.14052i −0.0654436 0.218597i
\(554\) 24.1182 + 5.71611i 1.02468 + 0.242854i
\(555\) −22.9161 + 13.0168i −0.972735 + 0.552532i
\(556\) −3.13230 7.26148i −0.132839 0.307955i
\(557\) −1.35560 1.13749i −0.0574388 0.0481969i 0.613616 0.789604i \(-0.289714\pi\)
−0.671055 + 0.741407i \(0.734159\pi\)
\(558\) −2.01280 7.08407i −0.0852087 0.299893i
\(559\) 32.4297 27.2117i 1.37163 1.15093i
\(560\) 5.76663 + 2.89611i 0.243685 + 0.122383i
\(561\) 70.3137 20.5133i 2.96865 0.866073i
\(562\) 1.71389 0.200325i 0.0722962 0.00845021i
\(563\) −2.75169 + 47.2446i −0.115970 + 1.99112i 0.0160148 + 0.999872i \(0.494902\pi\)
−0.131985 + 0.991252i \(0.542135\pi\)
\(564\) 3.60675 + 5.56864i 0.151872 + 0.234482i
\(565\) 6.55278 + 6.94554i 0.275678 + 0.292201i
\(566\) 11.4955 0.483193
\(567\) −25.1890 6.72285i −1.05784 0.282333i
\(568\) 0.926762 0.0388861
\(569\) 4.92644 + 5.22173i 0.206527 + 0.218906i 0.822355 0.568975i \(-0.192660\pi\)
−0.615828 + 0.787881i \(0.711178\pi\)
\(570\) −1.41661 + 2.77196i −0.0593351 + 0.116104i
\(571\) 2.55366 43.8446i 0.106867 1.83484i −0.340217 0.940347i \(-0.610500\pi\)
0.447084 0.894492i \(-0.352462\pi\)
\(572\) 20.9661 2.45059i 0.876637 0.102464i
\(573\) 8.65772 35.4189i 0.361682 1.47964i
\(574\) 9.63861 + 4.84069i 0.402308 + 0.202047i
\(575\) 0.141939 0.119101i 0.00591928 0.00496686i
\(576\) 0.216504 2.99218i 0.00902100 0.124674i
\(577\) 7.74860 + 6.50185i 0.322578 + 0.270675i 0.789668 0.613535i \(-0.210253\pi\)
−0.467089 + 0.884210i \(0.654697\pi\)
\(578\) 15.3914 + 35.6813i 0.640199 + 1.48415i
\(579\) −29.9515 17.5743i −1.24474 0.730362i
\(580\) −14.4470 3.42400i −0.599879 0.142174i
\(581\) 2.89205 + 9.66013i 0.119983 + 0.400770i
\(582\) −4.00542 4.84217i −0.166030 0.200714i
\(583\) −18.7700 2.19390i −0.777373 0.0908619i
\(584\) 0.781189 4.43034i 0.0323258 0.183329i
\(585\) −24.9302 0.350372i −1.03074 0.0144861i
\(586\) 2.00237 + 11.3560i 0.0827173 + 0.469113i
\(587\) −1.48734 25.5366i −0.0613889 1.05401i −0.878566 0.477621i \(-0.841499\pi\)
0.817177 0.576386i \(-0.195538\pi\)
\(588\) −1.94280 + 1.42525i −0.0801197 + 0.0587764i
\(589\) 0.784446 1.81855i 0.0323225 0.0749321i
\(590\) 5.79688 2.91130i 0.238654 0.119856i
\(591\) 32.9208 + 10.1084i 1.35418 + 0.415805i
\(592\) 6.64634 1.57521i 0.273163 0.0647408i
\(593\) 2.85599 + 4.94672i 0.117281 + 0.203137i 0.918689 0.394981i \(-0.129249\pi\)
−0.801408 + 0.598118i \(0.795915\pi\)
\(594\) 7.38165 28.4585i 0.302873 1.16767i
\(595\) −24.1147 + 41.7678i −0.988605 + 1.71231i
\(596\) −2.97314 + 9.93099i −0.121785 + 0.406789i
\(597\) −36.0974 + 15.2710i −1.47737 + 0.624999i
\(598\) −15.4237 10.1443i −0.630720 0.414831i
\(599\) 19.1974 + 25.7866i 0.784384 + 1.05361i 0.997070 + 0.0764898i \(0.0243713\pi\)
−0.212687 + 0.977120i \(0.568221\pi\)
\(600\) −0.0360194 + 0.0539356i −0.00147049 + 0.00220191i
\(601\) −32.3853 + 21.3001i −1.32102 + 0.868850i −0.997015 0.0772042i \(-0.975401\pi\)
−0.324007 + 0.946055i \(0.605030\pi\)
\(602\) −30.8880 11.2423i −1.25890 0.458202i
\(603\) −0.472879 1.14005i −0.0192571 0.0464263i
\(604\) 20.1997 7.35210i 0.821915 0.299153i
\(605\) −27.9542 + 37.5490i −1.13650 + 1.52659i
\(606\) −3.27034 + 3.84229i −0.132849 + 0.156082i
\(607\) −8.65305 + 9.17170i −0.351217 + 0.372268i −0.878763 0.477258i \(-0.841631\pi\)
0.527546 + 0.849526i \(0.323112\pi\)
\(608\) 0.553652 0.586837i 0.0224536 0.0237994i
\(609\) 21.6741 25.4647i 0.878281 1.03188i
\(610\) −9.36124 + 12.5743i −0.379026 + 0.509120i
\(611\) −13.4288 + 4.88769i −0.543272 + 0.197735i
\(612\) 22.2314 + 2.91570i 0.898649 + 0.117860i
\(613\) −20.3798 7.41766i −0.823134 0.299596i −0.104096 0.994567i \(-0.533195\pi\)
−0.719038 + 0.694971i \(0.755417\pi\)
\(614\) −16.8415 + 11.0768i −0.679667 + 0.447024i
\(615\) 7.97880 11.9475i 0.321736 0.481769i
\(616\) −9.78744 13.1468i −0.394347 0.529700i
\(617\) 34.5136 + 22.7000i 1.38947 + 0.913866i 0.999974 0.00716353i \(-0.00228024\pi\)
0.389492 + 0.921030i \(0.372651\pi\)
\(618\) −12.6445 + 5.34925i −0.508637 + 0.215178i
\(619\) −1.30008 + 4.34256i −0.0522545 + 0.174542i −0.980133 0.198340i \(-0.936445\pi\)
0.927879 + 0.372882i \(0.121630\pi\)
\(620\) −2.73428 + 4.73591i −0.109811 + 0.190199i
\(621\) −20.9431 + 14.9159i −0.840420 + 0.598556i
\(622\) 6.47328 + 11.2120i 0.259555 + 0.449562i
\(623\) −49.9269 + 11.8329i −2.00028 + 0.474075i
\(624\) 6.17720 + 1.89673i 0.247286 + 0.0759299i
\(625\) −22.1723 + 11.1353i −0.886890 + 0.445413i
\(626\) 13.5386 31.3861i 0.541113 1.25444i
\(627\) 6.37508 4.67681i 0.254596 0.186774i
\(628\) 0.452836 + 7.77489i 0.0180701 + 0.310252i
\(629\) 8.86478 + 50.2747i 0.353462 + 2.00458i
\(630\) 9.44298 + 16.8998i 0.376217 + 0.673305i
\(631\) −3.35180 + 19.0090i −0.133433 + 0.756735i 0.842505 + 0.538688i \(0.181080\pi\)
−0.975938 + 0.218047i \(0.930031\pi\)
\(632\) 1.83988 + 0.215051i 0.0731864 + 0.00855426i
\(633\) 14.9645 + 18.0906i 0.594785 + 0.719038i
\(634\) 1.42920 + 4.77385i 0.0567607 + 0.189594i
\(635\) 27.1930 + 6.44487i 1.07912 + 0.255757i
\(636\) −4.98949 2.92762i −0.197846 0.116088i
\(637\) −2.05565 4.76553i −0.0814478 0.188817i
\(638\) 28.8878 + 24.2398i 1.14368 + 0.959662i
\(639\) 2.30120 + 1.56028i 0.0910339 + 0.0617239i
\(640\) −1.70650 + 1.43192i −0.0674554 + 0.0566018i
\(641\) −23.0721 11.5872i −0.911293 0.457669i −0.0695693 0.997577i \(-0.522163\pi\)
−0.841724 + 0.539909i \(0.818459\pi\)
\(642\) −0.644996 + 2.63869i −0.0254560 + 0.104141i
\(643\) −18.4856 + 2.16066i −0.729002 + 0.0852082i −0.472494 0.881334i \(-0.656646\pi\)
−0.256508 + 0.966542i \(0.582572\pi\)
\(644\) −0.833438 + 14.3096i −0.0328421 + 0.563877i
\(645\) −19.9243 + 38.9870i −0.784517 + 1.53511i
\(646\) 4.13795 + 4.38597i 0.162806 + 0.172564i
\(647\) −27.0181 −1.06219 −0.531096 0.847311i \(-0.678220\pi\)
−0.531096 + 0.847311i \(0.678220\pi\)
\(648\) 5.57518 7.06522i 0.219014 0.277548i
\(649\) −16.4760 −0.646739
\(650\) −0.0958671 0.101613i −0.00376022 0.00398560i
\(651\) −6.69562 10.3377i −0.262422 0.405166i
\(652\) −0.644435 + 11.0645i −0.0252380 + 0.433320i
\(653\) −6.47720 + 0.757076i −0.253472 + 0.0296267i −0.241880 0.970306i \(-0.577764\pi\)
−0.0115922 + 0.999933i \(0.503690\pi\)
\(654\) −26.5756 + 7.75315i −1.03919 + 0.303172i
\(655\) 4.14937 + 2.08389i 0.162129 + 0.0814243i
\(656\) −2.85233 + 2.39339i −0.111365 + 0.0934460i
\(657\) 9.39860 9.68556i 0.366674 0.377870i
\(658\) 8.50004 + 7.13238i 0.331366 + 0.278049i
\(659\) −14.8284 34.3761i −0.577633 1.33910i −0.917165 0.398509i \(-0.869528\pi\)
0.339532 0.940595i \(-0.389731\pi\)
\(660\) −18.9828 + 10.7826i −0.738904 + 0.419712i
\(661\) −30.2497 7.16931i −1.17658 0.278854i −0.404594 0.914497i \(-0.632587\pi\)
−0.771983 + 0.635643i \(0.780735\pi\)
\(662\) 0.109104 + 0.364434i 0.00424046 + 0.0141641i
\(663\) −16.8364 + 45.2655i −0.653872 + 1.75797i
\(664\) −3.45753 0.404127i −0.134178 0.0156832i
\(665\) −0.904052 + 5.12714i −0.0350576 + 0.198822i
\(666\) 19.1552 + 7.27836i 0.742249 + 0.282031i
\(667\) −5.72683 32.4785i −0.221744 1.25757i
\(668\) −0.492379 8.45382i −0.0190507 0.327088i
\(669\) −4.95561 45.1469i −0.191595 1.74548i
\(670\) −0.363002 + 0.841534i −0.0140240 + 0.0325113i
\(671\) 35.5811 17.8695i 1.37359 0.689844i
\(672\) −1.12274 4.89008i −0.0433106 0.188639i
\(673\) −15.5065 + 3.67510i −0.597730 + 0.141665i −0.518333 0.855179i \(-0.673447\pi\)
−0.0793963 + 0.996843i \(0.525299\pi\)
\(674\) −5.54549 9.60507i −0.213604 0.369973i
\(675\) −0.180243 + 0.0732828i −0.00693756 + 0.00282066i
\(676\) −0.459225 + 0.795401i −0.0176625 + 0.0305924i
\(677\) 7.13321 23.8266i 0.274152 0.915730i −0.704413 0.709790i \(-0.748790\pi\)
0.978565 0.205940i \(-0.0660251\pi\)
\(678\) 0.913704 7.36788i 0.0350906 0.282962i
\(679\) −8.78078 5.77521i −0.336976 0.221632i
\(680\) −9.94238 13.3549i −0.381273 0.512138i
\(681\) −9.73379 0.635585i −0.373000 0.0243557i
\(682\) 11.6046 7.63245i 0.444362 0.292262i
\(683\) 2.30415 + 0.838640i 0.0881657 + 0.0320897i 0.385726 0.922613i \(-0.373951\pi\)
−0.297561 + 0.954703i \(0.596173\pi\)
\(684\) 2.36274 0.525024i 0.0903415 0.0200748i
\(685\) 14.2287 5.17883i 0.543651 0.197873i
\(686\) 9.70230 13.0325i 0.370436 0.497581i
\(687\) 2.61548 + 7.34616i 0.0997866 + 0.280274i
\(688\) 7.78701 8.25375i 0.296877 0.314671i
\(689\) 8.55094 9.06347i 0.325765 0.345291i
\(690\) 18.7788 + 3.44743i 0.714896 + 0.131241i
\(691\) 2.72052 3.65429i 0.103493 0.139016i −0.747359 0.664420i \(-0.768679\pi\)
0.850853 + 0.525404i \(0.176086\pi\)
\(692\) −12.9125 + 4.69975i −0.490858 + 0.178658i
\(693\) −2.16890 49.1222i −0.0823896 1.86600i
\(694\) 6.64367 + 2.41810i 0.252190 + 0.0917897i
\(695\) −14.7188 + 9.68072i −0.558317 + 0.367211i
\(696\) 5.10829 + 10.3522i 0.193629 + 0.392398i
\(697\) −16.6182 22.3221i −0.629458 0.845508i
\(698\) 8.18002 + 5.38009i 0.309618 + 0.203639i
\(699\) 33.2978 + 25.1548i 1.25944 + 0.951443i
\(700\) −0.0311094 + 0.103913i −0.00117582 + 0.00392753i
\(701\) 7.04420 12.2009i 0.266056 0.460822i −0.701784 0.712390i \(-0.747613\pi\)
0.967840 + 0.251568i \(0.0809462\pi\)
\(702\) 12.1450 + 15.1095i 0.458383 + 0.570272i
\(703\) 2.75537 + 4.77244i 0.103921 + 0.179996i
\(704\) 5.50556 1.30484i 0.207499 0.0491781i
\(705\) 10.8215 10.0668i 0.407560 0.379136i
\(706\) 11.2551 5.65250i 0.423590 0.212735i
\(707\) −3.34232 + 7.74836i −0.125701 + 0.291407i
\(708\) −4.61699 2.03017i −0.173517 0.0762986i
\(709\) −1.16016 19.9192i −0.0435708 0.748082i −0.947373 0.320131i \(-0.896273\pi\)
0.903802 0.427950i \(-0.140764\pi\)
\(710\) −0.358502 2.03316i −0.0134543 0.0763033i
\(711\) 4.20645 + 3.63158i 0.157754 + 0.136195i
\(712\) 3.07582 17.4439i 0.115271 0.653736i
\(713\) −12.0650 1.41019i −0.451836 0.0528121i
\(714\) 36.9741 6.25198i 1.38372 0.233975i
\(715\) −13.4866 45.0482i −0.504368 1.68471i
\(716\) −8.77674 2.08013i −0.328002 0.0777379i
\(717\) −0.197923 + 28.1672i −0.00739157 + 1.05192i
\(718\) −10.1634 23.5615i −0.379296 0.879307i
\(719\) 10.6365 + 8.92511i 0.396676 + 0.332850i 0.819207 0.573498i \(-0.194414\pi\)
−0.422531 + 0.906348i \(0.638858\pi\)
\(720\) −6.64810 + 0.682497i −0.247760 + 0.0254352i
\(721\) −17.5897 + 14.7595i −0.655073 + 0.549672i
\(722\) −16.3973 8.23506i −0.610246 0.306477i
\(723\) −10.2647 9.82149i −0.381749 0.365265i
\(724\) −11.3484 + 1.32644i −0.421759 + 0.0492966i
\(725\) 0.0145111 0.249146i 0.000538929 0.00925305i
\(726\) 36.3494 1.86093i 1.34905 0.0690657i
\(727\) −7.62974 8.08705i −0.282971 0.299932i 0.570260 0.821464i \(-0.306842\pi\)
−0.853232 + 0.521532i \(0.825361\pi\)
\(728\) 10.8070 0.400535
\(729\) 25.7384 8.15700i 0.953273 0.302111i
\(730\) −10.0216 −0.370917
\(731\) 58.1994 + 61.6878i 2.15258 + 2.28161i
\(732\) 12.1726 0.623185i 0.449912 0.0230336i
\(733\) −0.218405 + 3.74987i −0.00806698 + 0.138505i 0.991870 + 0.127257i \(0.0406173\pi\)
−0.999937 + 0.0112476i \(0.996420\pi\)
\(734\) 3.40827 0.398369i 0.125801 0.0147041i
\(735\) 3.87831 + 3.71085i 0.143054 + 0.136877i
\(736\) −4.42192 2.22077i −0.162994 0.0818587i
\(737\) 1.78319 1.49627i 0.0656845 0.0551159i
\(738\) −11.1119 + 1.14076i −0.409036 + 0.0419918i
\(739\) 33.3929 + 28.0200i 1.22838 + 1.03073i 0.998343 + 0.0575483i \(0.0183283\pi\)
0.230034 + 0.973183i \(0.426116\pi\)
\(740\) −6.02677 13.9716i −0.221549 0.513608i
\(741\) −0.0366317 + 5.21321i −0.00134570 + 0.191512i
\(742\) −9.41423 2.23121i −0.345607 0.0819104i
\(743\) 2.21564 + 7.40074i 0.0812838 + 0.271507i 0.988964 0.148156i \(-0.0473337\pi\)
−0.907680 + 0.419662i \(0.862148\pi\)
\(744\) 4.19237 0.708891i 0.153700 0.0259892i
\(745\) 22.9371 + 2.68096i 0.840349 + 0.0982227i
\(746\) −0.718636 + 4.07558i −0.0263111 + 0.149218i
\(747\) −7.90482 6.82451i −0.289222 0.249696i
\(748\) 7.34323 + 41.6455i 0.268495 + 1.52271i
\(749\) 0.264150 + 4.53528i 0.00965183 + 0.165716i
\(750\) 17.7926 + 7.82372i 0.649694 + 0.285682i
\(751\) −3.44753 + 7.99226i −0.125802 + 0.291642i −0.969464 0.245232i \(-0.921136\pi\)
0.843662 + 0.536874i \(0.180395\pi\)
\(752\) −3.42307 + 1.71913i −0.124826 + 0.0626902i
\(753\) −15.8734 + 14.7663i −0.578458 + 0.538115i
\(754\) −24.1947 + 5.73426i −0.881120 + 0.208829i
\(755\) −23.9432 41.4708i −0.871382 1.50928i
\(756\) 5.44506 14.0325i 0.198035 0.510359i
\(757\) 19.1896 33.2373i 0.697457 1.20803i −0.271888 0.962329i \(-0.587648\pi\)
0.969345 0.245703i \(-0.0790187\pi\)
\(758\) −6.30139 + 21.0481i −0.228877 + 0.764502i
\(759\) −38.6931 29.2308i −1.40447 1.06101i
\(760\) −1.50160 0.987615i −0.0544686 0.0358246i
\(761\) −1.93402 2.59783i −0.0701080 0.0941714i 0.765686 0.643215i \(-0.222400\pi\)
−0.835794 + 0.549043i \(0.814992\pi\)
\(762\) −9.61512 19.4855i −0.348319 0.705884i
\(763\) −38.6821 + 25.4416i −1.40038 + 0.921047i
\(764\) 19.7816 + 7.19992i 0.715673 + 0.260484i
\(765\) −2.20323 49.8998i −0.0796581 1.80413i
\(766\) −9.79769 + 3.56607i −0.354005 + 0.128847i
\(767\) 6.48736 8.71404i 0.234245 &