Properties

Label 162.2.g.b.103.3
Level $162$
Weight $2$
Character 162.103
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 103.3
Character \(\chi\) \(=\) 162.103
Dual form 162.2.g.b.151.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686242 - 0.727374i) q^{2} +(0.851057 - 1.50854i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(-3.77668 + 0.441430i) q^{5} +(-1.68131 + 0.416189i) q^{6} +(-3.13446 - 1.57418i) q^{7} +(0.766044 - 0.642788i) q^{8} +(-1.55140 - 2.56771i) q^{9} +O(q^{10})\) \(q+(-0.686242 - 0.727374i) q^{2} +(0.851057 - 1.50854i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(-3.77668 + 0.441430i) q^{5} +(-1.68131 + 0.416189i) q^{6} +(-3.13446 - 1.57418i) q^{7} +(0.766044 - 0.642788i) q^{8} +(-1.55140 - 2.56771i) q^{9} +(2.91280 + 2.44413i) q^{10} +(-1.41437 - 3.27887i) q^{11} +(1.45651 + 0.937331i) q^{12} +(6.00411 + 1.42300i) q^{13} +(1.00598 + 3.36019i) q^{14} +(-2.54825 + 6.07296i) q^{15} +(-0.993238 - 0.116093i) q^{16} +(-0.0237611 + 0.134756i) q^{17} +(-0.803048 + 2.89052i) q^{18} +(-0.591493 - 3.35452i) q^{19} +(-0.221089 - 3.79596i) q^{20} +(-5.04232 + 3.38874i) q^{21} +(-1.41437 + 3.27887i) q^{22} +(1.62119 - 0.814194i) q^{23} +(-0.317725 - 1.70266i) q^{24} +(9.20321 - 2.18120i) q^{25} +(-3.08522 - 5.34375i) q^{26} +(-5.19384 + 0.155090i) q^{27} +(1.75377 - 3.03762i) q^{28} +(-0.375745 + 1.25508i) q^{29} +(6.16603 - 2.31399i) q^{30} +(0.265030 + 0.174313i) q^{31} +(0.597159 + 0.802123i) q^{32} +(-6.15002 - 0.656872i) q^{33} +(0.114324 - 0.0751919i) q^{34} +(12.5327 + 4.56154i) q^{35} +(2.65357 - 1.39948i) q^{36} +(-7.16975 + 2.60958i) q^{37} +(-2.03408 + 2.73225i) q^{38} +(7.25649 - 7.84640i) q^{39} +(-2.60936 + 2.76576i) q^{40} +(4.36125 - 4.62265i) q^{41} +(5.92513 + 1.34216i) q^{42} +(1.92691 - 2.58828i) q^{43} +(3.35556 - 1.22132i) q^{44} +(6.99262 + 9.01259i) q^{45} +(-1.70475 - 0.620480i) q^{46} +(3.99017 - 2.62437i) q^{47} +(-1.02043 + 1.39954i) q^{48} +(3.16665 + 4.25355i) q^{49} +(-7.90218 - 5.19734i) q^{50} +(0.183063 + 0.150530i) q^{51} +(-1.76970 + 5.91121i) q^{52} +(-2.78294 + 4.82020i) q^{53} +(3.67704 + 3.67143i) q^{54} +(6.78900 + 11.7589i) q^{55} +(-3.41300 + 0.808895i) q^{56} +(-5.56384 - 1.96260i) q^{57} +(1.17076 - 0.587978i) q^{58} +(1.85601 - 4.30271i) q^{59} +(-5.91452 - 2.89705i) q^{60} +(-0.784513 - 13.4696i) q^{61} +(-0.0550839 - 0.312396i) q^{62} +(0.820759 + 10.4906i) q^{63} +(0.173648 - 0.984808i) q^{64} +(-23.3037 - 2.72382i) q^{65} +(3.74261 + 4.92414i) q^{66} +(-2.79770 - 9.34496i) q^{67} +(-0.133146 - 0.0315562i) q^{68} +(0.151481 - 3.13857i) q^{69} +(-5.28253 - 12.2463i) q^{70} +(3.05189 + 2.56084i) q^{71} +(-2.83894 - 0.969758i) q^{72} +(-10.7055 + 8.98301i) q^{73} +(6.81832 + 3.42429i) q^{74} +(4.54202 - 15.7398i) q^{75} +(3.38324 - 0.395444i) q^{76} +(-0.728272 + 12.5039i) q^{77} +(-10.6870 + 0.106345i) q^{78} +(2.36891 + 2.51090i) q^{79} +3.80239 q^{80} +(-4.18629 + 7.96712i) q^{81} -6.35527 q^{82} +(0.597161 + 0.632954i) q^{83} +(-3.08982 - 5.23083i) q^{84} +(0.0302527 - 0.519418i) q^{85} +(-3.20497 + 0.374608i) q^{86} +(1.57355 + 1.63497i) q^{87} +(-3.19108 - 1.60262i) q^{88} +(6.42404 - 5.39041i) q^{89} +(1.75689 - 11.2711i) q^{90} +(-16.5795 - 13.9119i) q^{91} +(0.718553 + 1.66579i) q^{92} +(0.488514 - 0.251459i) q^{93} +(-4.64712 - 1.10139i) q^{94} +(3.71467 + 12.4078i) q^{95} +(1.71825 - 0.218187i) q^{96} +(-6.91065 - 0.807739i) q^{97} +(0.920833 - 5.22230i) q^{98} +(-6.22494 + 8.71853i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686242 0.727374i −0.485246 0.514331i
\(3\) 0.851057 1.50854i 0.491358 0.870958i
\(4\) −0.0581448 + 0.998308i −0.0290724 + 0.499154i
\(5\) −3.77668 + 0.441430i −1.68898 + 0.197414i −0.905602 0.424129i \(-0.860580\pi\)
−0.783380 + 0.621543i \(0.786506\pi\)
\(6\) −1.68131 + 0.416189i −0.686390 + 0.169908i
\(7\) −3.13446 1.57418i −1.18471 0.594985i −0.256323 0.966591i \(-0.582511\pi\)
−0.928391 + 0.371606i \(0.878807\pi\)
\(8\) 0.766044 0.642788i 0.270838 0.227260i
\(9\) −1.55140 2.56771i −0.517135 0.855904i
\(10\) 2.91280 + 2.44413i 0.921108 + 0.772901i
\(11\) −1.41437 3.27887i −0.426447 0.988616i −0.987033 0.160519i \(-0.948683\pi\)
0.560585 0.828097i \(-0.310576\pi\)
\(12\) 1.45651 + 0.937331i 0.420457 + 0.270584i
\(13\) 6.00411 + 1.42300i 1.66524 + 0.394669i 0.951963 0.306214i \(-0.0990621\pi\)
0.713277 + 0.700883i \(0.247210\pi\)
\(14\) 1.00598 + 3.36019i 0.268858 + 0.898049i
\(15\) −2.54825 + 6.07296i −0.657956 + 1.56803i
\(16\) −0.993238 0.116093i −0.248310 0.0290232i
\(17\) −0.0237611 + 0.134756i −0.00576291 + 0.0326831i −0.987554 0.157283i \(-0.949727\pi\)
0.981791 + 0.189966i \(0.0608377\pi\)
\(18\) −0.803048 + 2.89052i −0.189280 + 0.681302i
\(19\) −0.591493 3.35452i −0.135698 0.769580i −0.974371 0.224946i \(-0.927780\pi\)
0.838674 0.544634i \(-0.183332\pi\)
\(20\) −0.221089 3.79596i −0.0494371 0.848802i
\(21\) −5.04232 + 3.38874i −1.10033 + 0.739484i
\(22\) −1.41437 + 3.27887i −0.301544 + 0.699057i
\(23\) 1.62119 0.814194i 0.338042 0.169771i −0.271677 0.962388i \(-0.587578\pi\)
0.609720 + 0.792617i \(0.291282\pi\)
\(24\) −0.317725 1.70266i −0.0648554 0.347554i
\(25\) 9.20321 2.18120i 1.84064 0.436240i
\(26\) −3.08522 5.34375i −0.605061 1.04800i
\(27\) −5.19384 + 0.155090i −0.999554 + 0.0298472i
\(28\) 1.75377 3.03762i 0.331432 0.574057i
\(29\) −0.375745 + 1.25508i −0.0697741 + 0.233062i −0.985763 0.168143i \(-0.946223\pi\)
0.915989 + 0.401204i \(0.131408\pi\)
\(30\) 6.16603 2.31399i 1.12576 0.422475i
\(31\) 0.265030 + 0.174313i 0.0476007 + 0.0313075i 0.573086 0.819495i \(-0.305746\pi\)
−0.525486 + 0.850802i \(0.676116\pi\)
\(32\) 0.597159 + 0.802123i 0.105564 + 0.141797i
\(33\) −6.15002 0.656872i −1.07058 0.114347i
\(34\) 0.114324 0.0751919i 0.0196064 0.0128953i
\(35\) 12.5327 + 4.56154i 2.11842 + 0.771041i
\(36\) 2.65357 1.39948i 0.442262 0.233247i
\(37\) −7.16975 + 2.60958i −1.17870 + 0.429012i −0.855743 0.517402i \(-0.826899\pi\)
−0.322958 + 0.946413i \(0.604677\pi\)
\(38\) −2.03408 + 2.73225i −0.329972 + 0.443229i
\(39\) 7.25649 7.84640i 1.16197 1.25643i
\(40\) −2.60936 + 2.76576i −0.412576 + 0.437305i
\(41\) 4.36125 4.62265i 0.681112 0.721937i −0.290929 0.956745i \(-0.593964\pi\)
0.972042 + 0.234807i \(0.0754460\pi\)
\(42\) 5.92513 + 1.34216i 0.914268 + 0.207099i
\(43\) 1.92691 2.58828i 0.293850 0.394710i −0.630540 0.776157i \(-0.717167\pi\)
0.924391 + 0.381447i \(0.124574\pi\)
\(44\) 3.35556 1.22132i 0.505870 0.184121i
\(45\) 6.99262 + 9.01259i 1.04240 + 1.34352i
\(46\) −1.70475 0.620480i −0.251352 0.0914848i
\(47\) 3.99017 2.62437i 0.582026 0.382804i −0.224085 0.974570i \(-0.571939\pi\)
0.806110 + 0.591765i \(0.201569\pi\)
\(48\) −1.02043 + 1.39954i −0.147287 + 0.202006i
\(49\) 3.16665 + 4.25355i 0.452379 + 0.607650i
\(50\) −7.90218 5.19734i −1.11754 0.735015i
\(51\) 0.183063 + 0.150530i 0.0256339 + 0.0210783i
\(52\) −1.76970 + 5.91121i −0.245413 + 0.819737i
\(53\) −2.78294 + 4.82020i −0.382266 + 0.662105i −0.991386 0.130974i \(-0.958190\pi\)
0.609119 + 0.793078i \(0.291523\pi\)
\(54\) 3.67704 + 3.67143i 0.500381 + 0.499618i
\(55\) 6.78900 + 11.7589i 0.915428 + 1.58557i
\(56\) −3.41300 + 0.808895i −0.456081 + 0.108093i
\(57\) −5.56384 1.96260i −0.736948 0.259952i
\(58\) 1.17076 0.587978i 0.153728 0.0772053i
\(59\) 1.85601 4.30271i 0.241631 0.560165i −0.753641 0.657286i \(-0.771704\pi\)
0.995273 + 0.0971215i \(0.0309635\pi\)
\(60\) −5.91452 2.89705i −0.763562 0.374008i
\(61\) −0.784513 13.4696i −0.100447 1.72460i −0.553270 0.833002i \(-0.686620\pi\)
0.452824 0.891600i \(-0.350417\pi\)
\(62\) −0.0550839 0.312396i −0.00699566 0.0396744i
\(63\) 0.820759 + 10.4906i 0.103406 + 1.32169i
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) −23.3037 2.72382i −2.89047 0.337848i
\(66\) 3.74261 + 4.92414i 0.460683 + 0.606119i
\(67\) −2.79770 9.34496i −0.341793 1.14167i −0.940242 0.340507i \(-0.889401\pi\)
0.598449 0.801161i \(-0.295784\pi\)
\(68\) −0.133146 0.0315562i −0.0161464 0.00382676i
\(69\) 0.151481 3.13857i 0.0182362 0.377839i
\(70\) −5.28253 12.2463i −0.631384 1.46371i
\(71\) 3.05189 + 2.56084i 0.362193 + 0.303916i 0.805664 0.592373i \(-0.201809\pi\)
−0.443471 + 0.896289i \(0.646253\pi\)
\(72\) −2.83894 0.969758i −0.334572 0.114287i
\(73\) −10.7055 + 8.98301i −1.25299 + 1.05138i −0.256595 + 0.966519i \(0.582601\pi\)
−0.996393 + 0.0848624i \(0.972955\pi\)
\(74\) 6.81832 + 3.42429i 0.792614 + 0.398066i
\(75\) 4.54202 15.7398i 0.524468 1.81747i
\(76\) 3.38324 0.395444i 0.388084 0.0453605i
\(77\) −0.728272 + 12.5039i −0.0829942 + 1.42496i
\(78\) −10.6870 + 0.106345i −1.21006 + 0.0120412i
\(79\) 2.36891 + 2.51090i 0.266523 + 0.282498i 0.846789 0.531929i \(-0.178533\pi\)
−0.580266 + 0.814427i \(0.697051\pi\)
\(80\) 3.80239 0.425120
\(81\) −4.18629 + 7.96712i −0.465143 + 0.885235i
\(82\) −6.35527 −0.701822
\(83\) 0.597161 + 0.632954i 0.0655470 + 0.0694757i 0.759317 0.650721i \(-0.225533\pi\)
−0.693770 + 0.720196i \(0.744052\pi\)
\(84\) −3.08982 5.23083i −0.337127 0.570730i
\(85\) 0.0302527 0.519418i 0.00328136 0.0563388i
\(86\) −3.20497 + 0.374608i −0.345601 + 0.0403950i
\(87\) 1.57355 + 1.63497i 0.168703 + 0.175287i
\(88\) −3.19108 1.60262i −0.340171 0.170840i
\(89\) 6.42404 5.39041i 0.680947 0.571382i −0.235336 0.971914i \(-0.575619\pi\)
0.916283 + 0.400532i \(0.131175\pi\)
\(90\) 1.75689 11.2711i 0.185192 1.18807i
\(91\) −16.5795 13.9119i −1.73801 1.45836i
\(92\) 0.718553 + 1.66579i 0.0749143 + 0.173671i
\(93\) 0.488514 0.251459i 0.0506565 0.0260750i
\(94\) −4.64712 1.10139i −0.479314 0.113599i
\(95\) 3.71467 + 12.4078i 0.381117 + 1.27302i
\(96\) 1.71825 0.218187i 0.175368 0.0222686i
\(97\) −6.91065 0.807739i −0.701670 0.0820134i −0.242225 0.970220i \(-0.577877\pi\)
−0.459444 + 0.888207i \(0.651951\pi\)
\(98\) 0.920833 5.22230i 0.0930182 0.527532i
\(99\) −6.22494 + 8.71853i −0.625630 + 0.876246i
\(100\) 1.64239 + 9.31447i 0.164239 + 0.931447i
\(101\) 0.234720 + 4.03000i 0.0233556 + 0.400999i 0.989645 + 0.143540i \(0.0458485\pi\)
−0.966289 + 0.257460i \(0.917114\pi\)
\(102\) −0.0161342 0.236455i −0.00159752 0.0234125i
\(103\) 0.547289 1.26876i 0.0539260 0.125015i −0.889123 0.457668i \(-0.848685\pi\)
0.943049 + 0.332654i \(0.107944\pi\)
\(104\) 5.51410 2.76928i 0.540702 0.271551i
\(105\) 17.5473 15.0240i 1.71245 1.46619i
\(106\) 5.41585 1.28358i 0.526034 0.124672i
\(107\) 7.35361 + 12.7368i 0.710900 + 1.23132i 0.964520 + 0.264011i \(0.0850456\pi\)
−0.253619 + 0.967304i \(0.581621\pi\)
\(108\) 0.147167 5.19407i 0.0141611 0.499799i
\(109\) 1.46896 2.54431i 0.140700 0.243700i −0.787060 0.616876i \(-0.788398\pi\)
0.927761 + 0.373176i \(0.121731\pi\)
\(110\) 3.89421 13.0076i 0.371299 1.24022i
\(111\) −2.16521 + 13.0368i −0.205513 + 1.23740i
\(112\) 2.93051 + 1.92743i 0.276907 + 0.182125i
\(113\) 10.8899 + 14.6277i 1.02444 + 1.37606i 0.924551 + 0.381059i \(0.124440\pi\)
0.0998862 + 0.994999i \(0.468152\pi\)
\(114\) 2.39059 + 5.39380i 0.223900 + 0.505176i
\(115\) −5.76332 + 3.79059i −0.537432 + 0.353475i
\(116\) −1.23110 0.448085i −0.114305 0.0416037i
\(117\) −5.66094 17.6245i −0.523354 1.62938i
\(118\) −4.40334 + 1.60269i −0.405361 + 0.147539i
\(119\) 0.286608 0.384982i 0.0262734 0.0352912i
\(120\) 1.95155 + 6.29015i 0.178152 + 0.574209i
\(121\) −1.20189 + 1.27393i −0.109263 + 0.115812i
\(122\) −9.25904 + 9.81401i −0.838274 + 0.888519i
\(123\) −3.26180 10.5133i −0.294107 0.947950i
\(124\) −0.189428 + 0.254446i −0.0170111 + 0.0228499i
\(125\) −15.9293 + 5.79781i −1.42476 + 0.518572i
\(126\) 7.06733 7.79607i 0.629608 0.694529i
\(127\) 9.76218 + 3.55314i 0.866254 + 0.315291i 0.736649 0.676275i \(-0.236407\pi\)
0.129605 + 0.991566i \(0.458629\pi\)
\(128\) −0.835488 + 0.549509i −0.0738474 + 0.0485702i
\(129\) −2.26463 5.10960i −0.199390 0.449875i
\(130\) 14.0108 + 18.8197i 1.22883 + 1.65060i
\(131\) −14.5872 9.59417i −1.27449 0.838246i −0.281864 0.959454i \(-0.590953\pi\)
−0.992627 + 0.121208i \(0.961323\pi\)
\(132\) 1.01335 6.10142i 0.0882010 0.531061i
\(133\) −3.42662 + 11.4457i −0.297126 + 0.992470i
\(134\) −4.87738 + 8.44787i −0.421341 + 0.729785i
\(135\) 19.5470 2.87844i 1.68234 0.247737i
\(136\) 0.0684173 + 0.118502i 0.00586674 + 0.0101615i
\(137\) 15.7191 3.72549i 1.34297 0.318290i 0.504583 0.863363i \(-0.331646\pi\)
0.838388 + 0.545073i \(0.183498\pi\)
\(138\) −2.38686 + 2.04363i −0.203183 + 0.173965i
\(139\) 14.7919 7.42880i 1.25464 0.630102i 0.307688 0.951487i \(-0.400445\pi\)
0.946949 + 0.321385i \(0.104148\pi\)
\(140\) −5.28253 + 12.2463i −0.446456 + 1.03500i
\(141\) −0.563122 8.25283i −0.0474234 0.695014i
\(142\) −0.231647 3.97722i −0.0194394 0.333761i
\(143\) −3.82618 21.6993i −0.319961 1.81459i
\(144\) 1.24282 + 2.73046i 0.103568 + 0.227538i
\(145\) 0.865039 4.90588i 0.0718376 0.407411i
\(146\) 13.8806 + 1.62241i 1.14877 + 0.134271i
\(147\) 9.11167 1.15702i 0.751518 0.0954291i
\(148\) −2.18828 7.30936i −0.179875 0.600825i
\(149\) −5.44321 1.29006i −0.445925 0.105686i 0.00151744 0.999999i \(-0.499517\pi\)
−0.447443 + 0.894313i \(0.647665\pi\)
\(150\) −14.5656 + 7.49754i −1.18928 + 0.612172i
\(151\) 4.67318 + 10.8336i 0.380298 + 0.881630i 0.995632 + 0.0933632i \(0.0297618\pi\)
−0.615334 + 0.788266i \(0.710979\pi\)
\(152\) −2.60936 2.18951i −0.211647 0.177593i
\(153\) 0.382877 0.148049i 0.0309538 0.0119691i
\(154\) 9.59481 8.05100i 0.773172 0.648768i
\(155\) −1.07788 0.541331i −0.0865773 0.0434808i
\(156\) 7.41120 + 7.70044i 0.593371 + 0.616529i
\(157\) −4.03153 + 0.471218i −0.321751 + 0.0376073i −0.275436 0.961320i \(-0.588822\pi\)
−0.0463156 + 0.998927i \(0.514748\pi\)
\(158\) 0.200716 3.44617i 0.0159681 0.274162i
\(159\) 4.90303 + 8.30045i 0.388836 + 0.658268i
\(160\) −2.60936 2.76576i −0.206288 0.218652i
\(161\) −6.36325 −0.501494
\(162\) 8.66788 2.42237i 0.681013 0.190319i
\(163\) −3.63802 −0.284951 −0.142476 0.989798i \(-0.545506\pi\)
−0.142476 + 0.989798i \(0.545506\pi\)
\(164\) 4.36125 + 4.62265i 0.340556 + 0.360969i
\(165\) 23.5166 0.234011i 1.83077 0.0182177i
\(166\) 0.0505971 0.868719i 0.00392710 0.0674257i
\(167\) −9.37145 + 1.09537i −0.725185 + 0.0847619i −0.470673 0.882308i \(-0.655989\pi\)
−0.254512 + 0.967070i \(0.581915\pi\)
\(168\) −1.68440 + 5.83707i −0.129954 + 0.450340i
\(169\) 22.4071 + 11.2533i 1.72363 + 0.865638i
\(170\) −0.398572 + 0.334441i −0.0305691 + 0.0256505i
\(171\) −7.69580 + 6.72300i −0.588513 + 0.514121i
\(172\) 2.47187 + 2.07414i 0.188478 + 0.158152i
\(173\) −5.23397 12.1337i −0.397931 0.922508i −0.992921 0.118775i \(-0.962103\pi\)
0.594990 0.803733i \(-0.297156\pi\)
\(174\) 0.109394 2.26655i 0.00829312 0.171826i
\(175\) −32.2807 7.65066i −2.44019 0.578336i
\(176\) 1.02415 + 3.42090i 0.0771981 + 0.257860i
\(177\) −4.91125 6.46172i −0.369152 0.485692i
\(178\) −8.32928 0.973553i −0.624306 0.0729709i
\(179\) 2.39591 13.5879i 0.179079 1.01561i −0.754251 0.656586i \(-0.772000\pi\)
0.933330 0.359020i \(-0.116889\pi\)
\(180\) −9.40392 + 6.45675i −0.700927 + 0.481258i
\(181\) −1.34675 7.63781i −0.100103 0.567714i −0.993064 0.117578i \(-0.962487\pi\)
0.892960 0.450135i \(-0.148624\pi\)
\(182\) 1.25843 + 21.6064i 0.0932812 + 1.60158i
\(183\) −20.9871 10.2799i −1.55141 0.759912i
\(184\) 0.718553 1.66579i 0.0529724 0.122804i
\(185\) 25.9259 13.0205i 1.90611 0.957285i
\(186\) −0.518143 0.182771i −0.0379921 0.0134014i
\(187\) 0.475454 0.112685i 0.0347686 0.00824031i
\(188\) 2.38793 + 4.13601i 0.174157 + 0.301650i
\(189\) 16.5240 + 7.68993i 1.20194 + 0.559360i
\(190\) 6.47598 11.2167i 0.469817 0.813747i
\(191\) −0.167520 + 0.559557i −0.0121213 + 0.0404881i −0.963836 0.266495i \(-0.914134\pi\)
0.951715 + 0.306983i \(0.0993196\pi\)
\(192\) −1.33784 1.10008i −0.0965503 0.0793917i
\(193\) 17.7592 + 11.6804i 1.27834 + 0.840775i 0.993053 0.117668i \(-0.0375420\pi\)
0.285283 + 0.958443i \(0.407912\pi\)
\(194\) 4.15485 + 5.58093i 0.298300 + 0.400687i
\(195\) −23.9418 + 32.8366i −1.71451 + 2.35148i
\(196\) −4.43048 + 2.91397i −0.316463 + 0.208141i
\(197\) 0.511789 + 0.186276i 0.0364634 + 0.0132716i 0.360187 0.932880i \(-0.382713\pi\)
−0.323724 + 0.946152i \(0.604935\pi\)
\(198\) 10.6134 1.45517i 0.754265 0.103414i
\(199\) 2.08507 0.758905i 0.147807 0.0537973i −0.267057 0.963681i \(-0.586051\pi\)
0.414864 + 0.909883i \(0.363829\pi\)
\(200\) 5.64802 7.58661i 0.399375 0.536454i
\(201\) −16.4783 3.73265i −1.16229 0.263281i
\(202\) 2.77024 2.93628i 0.194913 0.206596i
\(203\) 3.15347 3.34249i 0.221331 0.234597i
\(204\) −0.160919 + 0.174001i −0.0112666 + 0.0121825i
\(205\) −14.4305 + 19.3835i −1.00787 + 1.35380i
\(206\) −1.29843 + 0.472592i −0.0904662 + 0.0329270i
\(207\) −4.60574 2.89962i −0.320121 0.201537i
\(208\) −5.79831 2.11041i −0.402040 0.146331i
\(209\) −10.1624 + 6.68395i −0.702951 + 0.462338i
\(210\) −22.9698 2.45336i −1.58507 0.169298i
\(211\) −2.25553 3.02970i −0.155277 0.208573i 0.717677 0.696377i \(-0.245206\pi\)
−0.872953 + 0.487804i \(0.837798\pi\)
\(212\) −4.65023 3.05850i −0.319379 0.210059i
\(213\) 6.46047 2.42449i 0.442664 0.166123i
\(214\) 4.21808 14.0894i 0.288342 0.963129i
\(215\) −6.13476 + 10.6257i −0.418387 + 0.724668i
\(216\) −3.87902 + 3.45734i −0.263934 + 0.235242i
\(217\) −0.556324 0.963581i −0.0377657 0.0654122i
\(218\) −2.85872 + 0.677529i −0.193617 + 0.0458880i
\(219\) 4.44024 + 23.7948i 0.300043 + 1.60790i
\(220\) −12.1337 + 6.09379i −0.818056 + 0.410843i
\(221\) −0.334422 + 0.775276i −0.0224956 + 0.0521507i
\(222\) 10.9685 7.37146i 0.736155 0.494740i
\(223\) −1.16390 19.9834i −0.0779407 1.33819i −0.779869 0.625943i \(-0.784714\pi\)
0.701928 0.712248i \(-0.252323\pi\)
\(224\) −0.609079 3.45426i −0.0406958 0.230797i
\(225\) −19.8786 20.2473i −1.32524 1.34982i
\(226\) 3.16669 17.9592i 0.210645 1.19463i
\(227\) 7.26607 + 0.849281i 0.482266 + 0.0563688i 0.353753 0.935339i \(-0.384905\pi\)
0.128513 + 0.991708i \(0.458980\pi\)
\(228\) 2.28279 5.44031i 0.151181 0.360293i
\(229\) 2.65299 + 8.86162i 0.175315 + 0.585592i 0.999806 + 0.0197168i \(0.00627644\pi\)
−0.824491 + 0.565875i \(0.808538\pi\)
\(230\) 6.71221 + 1.59082i 0.442590 + 0.104896i
\(231\) 18.2429 + 11.7402i 1.20030 + 0.772448i
\(232\) 0.518910 + 1.20297i 0.0340681 + 0.0789787i
\(233\) 6.59355 + 5.53265i 0.431958 + 0.362456i 0.832690 0.553740i \(-0.186800\pi\)
−0.400732 + 0.916195i \(0.631244\pi\)
\(234\) −8.93480 + 16.2123i −0.584086 + 1.05983i
\(235\) −13.9111 + 11.6728i −0.907460 + 0.761449i
\(236\) 4.18751 + 2.10305i 0.272584 + 0.136897i
\(237\) 5.80387 1.43669i 0.377002 0.0933227i
\(238\) −0.476708 + 0.0557192i −0.0309004 + 0.00361174i
\(239\) 1.65960 28.4943i 0.107351 1.84314i −0.330155 0.943927i \(-0.607101\pi\)
0.437506 0.899216i \(-0.355862\pi\)
\(240\) 3.23605 5.73607i 0.208886 0.370262i
\(241\) 4.35262 + 4.61351i 0.280377 + 0.297182i 0.852223 0.523179i \(-0.175254\pi\)
−0.571846 + 0.820361i \(0.693773\pi\)
\(242\) 1.75141 0.112585
\(243\) 8.45597 + 13.0957i 0.542451 + 0.840088i
\(244\) 13.4924 0.863762
\(245\) −13.8371 14.6664i −0.884018 0.937005i
\(246\) −5.40869 + 9.58719i −0.344846 + 0.611257i
\(247\) 1.22210 20.9826i 0.0777602 1.33509i
\(248\) 0.315071 0.0368265i 0.0200070 0.00233848i
\(249\) 1.46306 0.362164i 0.0927174 0.0229512i
\(250\) 15.1486 + 7.60789i 0.958079 + 0.481165i
\(251\) 6.55985 5.50437i 0.414054 0.347433i −0.411842 0.911255i \(-0.635114\pi\)
0.825896 + 0.563823i \(0.190670\pi\)
\(252\) −10.5205 + 0.209398i −0.662732 + 0.0131908i
\(253\) −4.96260 4.16411i −0.311996 0.261796i
\(254\) −4.11475 9.53907i −0.258183 0.598535i
\(255\) −0.757818 0.487692i −0.0474564 0.0305405i
\(256\) 0.973045 + 0.230616i 0.0608153 + 0.0144135i
\(257\) −0.974583 3.25533i −0.0607928 0.203062i 0.922198 0.386719i \(-0.126392\pi\)
−0.982990 + 0.183657i \(0.941206\pi\)
\(258\) −2.16250 + 5.15365i −0.134632 + 0.320852i
\(259\) 26.5812 + 3.10690i 1.65168 + 0.193053i
\(260\) 4.07420 23.1059i 0.252671 1.43297i
\(261\) 3.80560 0.982324i 0.235561 0.0608043i
\(262\) 3.03182 + 17.1943i 0.187306 + 1.06227i
\(263\) −0.0936222 1.60743i −0.00577299 0.0991185i 0.994191 0.107632i \(-0.0343269\pi\)
−0.999964 + 0.00851389i \(0.997290\pi\)
\(264\) −5.13342 + 3.44996i −0.315940 + 0.212331i
\(265\) 8.38249 19.4328i 0.514932 1.19375i
\(266\) 10.6768 5.36209i 0.654637 0.328771i
\(267\) −2.66444 14.2785i −0.163061 0.873829i
\(268\) 9.49182 2.24960i 0.579805 0.137416i
\(269\) −13.8706 24.0246i −0.845706 1.46481i −0.885007 0.465578i \(-0.845846\pi\)
0.0393011 0.999227i \(-0.487487\pi\)
\(270\) −15.5077 12.2427i −0.943766 0.745064i
\(271\) −15.3007 + 26.5016i −0.929450 + 1.60985i −0.145207 + 0.989401i \(0.546385\pi\)
−0.784243 + 0.620454i \(0.786948\pi\)
\(272\) 0.0392446 0.131086i 0.00237955 0.00794827i
\(273\) −35.0968 + 13.1711i −2.12416 + 0.797154i
\(274\) −13.4969 8.87706i −0.815378 0.536283i
\(275\) −20.1686 27.0911i −1.21621 1.63366i
\(276\) 3.12445 + 0.333717i 0.188070 + 0.0200874i
\(277\) −1.61396 + 1.06152i −0.0969732 + 0.0637803i −0.597069 0.802190i \(-0.703668\pi\)
0.500096 + 0.865970i \(0.333298\pi\)
\(278\) −15.5544 5.66133i −0.932889 0.339544i
\(279\) 0.0364169 0.950950i 0.00218022 0.0569319i
\(280\) 12.5327 4.56154i 0.748974 0.272604i
\(281\) −9.34931 + 12.5583i −0.557733 + 0.749166i −0.988155 0.153462i \(-0.950958\pi\)
0.430421 + 0.902628i \(0.358365\pi\)
\(282\) −5.61645 + 6.07304i −0.334455 + 0.361644i
\(283\) −9.87257 + 10.4643i −0.586863 + 0.622039i −0.950957 0.309324i \(-0.899897\pi\)
0.364094 + 0.931362i \(0.381379\pi\)
\(284\) −2.73396 + 2.89783i −0.162231 + 0.171955i
\(285\) 21.8792 + 4.95605i 1.29601 + 0.293571i
\(286\) −13.1578 + 17.6740i −0.778039 + 1.04509i
\(287\) −20.9470 + 7.62410i −1.23646 + 0.450036i
\(288\) 1.13319 2.77775i 0.0667737 0.163680i
\(289\) 15.9572 + 5.80794i 0.938658 + 0.341643i
\(290\) −4.16203 + 2.73741i −0.244403 + 0.160746i
\(291\) −7.09986 + 9.73757i −0.416201 + 0.570827i
\(292\) −8.34534 11.2097i −0.488374 0.656000i
\(293\) −9.37716 6.16746i −0.547820 0.360307i 0.245229 0.969465i \(-0.421137\pi\)
−0.793048 + 0.609159i \(0.791507\pi\)
\(294\) −7.09439 5.83359i −0.413753 0.340222i
\(295\) −5.11019 + 17.0692i −0.297527 + 0.993810i
\(296\) −3.81495 + 6.60768i −0.221739 + 0.384064i
\(297\) 7.85451 + 16.8106i 0.455765 + 0.975447i
\(298\) 2.79700 + 4.84454i 0.162026 + 0.280637i
\(299\) 10.8924 2.58155i 0.629925 0.149295i
\(300\) 15.4490 + 5.44953i 0.891951 + 0.314628i
\(301\) −10.1142 + 5.07956i −0.582975 + 0.292781i
\(302\) 4.67318 10.8336i 0.268911 0.623406i
\(303\) 6.27918 + 3.07567i 0.360730 + 0.176693i
\(304\) 0.198057 + 3.40051i 0.0113594 + 0.195033i
\(305\) 8.90873 + 50.5239i 0.510112 + 2.89299i
\(306\) −0.370433 0.176897i −0.0211763 0.0101125i
\(307\) 1.10143 6.24651i 0.0628618 0.356507i −0.937110 0.349034i \(-0.886510\pi\)
0.999972 0.00747364i \(-0.00237896\pi\)
\(308\) −12.4404 1.45408i −0.708860 0.0828538i
\(309\) −1.44820 1.90540i −0.0823854 0.108394i
\(310\) 0.345935 + 1.15550i 0.0196478 + 0.0656283i
\(311\) 31.9847 + 7.58051i 1.81369 + 0.429851i 0.990453 0.137853i \(-0.0440201\pi\)
0.823233 + 0.567704i \(0.192168\pi\)
\(312\) 0.515227 10.6751i 0.0291690 0.604357i
\(313\) −5.58611 12.9501i −0.315746 0.731981i −0.999996 0.00273378i \(-0.999130\pi\)
0.684251 0.729247i \(-0.260129\pi\)
\(314\) 3.10935 + 2.60906i 0.175471 + 0.147238i
\(315\) −7.73060 39.2572i −0.435570 2.21189i
\(316\) −2.64439 + 2.21891i −0.148759 + 0.124823i
\(317\) 15.2914 + 7.67964i 0.858852 + 0.431332i 0.823011 0.568026i \(-0.192293\pi\)
0.0358411 + 0.999358i \(0.488589\pi\)
\(318\) 2.67286 9.26245i 0.149887 0.519412i
\(319\) 4.64667 0.543118i 0.260163 0.0304087i
\(320\) −0.221089 + 3.79596i −0.0123593 + 0.212200i
\(321\) 25.4724 0.253472i 1.42173 0.0141474i
\(322\) 4.36673 + 4.62846i 0.243348 + 0.257934i
\(323\) 0.466096 0.0259343
\(324\) −7.71023 4.64246i −0.428346 0.257914i
\(325\) 58.3609 3.23728
\(326\) 2.49656 + 2.64620i 0.138272 + 0.146559i
\(327\) −2.58803 4.38133i −0.143118 0.242288i
\(328\) 0.369526 6.34451i 0.0204036 0.350317i
\(329\) −16.6382 + 1.94473i −0.917296 + 0.107217i
\(330\) −16.3083 16.9448i −0.897742 0.932779i
\(331\) 5.61386 + 2.81938i 0.308565 + 0.154967i 0.596343 0.802730i \(-0.296620\pi\)
−0.287777 + 0.957697i \(0.592916\pi\)
\(332\) −0.666605 + 0.559348i −0.0365847 + 0.0306982i
\(333\) 17.8238 + 14.3614i 0.976740 + 0.786997i
\(334\) 7.22782 + 6.06486i 0.395489 + 0.331854i
\(335\) 14.6911 + 34.0579i 0.802663 + 1.86078i
\(336\) 5.40164 2.78045i 0.294684 0.151686i
\(337\) 2.27688 + 0.539631i 0.124030 + 0.0293956i 0.292162 0.956369i \(-0.405625\pi\)
−0.168132 + 0.985764i \(0.553774\pi\)
\(338\) −7.19137 24.0208i −0.391159 1.30656i
\(339\) 31.3344 3.97890i 1.70185 0.216104i
\(340\) 0.516781 + 0.0604030i 0.0280264 + 0.00327581i
\(341\) 0.196700 1.11554i 0.0106519 0.0604099i
\(342\) 10.1713 + 0.984120i 0.550002 + 0.0532151i
\(343\) 1.03369 + 5.86233i 0.0558139 + 0.316536i
\(344\) −0.187621 3.22133i −0.0101159 0.173683i
\(345\) 0.813362 + 11.9202i 0.0437899 + 0.641763i
\(346\) −5.23397 + 12.1337i −0.281380 + 0.652312i
\(347\) −30.3340 + 15.2343i −1.62841 + 0.817819i −0.629237 + 0.777214i \(0.716632\pi\)
−0.999175 + 0.0406056i \(0.987071\pi\)
\(348\) −1.72370 + 1.47583i −0.0923998 + 0.0791127i
\(349\) −18.0733 + 4.28345i −0.967441 + 0.229288i −0.683821 0.729649i \(-0.739683\pi\)
−0.283619 + 0.958937i \(0.591535\pi\)
\(350\) 16.5875 + 28.7303i 0.886637 + 1.53570i
\(351\) −31.4050 6.45965i −1.67628 0.344791i
\(352\) 1.78546 3.09250i 0.0951651 0.164831i
\(353\) 0.522544 1.74542i 0.0278122 0.0928992i −0.942957 0.332915i \(-0.891968\pi\)
0.970769 + 0.240016i \(0.0771528\pi\)
\(354\) −1.32978 + 8.00661i −0.0706768 + 0.425547i
\(355\) −12.6565 8.32428i −0.671735 0.441807i
\(356\) 5.00776 + 6.72659i 0.265411 + 0.356509i
\(357\) −0.336842 0.760003i −0.0178276 0.0402236i
\(358\) −11.5276 + 7.58185i −0.609255 + 0.400713i
\(359\) 10.6366 + 3.87139i 0.561376 + 0.204324i 0.607094 0.794630i \(-0.292335\pi\)
−0.0457175 + 0.998954i \(0.514557\pi\)
\(360\) 11.1498 + 2.40927i 0.587648 + 0.126980i
\(361\) 6.95120 2.53003i 0.365853 0.133160i
\(362\) −4.63134 + 6.22097i −0.243418 + 0.326967i
\(363\) 0.898899 + 2.89729i 0.0471800 + 0.152068i
\(364\) 14.8524 15.7426i 0.778476 0.825136i
\(365\) 36.4660 38.6517i 1.90872 2.02312i
\(366\) 6.92489 + 22.3200i 0.361970 + 1.16668i
\(367\) −2.86793 + 3.85230i −0.149705 + 0.201088i −0.870649 0.491905i \(-0.836301\pi\)
0.720944 + 0.692993i \(0.243708\pi\)
\(368\) −1.70475 + 0.620480i −0.0888665 + 0.0323447i
\(369\) −18.6357 4.02683i −0.970136 0.209628i
\(370\) −27.2622 9.92263i −1.41729 0.515853i
\(371\) 16.3109 10.7278i 0.846819 0.556961i
\(372\) 0.222629 + 0.502308i 0.0115428 + 0.0260435i
\(373\) 12.6149 + 16.9448i 0.653176 + 0.877368i 0.998122 0.0612544i \(-0.0195101\pi\)
−0.344946 + 0.938623i \(0.612103\pi\)
\(374\) −0.408240 0.268504i −0.0211096 0.0138840i
\(375\) −4.81054 + 28.9644i −0.248415 + 1.49571i
\(376\) 1.36973 4.57522i 0.0706384 0.235949i
\(377\) −4.04198 + 7.00092i −0.208173 + 0.360566i
\(378\) −5.74600 17.2963i −0.295543 0.889624i
\(379\) −8.13502 14.0903i −0.417868 0.723768i 0.577857 0.816138i \(-0.303889\pi\)
−0.995725 + 0.0923698i \(0.970556\pi\)
\(380\) −12.6028 + 2.98693i −0.646512 + 0.153226i
\(381\) 13.6682 11.7027i 0.700246 0.599550i
\(382\) 0.521966 0.262141i 0.0267061 0.0134123i
\(383\) −4.74133 + 10.9916i −0.242270 + 0.561646i −0.995354 0.0962784i \(-0.969306\pi\)
0.753084 + 0.657924i \(0.228565\pi\)
\(384\) 0.117910 + 1.72803i 0.00601708 + 0.0881833i
\(385\) −2.76917 47.5448i −0.141130 2.42311i
\(386\) −3.69108 20.9332i −0.187871 1.06547i
\(387\) −9.63538 0.932266i −0.489794 0.0473897i
\(388\) 1.20819 6.85199i 0.0613366 0.347857i
\(389\) −8.21291 0.959952i −0.416411 0.0486715i −0.0946920 0.995507i \(-0.530187\pi\)
−0.321719 + 0.946835i \(0.604261\pi\)
\(390\) 40.3143 5.11918i 2.04139 0.259220i
\(391\) 0.0711961 + 0.237811i 0.00360054 + 0.0120266i
\(392\) 5.15993 + 1.22293i 0.260616 + 0.0617671i
\(393\) −26.8878 + 13.8403i −1.35631 + 0.698149i
\(394\) −0.215719 0.500092i −0.0108677 0.0251943i
\(395\) −10.0550 8.43714i −0.505922 0.424519i
\(396\) −8.34184 6.72134i −0.419193 0.337760i
\(397\) 25.2439 21.1822i 1.26696 1.06310i 0.272051 0.962283i \(-0.412298\pi\)
0.994905 0.100820i \(-0.0321465\pi\)
\(398\) −1.98287 0.995835i −0.0993923 0.0499167i
\(399\) 14.3501 + 14.9102i 0.718404 + 0.746442i
\(400\) −9.39421 + 1.09803i −0.469710 + 0.0549013i
\(401\) 0.849467 14.5848i 0.0424204 0.728330i −0.908307 0.418303i \(-0.862625\pi\)
0.950728 0.310027i \(-0.100338\pi\)
\(402\) 8.59305 + 14.5474i 0.428582 + 0.725556i
\(403\) 1.34322 + 1.42373i 0.0669105 + 0.0709210i
\(404\) −4.03682 −0.200840
\(405\) 12.2933 31.9372i 0.610861 1.58697i
\(406\) −4.59528 −0.228060
\(407\) 18.6971 + 19.8178i 0.926781 + 0.982331i
\(408\) 0.236993 0.00235828i 0.0117329 0.000116752i
\(409\) 0.296826 5.09630i 0.0146771 0.251996i −0.982986 0.183678i \(-0.941200\pi\)
0.997664 0.0683181i \(-0.0217633\pi\)
\(410\) 24.0018 2.80541i 1.18536 0.138549i
\(411\) 7.75777 26.8835i 0.382663 1.32607i
\(412\) 1.23479 + 0.620135i 0.0608338 + 0.0305519i
\(413\) −12.5908 + 10.5650i −0.619554 + 0.519867i
\(414\) 1.05155 + 5.33993i 0.0516808 + 0.262443i
\(415\) −2.53469 2.12686i −0.124423 0.104403i
\(416\) 2.44398 + 5.66579i 0.119826 + 0.277788i
\(417\) 1.38213 28.6366i 0.0676834 1.40234i
\(418\) 11.8356 + 2.80509i 0.578899 + 0.137202i
\(419\) 7.80974 + 26.0864i 0.381531 + 1.27440i 0.906111 + 0.423041i \(0.139037\pi\)
−0.524580 + 0.851361i \(0.675777\pi\)
\(420\) 13.9783 + 18.3912i 0.682072 + 0.897400i
\(421\) −3.94940 0.461619i −0.192482 0.0224979i 0.0193056 0.999814i \(-0.493854\pi\)
−0.211788 + 0.977316i \(0.567929\pi\)
\(422\) −0.655887 + 3.71972i −0.0319281 + 0.181073i
\(423\) −12.9290 6.17414i −0.628629 0.300197i
\(424\) 0.966505 + 5.48132i 0.0469376 + 0.266197i
\(425\) 0.0752513 + 1.29201i 0.00365022 + 0.0626719i
\(426\) −6.19696 3.03539i −0.300244 0.147065i
\(427\) −18.7445 + 43.4547i −0.907112 + 2.10292i
\(428\) −13.1429 + 6.60059i −0.635284 + 0.319051i
\(429\) −35.9906 12.6954i −1.73764 0.612940i
\(430\) 11.9388 2.82955i 0.575740 0.136453i
\(431\) −20.1905 34.9710i −0.972542 1.68449i −0.687818 0.725883i \(-0.741431\pi\)
−0.284724 0.958610i \(-0.591902\pi\)
\(432\) 5.17672 + 0.448926i 0.249065 + 0.0215990i
\(433\) 16.5183 28.6105i 0.793818 1.37493i −0.129770 0.991544i \(-0.541424\pi\)
0.923587 0.383388i \(-0.125243\pi\)
\(434\) −0.319111 + 1.06590i −0.0153178 + 0.0511651i
\(435\) −6.66454 5.48013i −0.319540 0.262752i
\(436\) 2.45459 + 1.61441i 0.117553 + 0.0773161i
\(437\) −3.69016 4.95674i −0.176524 0.237113i
\(438\) 14.2606 19.5587i 0.681400 0.934551i
\(439\) −31.1967 + 20.5184i −1.48894 + 0.979291i −0.495055 + 0.868862i \(0.664852\pi\)
−0.993884 + 0.110429i \(0.964778\pi\)
\(440\) 12.7591 + 4.64395i 0.608268 + 0.221392i
\(441\) 6.00914 14.7300i 0.286150 0.701430i
\(442\) 0.793410 0.288778i 0.0377386 0.0137357i
\(443\) −12.0343 + 16.1649i −0.571767 + 0.768017i −0.990113 0.140271i \(-0.955203\pi\)
0.418346 + 0.908288i \(0.362610\pi\)
\(444\) −12.8888 2.91957i −0.611677 0.138557i
\(445\) −21.8820 + 23.1936i −1.03731 + 1.09948i
\(446\) −13.7367 + 14.5601i −0.650452 + 0.689439i
\(447\) −6.57860 + 7.11340i −0.311157 + 0.336452i
\(448\) −2.09456 + 2.81348i −0.0989587 + 0.132925i
\(449\) −16.4473 + 5.98634i −0.776198 + 0.282513i −0.699586 0.714548i \(-0.746632\pi\)
−0.0766114 + 0.997061i \(0.524410\pi\)
\(450\) −1.08581 + 28.3537i −0.0511857 + 1.33661i
\(451\) −21.3255 7.76184i −1.00418 0.365491i
\(452\) −15.2361 + 10.0210i −0.716648 + 0.471347i
\(453\) 20.3202 + 2.17036i 0.954724 + 0.101972i
\(454\) −4.36853 5.86796i −0.205025 0.275397i
\(455\) 68.7567 + 45.2220i 3.22337 + 2.12004i
\(456\) −5.52368 + 2.07293i −0.258670 + 0.0970737i
\(457\) −7.98243 + 26.6632i −0.373402 + 1.24725i 0.540509 + 0.841338i \(0.318232\pi\)
−0.913912 + 0.405913i \(0.866954\pi\)
\(458\) 4.62511 8.01093i 0.216117 0.374326i
\(459\) 0.102512 0.703585i 0.00478485 0.0328405i
\(460\) −3.44907 5.97397i −0.160814 0.278538i
\(461\) −0.638507 + 0.151329i −0.0297382 + 0.00704809i −0.245458 0.969407i \(-0.578938\pi\)
0.215720 + 0.976455i \(0.430790\pi\)
\(462\) −3.97955 21.3260i −0.185145 0.992177i
\(463\) 35.7204 17.9395i 1.66007 0.833718i 0.663754 0.747951i \(-0.268962\pi\)
0.996315 0.0857667i \(-0.0273340\pi\)
\(464\) 0.518910 1.20297i 0.0240898 0.0558464i
\(465\) −1.73396 + 1.16532i −0.0804104 + 0.0540406i
\(466\) −0.500468 8.59271i −0.0231837 0.398050i
\(467\) −3.49400 19.8154i −0.161683 0.916949i −0.952419 0.304792i \(-0.901413\pi\)
0.790736 0.612157i \(-0.209698\pi\)
\(468\) 17.9238 4.62659i 0.828528 0.213864i
\(469\) −5.94142 + 33.6954i −0.274349 + 1.55591i
\(470\) 18.0369 + 2.10821i 0.831978 + 0.0972443i
\(471\) −2.72021 + 6.48277i −0.125341 + 0.298710i
\(472\) −1.34394 4.48908i −0.0618600 0.206627i
\(473\) −11.2120 2.65729i −0.515528 0.122182i
\(474\) −5.02787 3.23567i −0.230938 0.148619i
\(475\) −12.7605 29.5822i −0.585493 1.35733i
\(476\) 0.367666 + 0.308508i 0.0168519 + 0.0141405i
\(477\) 16.6943 0.332279i 0.764381 0.0152140i
\(478\) −21.8649 + 18.3468i −1.00008 + 0.839164i
\(479\) −14.7708 7.41817i −0.674894 0.338945i 0.0781245 0.996944i \(-0.475107\pi\)
−0.753019 + 0.657999i \(0.771403\pi\)
\(480\) −6.39298 + 1.58251i −0.291798 + 0.0722314i
\(481\) −46.7614 + 5.46562i −2.13214 + 0.249211i
\(482\) 0.368795 6.33196i 0.0167981 0.288413i
\(483\) −5.41549 + 9.59924i −0.246413 + 0.436780i
\(484\) −1.20189 1.27393i −0.0546313 0.0579058i
\(485\) 26.4558 1.20130
\(486\) 3.72261 15.1374i 0.168861 0.686648i
\(487\) −22.8688 −1.03628 −0.518142 0.855295i \(-0.673376\pi\)
−0.518142 + 0.855295i \(0.673376\pi\)
\(488\) −9.25904 9.81401i −0.419137 0.444260i
\(489\) −3.09616 + 5.48810i −0.140013 + 0.248181i
\(490\) −1.17241 + 20.1294i −0.0529639 + 0.909356i
\(491\) −20.7899 + 2.42999i −0.938236 + 0.109664i −0.571446 0.820640i \(-0.693617\pi\)
−0.366790 + 0.930304i \(0.619543\pi\)
\(492\) 10.6851 2.64499i 0.481723 0.119245i
\(493\) −0.160201 0.0804558i −0.00721507 0.00362355i
\(494\) −16.1008 + 13.5102i −0.724411 + 0.607853i
\(495\) 19.6610 35.6750i 0.883694 1.60347i
\(496\) −0.243001 0.203902i −0.0109111 0.00915548i
\(497\) −5.53479 12.8311i −0.248269 0.575553i
\(498\) −1.26744 0.815657i −0.0567953 0.0365505i
\(499\) 17.5900 + 4.16891i 0.787436 + 0.186626i 0.604612 0.796520i \(-0.293328\pi\)
0.182824 + 0.983146i \(0.441476\pi\)
\(500\) −4.86179 16.2395i −0.217426 0.726253i
\(501\) −6.32323 + 15.0695i −0.282501 + 0.673254i
\(502\) −8.50538 0.994136i −0.379614 0.0443705i
\(503\) −2.56772 + 14.5622i −0.114489 + 0.649298i 0.872513 + 0.488590i \(0.162489\pi\)
−0.987002 + 0.160708i \(0.948622\pi\)
\(504\) 7.37195 + 7.50867i 0.328373 + 0.334463i
\(505\) −2.66543 15.1164i −0.118610 0.672670i
\(506\) 0.376674 + 6.46725i 0.0167452 + 0.287504i
\(507\) 36.0458 24.2249i 1.60085 1.07587i
\(508\) −4.11475 + 9.53907i −0.182563 + 0.423228i
\(509\) −32.6449 + 16.3949i −1.44696 + 0.726690i −0.986920 0.161210i \(-0.948460\pi\)
−0.460038 + 0.887899i \(0.652164\pi\)
\(510\) 0.165312 + 0.885892i 0.00732014 + 0.0392279i
\(511\) 47.6969 11.3044i 2.10999 0.500076i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 3.59237 + 17.3311i 0.158607 + 0.765187i
\(514\) −1.69904 + 2.94283i −0.0749417 + 0.129803i
\(515\) −1.50687 + 5.03329i −0.0664005 + 0.221793i
\(516\) 5.23263 1.96370i 0.230354 0.0864472i
\(517\) −14.2485 9.37141i −0.626650 0.412154i
\(518\) −15.9813 21.4666i −0.702177 0.943187i
\(519\) −22.7586 2.43080i −0.998992 0.106700i
\(520\) −19.6025 + 12.8928i −0.859628 + 0.565386i
\(521\) 10.0480 + 3.65717i 0.440210 + 0.160223i 0.552611 0.833440i \(-0.313632\pi\)
−0.112400 + 0.993663i \(0.535854\pi\)
\(522\) −3.32608 2.09398i −0.145579 0.0916512i
\(523\) 27.4132 9.97760i 1.19870 0.436290i 0.335927 0.941888i \(-0.390950\pi\)
0.862769 + 0.505598i \(0.168728\pi\)
\(524\) 10.4261 14.0047i 0.455467 0.611798i
\(525\) −39.0141 + 42.1856i −1.70271 + 1.84113i
\(526\) −1.10496 + 1.17118i −0.0481784 + 0.0510661i
\(527\) −0.0297871 + 0.0315724i −0.00129754 + 0.00137532i
\(528\) 6.03218 + 1.36640i 0.262517 + 0.0594651i
\(529\) −11.7693 + 15.8089i −0.511708 + 0.687343i
\(530\) −19.8873 + 7.23839i −0.863850 + 0.314416i
\(531\) −13.9275 + 1.90955i −0.604403 + 0.0828673i
\(532\) −11.2271 4.08634i −0.486757 0.177165i
\(533\) 32.7634 21.5488i 1.41914 0.933384i
\(534\) −8.55734 + 11.7365i −0.370312 + 0.507889i
\(535\) −33.3946 44.8568i −1.44378 1.93933i
\(536\) −8.14998 5.36033i −0.352026 0.231531i
\(537\) −18.4589 15.1784i −0.796558 0.654996i
\(538\) −7.95627 + 26.5758i −0.343019 + 1.14576i
\(539\) 9.46803 16.3991i 0.407817 0.706360i
\(540\) 1.73702 + 19.6813i 0.0747493 + 0.846948i
\(541\) −12.5176 21.6812i −0.538175 0.932147i −0.999002 0.0446570i \(-0.985781\pi\)
0.460827 0.887490i \(-0.347553\pi\)
\(542\) 29.7765 7.05716i 1.27901 0.303131i
\(543\) −12.6681 4.46858i −0.543641 0.191765i
\(544\) −0.122280 + 0.0614113i −0.00524271 + 0.00263299i
\(545\) −4.42464 + 10.2575i −0.189531 + 0.439382i
\(546\) 33.6652 + 16.4899i 1.44074 + 0.705703i
\(547\) −0.200489 3.44227i −0.00857231 0.147181i −0.999878 0.0156038i \(-0.995033\pi\)
0.991306 0.131577i \(-0.0420041\pi\)
\(548\) 2.80520 + 15.9091i 0.119832 + 0.679603i
\(549\) −33.3689 + 22.9111i −1.42415 + 0.977824i
\(550\) −5.86484 + 33.2611i −0.250078 + 1.41826i
\(551\) 4.43243 + 0.518077i 0.188828 + 0.0220708i
\(552\) −1.90139 2.50165i −0.0809285 0.106477i
\(553\) −3.47263 11.5994i −0.147671 0.493257i
\(554\) 1.87968 + 0.445493i 0.0798600 + 0.0189272i
\(555\) 2.42247 50.1915i 0.102828 2.13051i
\(556\) 6.55615 + 15.1989i 0.278043 + 0.644576i
\(557\) 6.01226 + 5.04489i 0.254748 + 0.213759i 0.761213 0.648501i \(-0.224604\pi\)
−0.506466 + 0.862260i \(0.669048\pi\)
\(558\) −0.716687 + 0.626093i −0.0303398 + 0.0265046i
\(559\) 15.2525 12.7984i 0.645111 0.541313i
\(560\) −11.9184 5.98566i −0.503645 0.252940i
\(561\) 0.234649 0.813143i 0.00990687 0.0343309i
\(562\) 15.5505 1.81759i 0.655957 0.0766704i
\(563\) −1.20456 + 20.6815i −0.0507660 + 0.871619i 0.872776 + 0.488121i \(0.162318\pi\)
−0.923542 + 0.383498i \(0.874719\pi\)
\(564\) 8.27161 0.0823096i 0.348298 0.00346586i
\(565\) −47.5848 50.4370i −2.00191 2.12190i
\(566\) 14.3864 0.604707
\(567\) 25.6634 18.3826i 1.07776 0.771996i
\(568\) 3.98396 0.167163
\(569\) 17.7236 + 18.7859i 0.743010 + 0.787545i 0.983073 0.183213i \(-0.0586497\pi\)
−0.240063 + 0.970757i \(0.577168\pi\)
\(570\) −11.4095 19.3154i −0.477891 0.809032i
\(571\) 0.326901 5.61267i 0.0136804 0.234883i −0.984536 0.175183i \(-0.943948\pi\)
0.998216 0.0597005i \(-0.0190146\pi\)
\(572\) 21.8851 2.55800i 0.915061 0.106955i
\(573\) 0.701546 + 0.728926i 0.0293075 + 0.0304513i
\(574\) 19.9203 + 10.0044i 0.831457 + 0.417574i
\(575\) 13.1443 11.0294i 0.548154 0.459956i
\(576\) −2.79810 + 1.08196i −0.116588 + 0.0450815i
\(577\) 4.53375 + 3.80427i 0.188743 + 0.158374i 0.732263 0.681022i \(-0.238464\pi\)
−0.543520 + 0.839396i \(0.682909\pi\)
\(578\) −6.72594 15.5925i −0.279762 0.648562i
\(579\) 32.7345 16.8498i 1.36040 0.700255i
\(580\) 4.84728 + 1.14883i 0.201273 + 0.0477025i
\(581\) −0.875390 2.92401i −0.0363173 0.121308i
\(582\) 11.9551 1.51808i 0.495554 0.0629263i
\(583\) 19.7409 + 2.30738i 0.817584 + 0.0955619i
\(584\) −2.42675 + 13.7628i −0.100419 + 0.569507i
\(585\) 29.1595 + 64.0630i 1.20560 + 2.64868i
\(586\) 1.94895 + 11.0531i 0.0805105 + 0.456598i
\(587\) 0.583214 + 10.0134i 0.0240718 + 0.413297i 0.988722 + 0.149763i \(0.0478511\pi\)
−0.964650 + 0.263534i \(0.915112\pi\)
\(588\) 0.625262 + 9.16353i 0.0257854 + 0.377897i
\(589\) 0.427973 0.992153i 0.0176343 0.0408810i
\(590\) 15.9225 7.99660i 0.655521 0.329215i
\(591\) 0.716567 0.613524i 0.0294756 0.0252370i
\(592\) 7.42423 1.75957i 0.305134 0.0723181i
\(593\) 14.9501 + 25.8943i 0.613927 + 1.06335i 0.990572 + 0.136995i \(0.0437445\pi\)
−0.376644 + 0.926358i \(0.622922\pi\)
\(594\) 6.83746 17.2493i 0.280545 0.707746i
\(595\) −0.912485 + 1.58047i −0.0374082 + 0.0647930i
\(596\) 1.60438 5.35899i 0.0657178 0.219513i
\(597\) 0.629676 3.79129i 0.0257709 0.155167i
\(598\) −9.35258 6.15129i −0.382456 0.251545i
\(599\) −9.81231 13.1802i −0.400920 0.538529i 0.555118 0.831772i \(-0.312673\pi\)
−0.956038 + 0.293242i \(0.905266\pi\)
\(600\) −6.63794 14.9769i −0.270993 0.611430i
\(601\) 18.6165 12.2443i 0.759384 0.499455i −0.109794 0.993954i \(-0.535019\pi\)
0.869178 + 0.494499i \(0.164649\pi\)
\(602\) 10.6355 + 3.87102i 0.433473 + 0.157771i
\(603\) −19.6548 + 21.6815i −0.800405 + 0.882938i
\(604\) −11.0870 + 4.03535i −0.451125 + 0.164196i
\(605\) 3.97680 5.34177i 0.161680 0.217174i
\(606\) −2.07187 6.67796i −0.0841642 0.271274i
\(607\) 11.7322 12.4354i 0.476193 0.504735i −0.444093 0.895981i \(-0.646474\pi\)
0.920286 + 0.391245i \(0.127956\pi\)
\(608\) 2.33753 2.47763i 0.0947992 0.100481i
\(609\) −2.35850 7.60180i −0.0955712 0.308040i
\(610\) 30.6362 41.1516i 1.24042 1.66618i
\(611\) 27.6919 10.0790i 1.12029 0.407753i
\(612\) 0.125536 + 0.390838i 0.00507450 + 0.0157987i
\(613\) 18.3744 + 6.68772i 0.742133 + 0.270114i 0.685292 0.728269i \(-0.259675\pi\)
0.0568418 + 0.998383i \(0.481897\pi\)
\(614\) −5.29939 + 3.48547i −0.213866 + 0.140662i
\(615\) 16.9596 + 38.2654i 0.683879 + 1.54301i
\(616\) 7.47949 + 10.0467i 0.301357 + 0.404793i
\(617\) 28.7378 + 18.9012i 1.15694 + 0.760932i 0.974962 0.222370i \(-0.0713793\pi\)
0.181979 + 0.983302i \(0.441750\pi\)
\(618\) −0.392117 + 2.36095i −0.0157733 + 0.0949712i
\(619\) −0.631086 + 2.10797i −0.0253655 + 0.0847266i −0.969735 0.244159i \(-0.921488\pi\)
0.944370 + 0.328886i \(0.106673\pi\)
\(620\) 0.603088 1.04458i 0.0242206 0.0419513i
\(621\) −8.29394 + 4.48022i −0.332825 + 0.179785i
\(622\) −16.4354 28.4669i −0.658998 1.14142i
\(623\) −28.6213 + 6.78338i −1.14669 + 0.271771i
\(624\) −8.11834 + 6.95092i −0.324994 + 0.278259i
\(625\) 15.3401 7.70409i 0.613604 0.308163i
\(626\) −5.58611 + 12.9501i −0.223266 + 0.517589i
\(627\) 1.43420 + 21.0189i 0.0572764 + 0.839415i
\(628\) −0.236008 4.05211i −0.00941776 0.161697i
\(629\) −0.181295 1.02817i −0.00722869 0.0409959i
\(630\) −23.2496 + 32.5630i −0.926286 + 1.29734i
\(631\) −4.88620 + 27.7110i −0.194517 + 1.10316i 0.718589 + 0.695435i \(0.244788\pi\)
−0.913106 + 0.407723i \(0.866323\pi\)
\(632\) 3.42866 + 0.400753i 0.136385 + 0.0159411i
\(633\) −6.49001 + 0.824114i −0.257955 + 0.0327556i
\(634\) −4.90764 16.3927i −0.194907 0.651036i
\(635\) −38.4371 9.10976i −1.52533 0.361510i
\(636\) −8.57149 + 4.41211i −0.339882 + 0.174951i
\(637\) 12.9601 + 30.0449i 0.513498 + 1.19042i
\(638\) −3.58379 3.00715i −0.141883 0.119054i
\(639\) 1.84079 11.8093i 0.0728204 0.467168i
\(640\) 2.91280 2.44413i 0.115138 0.0966127i
\(641\) −11.9322 5.99260i −0.471295 0.236693i 0.197267 0.980350i \(-0.436794\pi\)
−0.668562 + 0.743656i \(0.733090\pi\)
\(642\) −17.6646 18.3540i −0.697166 0.724375i
\(643\) 45.0701 5.26794i 1.77739 0.207747i 0.836852 0.547429i \(-0.184393\pi\)
0.940540 + 0.339682i \(0.110319\pi\)
\(644\) 0.369990 6.35249i 0.0145797 0.250323i
\(645\) 10.8083 + 18.2976i 0.425577 + 0.720469i
\(646\) −0.319854 0.339026i −0.0125845 0.0133388i
\(647\) 10.1080 0.397388 0.198694 0.980062i \(-0.436330\pi\)
0.198694 + 0.980062i \(0.436330\pi\)
\(648\) 1.91428 + 8.79406i 0.0752000 + 0.345463i
\(649\) −16.7331 −0.656831
\(650\) −40.0497 42.4502i −1.57088 1.66503i
\(651\) −1.92707 + 0.0191760i −0.0755277 + 0.000751566i
\(652\) 0.211532 3.63186i 0.00828423 0.142235i
\(653\) 25.9543 3.03362i 1.01567 0.118715i 0.408064 0.912953i \(-0.366204\pi\)
0.607606 + 0.794238i \(0.292130\pi\)
\(654\) −1.41085 + 4.88912i −0.0551687 + 0.191180i
\(655\) 59.3264 + 29.7948i 2.31807 + 1.16418i
\(656\) −4.86842 + 4.08509i −0.190080 + 0.159496i
\(657\) 39.6744 + 13.5524i 1.54784 + 0.528731i
\(658\) 12.8324 + 10.7677i 0.500259 + 0.419767i
\(659\) −8.94916 20.7465i −0.348610 0.808168i −0.998827 0.0484199i \(-0.984581\pi\)
0.650217 0.759748i \(-0.274678\pi\)
\(660\) −1.13375 + 23.4904i −0.0441313 + 0.914364i
\(661\) 36.7996 + 8.72168i 1.43134 + 0.339234i 0.871919 0.489650i \(-0.162875\pi\)
0.559421 + 0.828884i \(0.311023\pi\)
\(662\) −1.80172 6.01815i −0.0700257 0.233902i
\(663\) 0.884926 + 1.16429i 0.0343677 + 0.0452174i
\(664\) 0.864307 + 0.101023i 0.0335416 + 0.00392045i
\(665\) 7.88877 44.7394i 0.305913 1.73492i
\(666\) −1.78538 22.8199i −0.0691821 0.884255i
\(667\) 0.412720 + 2.34065i 0.0159806 + 0.0906303i
\(668\) −0.548611 9.41929i −0.0212264 0.364443i
\(669\) −31.1364 15.2513i −1.20380 0.589648i
\(670\) 14.6911 34.0579i 0.567569 1.31577i
\(671\) −43.0554 + 21.6232i −1.66213 + 0.834755i
\(672\) −5.72926 2.02095i −0.221011 0.0779598i
\(673\) −43.4096 + 10.2883i −1.67332 + 0.396584i −0.954405 0.298516i \(-0.903509\pi\)
−0.718914 + 0.695099i \(0.755360\pi\)
\(674\) −1.16998 2.02646i −0.0450658 0.0780563i
\(675\) −47.4617 + 12.7561i −1.82680 + 0.490984i
\(676\) −12.5371 + 21.7149i −0.482197 + 0.835189i
\(677\) 2.60218 8.69190i 0.100010 0.334057i −0.893311 0.449439i \(-0.851624\pi\)
0.993321 + 0.115382i \(0.0368092\pi\)
\(678\) −24.3971 20.0614i −0.936967 0.770452i
\(679\) 20.3896 + 13.4104i 0.782481 + 0.514646i
\(680\) −0.310701 0.417344i −0.0119148 0.0160044i
\(681\) 7.46501 10.2384i 0.286060 0.392336i
\(682\) −0.946398 + 0.622456i −0.0362394 + 0.0238351i
\(683\) 20.2951 + 7.38680i 0.776569 + 0.282648i 0.699741 0.714396i \(-0.253299\pi\)
0.0768276 + 0.997044i \(0.475521\pi\)
\(684\) −6.26416 8.07369i −0.239516 0.308705i
\(685\) −57.7214 + 21.0089i −2.20542 + 0.802707i
\(686\) 3.55475 4.77486i 0.135721 0.182305i
\(687\) 15.6260 + 3.53958i 0.596168 + 0.135044i
\(688\) −2.21436 + 2.34708i −0.0844216 + 0.0894817i
\(689\) −23.5682 + 24.9808i −0.897877 + 0.951694i
\(690\) 8.11229 8.77177i 0.308830 0.333936i
\(691\) 12.6379 16.9757i 0.480769 0.645784i −0.493879 0.869531i \(-0.664421\pi\)
0.974647 + 0.223746i \(0.0718288\pi\)
\(692\) 12.4175 4.51960i 0.472042 0.171809i
\(693\) 33.2364 17.5287i 1.26254 0.665859i
\(694\) 31.8974 + 11.6097i 1.21081 + 0.440699i
\(695\) −52.5851 + 34.5858i −1.99467 + 1.31191i
\(696\) 2.25635 + 0.240997i 0.0855267 + 0.00913495i
\(697\) 0.519301 + 0.697543i 0.0196699 + 0.0264213i
\(698\) 15.5183 + 10.2065i 0.587376 + 0.386324i
\(699\) 13.9577 5.23806i 0.527930 0.198122i
\(700\) 9.51467 31.7812i 0.359621 1.20122i
\(701\) 9.63781 16.6932i 0.364015 0.630493i −0.624602 0.780943i \(-0.714739\pi\)
0.988618 + 0.150450i \(0.0480723\pi\)
\(702\) 16.8529 + 27.2761i 0.636071 + 1.02947i
\(703\) 12.9947 + 22.5076i 0.490106 + 0.848888i
\(704\) −3.47466 + 0.823509i −0.130956 + 0.0310372i
\(705\) 5.76978 + 30.9197i 0.217302 + 1.16450i
\(706\) −1.62816 + 0.817693i −0.0612767 + 0.0307743i
\(707\) 5.60823 13.0013i 0.210919 0.488966i
\(708\) 6.73635 4.52723i 0.253167 0.170144i
\(709\) 0.694133 + 11.9178i 0.0260687 + 0.447582i 0.985936 + 0.167126i \(0.0534487\pi\)
−0.959867 + 0.280456i \(0.909514\pi\)
\(710\) 2.63052 + 14.9184i 0.0987218 + 0.559879i
\(711\) 2.77213 9.97810i 0.103963 0.374208i
\(712\) 1.45621 8.25858i 0.0545738 0.309503i
\(713\) 0.571589 + 0.0668092i 0.0214062 + 0.00250202i
\(714\) −0.321651 + 0.766555i −0.0120375 + 0.0286876i
\(715\) 24.0290 + 80.2624i 0.898633 + 3.00164i
\(716\) 13.4256 + 3.18192i 0.501738 + 0.118914i
\(717\) −41.5724 26.7538i −1.55255 0.999141i
\(718\) −4.48330 10.3935i −0.167315 0.387881i
\(719\) −0.280815 0.235632i −0.0104726 0.00878758i 0.637536 0.770420i \(-0.279954\pi\)
−0.648009 + 0.761633i \(0.724398\pi\)
\(720\) −5.89904 9.76344i −0.219844 0.363862i
\(721\) −3.71271 + 3.11534i −0.138269 + 0.116021i
\(722\) −6.61048 3.31991i −0.246017 0.123554i
\(723\) 10.6640 2.63976i 0.396599 0.0981736i
\(724\) 7.70319 0.900374i 0.286287 0.0334621i
\(725\) −0.720488 + 12.3703i −0.0267583 + 0.459422i
\(726\) 1.49055 2.64208i 0.0553194 0.0980566i
\(727\) −28.8159 30.5430i −1.06872 1.13278i −0.990733 0.135825i \(-0.956632\pi\)
−0.0779889 0.996954i \(-0.524850\pi\)
\(728\) −21.6431 −0.802145
\(729\) 26.9519 1.61103i 0.998218 0.0596677i
\(730\) −53.1387 −1.96675
\(731\) 0.303001 + 0.321162i 0.0112069 + 0.0118786i
\(732\) 11.4828 20.3539i 0.424416 0.752300i
\(733\) −3.12616 + 53.6741i −0.115467 + 1.98250i 0.0607694 + 0.998152i \(0.480645\pi\)
−0.176237 + 0.984348i \(0.556392\pi\)
\(734\) 4.77015 0.557551i 0.176070 0.0205796i
\(735\) −33.9011 + 8.39184i −1.25046 + 0.309538i
\(736\) 1.62119 + 0.814194i 0.0597580 + 0.0300116i
\(737\) −26.6839 + 22.3905i −0.982915 + 0.824763i
\(738\) 9.85958 + 16.3185i 0.362936 + 0.600692i
\(739\) 19.6431 + 16.4825i 0.722581 + 0.606318i 0.928098 0.372336i \(-0.121443\pi\)
−0.205517 + 0.978654i \(0.565887\pi\)
\(740\) 11.4910 + 26.6391i 0.422417 + 0.979273i
\(741\) −30.6131 19.7010i −1.12460 0.723733i
\(742\) −18.9963 4.50222i −0.697378 0.165282i
\(743\) −10.9043 36.4229i −0.400040 1.33623i −0.886583 0.462570i \(-0.846927\pi\)
0.486542 0.873657i \(-0.338258\pi\)
\(744\) 0.212589 0.506639i 0.00779388 0.0185743i
\(745\) 21.1267 + 2.46936i 0.774023 + 0.0904704i
\(746\) 3.66831 20.8040i 0.134306 0.761688i
\(747\) 0.698805 2.51531i 0.0255679 0.0920302i
\(748\) 0.0848488 + 0.481201i 0.00310238 + 0.0175945i
\(749\) −2.99947 51.4989i −0.109598 1.88173i
\(750\) 24.3691 16.3775i 0.889834 0.598022i
\(751\) 7.83039 18.1529i 0.285735 0.662408i −0.713535 0.700620i \(-0.752907\pi\)
0.999270 + 0.0382118i \(0.0121661\pi\)
\(752\) −4.26786 + 2.14340i −0.155633 + 0.0781617i
\(753\) −2.72077 14.5804i −0.0991504 0.531338i
\(754\) 7.86606 1.86429i 0.286465 0.0678935i
\(755\) −22.4314 38.8523i −0.816362 1.41398i
\(756\) −8.63770 + 16.0489i −0.314150 + 0.583693i
\(757\) −22.2454 + 38.5302i −0.808524 + 1.40040i 0.105362 + 0.994434i \(0.466400\pi\)
−0.913886 + 0.405971i \(0.866933\pi\)
\(758\) −4.66630 + 15.5865i −0.169488 + 0.566128i
\(759\) −10.5052 + 3.94239i −0.381314 + 0.143100i
\(760\) 10.8212 + 7.11722i 0.392527 + 0.258169i
\(761\) 19.9164 + 26.7523i 0.721968 + 0.969772i 0.999958 + 0.00918761i \(0.00292455\pi\)
−0.277989 + 0.960584i \(0.589668\pi\)
\(762\) −17.8920 1.91101i −0.648158 0.0692286i
\(763\) −8.60958 + 5.66261i −0.311688 + 0.205000i
\(764\) −0.548869 0.199772i −0.0198574 0.00722750i
\(765\) −1.38065 + 0.728148i −0.0499175 + 0.0263262i
\(766\) 11.2487 4.09420i 0.406433 0.147929i
\(767\) 17.2664 23.1928i 0.623454