Properties

Label 162.2.g.b.103.1
Level $162$
Weight $2$
Character 162.103
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 103.1
Character \(\chi\) \(=\) 162.103
Dual form 162.2.g.b.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686242 - 0.727374i) q^{2} +(-1.70169 + 0.322861i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(0.269488 - 0.0314987i) q^{5} +(1.40261 + 1.01621i) q^{6} +(1.70173 + 0.854643i) q^{7} +(0.766044 - 0.642788i) q^{8} +(2.79152 - 1.09882i) q^{9} +O(q^{10})\) \(q+(-0.686242 - 0.727374i) q^{2} +(-1.70169 + 0.322861i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(0.269488 - 0.0314987i) q^{5} +(1.40261 + 1.01621i) q^{6} +(1.70173 + 0.854643i) q^{7} +(0.766044 - 0.642788i) q^{8} +(2.79152 - 1.09882i) q^{9} +(-0.207845 - 0.174403i) q^{10} +(0.493535 + 1.14414i) q^{11} +(-0.223370 - 1.71759i) q^{12} +(6.47151 + 1.53378i) q^{13} +(-0.546156 - 1.82429i) q^{14} +(-0.448417 + 0.140608i) q^{15} +(-0.993238 - 0.116093i) q^{16} +(0.874267 - 4.95822i) q^{17} +(-2.71491 - 1.27642i) q^{18} +(0.683318 + 3.87529i) q^{19} +(0.0157760 + 0.270864i) q^{20} +(-3.17176 - 0.904918i) q^{21} +(0.493535 - 1.14414i) q^{22} +(1.82524 - 0.916669i) q^{23} +(-1.09604 + 1.34115i) q^{24} +(-4.79359 + 1.13610i) q^{25} +(-3.32539 - 5.75975i) q^{26} +(-4.39555 + 2.77113i) q^{27} +(-0.952145 + 1.64916i) q^{28} +(-1.75411 + 5.85915i) q^{29} +(0.409997 + 0.229675i) q^{30} +(-1.57574 - 1.03638i) q^{31} +(0.597159 + 0.802123i) q^{32} +(-1.20924 - 1.78764i) q^{33} +(-4.20643 + 2.76662i) q^{34} +(0.485518 + 0.176714i) q^{35} +(0.934648 + 2.85069i) q^{36} +(7.10876 - 2.58738i) q^{37} +(2.34986 - 3.15641i) q^{38} +(-11.5077 - 0.520621i) q^{39} +(0.186193 - 0.197353i) q^{40} +(-0.0646786 + 0.0685554i) q^{41} +(1.51838 + 2.92805i) q^{42} +(0.298821 - 0.401387i) q^{43} +(-1.17090 + 0.426174i) q^{44} +(0.717671 - 0.384048i) q^{45} +(-1.91932 - 0.698574i) q^{46} +(-8.22043 + 5.40667i) q^{47} +(1.72767 - 0.123123i) q^{48} +(-2.01462 - 2.70611i) q^{49} +(4.11593 + 2.70709i) q^{50} +(0.113078 + 8.71963i) q^{51} +(-1.90747 + 6.37138i) q^{52} +(5.41495 - 9.37896i) q^{53} +(5.03205 + 1.29554i) q^{54} +(0.169041 + 0.292787i) q^{55} +(1.85296 - 0.439159i) q^{56} +(-2.41398 - 6.37394i) q^{57} +(5.46554 - 2.74490i) q^{58} +(-0.219677 + 0.509269i) q^{59} +(-0.114297 - 0.455834i) q^{60} +(-0.127382 - 2.18707i) q^{61} +(0.327503 + 1.85736i) q^{62} +(5.68953 + 0.515856i) q^{63} +(0.173648 - 0.984808i) q^{64} +(1.79231 + 0.209491i) q^{65} +(-0.470447 + 2.10632i) q^{66} +(-3.40189 - 11.3631i) q^{67} +(4.89899 + 1.16108i) q^{68} +(-2.81004 + 2.14919i) q^{69} +(-0.204645 - 0.474421i) q^{70} +(3.56320 + 2.98988i) q^{71} +(1.43212 - 2.63610i) q^{72} +(0.592380 - 0.497066i) q^{73} +(-6.76031 - 3.39516i) q^{74} +(7.79042 - 3.48096i) q^{75} +(-3.90846 + 0.456834i) q^{76} +(-0.137968 + 2.36882i) q^{77} +(7.51839 + 8.72768i) q^{78} +(-9.82654 - 10.4155i) q^{79} -0.271323 q^{80} +(6.58519 - 6.13476i) q^{81} +0.0942505 q^{82} +(5.24496 + 5.55933i) q^{83} +(1.08781 - 3.11378i) q^{84} +(0.0794276 - 1.36372i) q^{85} +(-0.497022 + 0.0580935i) q^{86} +(1.09328 - 10.5368i) q^{87} +(1.11351 + 0.559226i) q^{88} +(-8.83168 + 7.41066i) q^{89} +(-0.771842 - 0.258465i) q^{90} +(9.70196 + 8.14091i) q^{91} +(0.808990 + 1.87545i) q^{92} +(3.01604 + 1.25486i) q^{93} +(9.57387 + 2.26905i) q^{94} +(0.306212 + 1.02282i) q^{95} +(-1.27515 - 1.17217i) q^{96} +(3.13232 + 0.366116i) q^{97} +(-0.585834 + 3.32243i) q^{98} +(2.63492 + 2.65159i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686242 0.727374i −0.485246 0.514331i
\(3\) −1.70169 + 0.322861i −0.982473 + 0.186404i
\(4\) −0.0581448 + 0.998308i −0.0290724 + 0.499154i
\(5\) 0.269488 0.0314987i 0.120519 0.0140866i −0.0556197 0.998452i \(-0.517713\pi\)
0.176138 + 0.984365i \(0.443639\pi\)
\(6\) 1.40261 + 1.01621i 0.572614 + 0.414865i
\(7\) 1.70173 + 0.854643i 0.643195 + 0.323025i 0.740327 0.672247i \(-0.234671\pi\)
−0.0971319 + 0.995272i \(0.530967\pi\)
\(8\) 0.766044 0.642788i 0.270838 0.227260i
\(9\) 2.79152 1.09882i 0.930507 0.366273i
\(10\) −0.207845 0.174403i −0.0657265 0.0551510i
\(11\) 0.493535 + 1.14414i 0.148806 + 0.344972i 0.976273 0.216543i \(-0.0694781\pi\)
−0.827467 + 0.561515i \(0.810219\pi\)
\(12\) −0.223370 1.71759i −0.0644813 0.495825i
\(13\) 6.47151 + 1.53378i 1.79487 + 0.425393i 0.986565 0.163367i \(-0.0522354\pi\)
0.808308 + 0.588760i \(0.200384\pi\)
\(14\) −0.546156 1.82429i −0.145966 0.487562i
\(15\) −0.448417 + 0.140608i −0.115781 + 0.0363049i
\(16\) −0.993238 0.116093i −0.248310 0.0290232i
\(17\) 0.874267 4.95822i 0.212041 1.20254i −0.673927 0.738798i \(-0.735394\pi\)
0.885968 0.463746i \(-0.153495\pi\)
\(18\) −2.71491 1.27642i −0.639911 0.300856i
\(19\) 0.683318 + 3.87529i 0.156764 + 0.889052i 0.957155 + 0.289575i \(0.0935138\pi\)
−0.800392 + 0.599477i \(0.795375\pi\)
\(20\) 0.0157760 + 0.270864i 0.00352762 + 0.0605670i
\(21\) −3.17176 0.904918i −0.692135 0.197469i
\(22\) 0.493535 1.14414i 0.105222 0.243932i
\(23\) 1.82524 0.916669i 0.380588 0.191139i −0.248211 0.968706i \(-0.579843\pi\)
0.628800 + 0.777567i \(0.283546\pi\)
\(24\) −1.09604 + 1.34115i −0.223729 + 0.273762i
\(25\) −4.79359 + 1.13610i −0.958719 + 0.227220i
\(26\) −3.32539 5.75975i −0.652163 1.12958i
\(27\) −4.39555 + 2.77113i −0.845924 + 0.533304i
\(28\) −0.952145 + 1.64916i −0.179938 + 0.311662i
\(29\) −1.75411 + 5.85915i −0.325731 + 1.08802i 0.625677 + 0.780082i \(0.284823\pi\)
−0.951408 + 0.307934i \(0.900362\pi\)
\(30\) 0.409997 + 0.229675i 0.0748548 + 0.0419328i
\(31\) −1.57574 1.03638i −0.283012 0.186140i 0.400064 0.916487i \(-0.368988\pi\)
−0.683076 + 0.730347i \(0.739358\pi\)
\(32\) 0.597159 + 0.802123i 0.105564 + 0.141797i
\(33\) −1.20924 1.78764i −0.210502 0.311188i
\(34\) −4.20643 + 2.76662i −0.721398 + 0.474471i
\(35\) 0.485518 + 0.176714i 0.0820674 + 0.0298701i
\(36\) 0.934648 + 2.85069i 0.155775 + 0.475115i
\(37\) 7.10876 2.58738i 1.16867 0.425362i 0.316485 0.948598i \(-0.397497\pi\)
0.852188 + 0.523236i \(0.175275\pi\)
\(38\) 2.34986 3.15641i 0.381198 0.512038i
\(39\) −11.5077 0.520621i −1.84271 0.0833661i
\(40\) 0.186193 0.197353i 0.0294397 0.0312043i
\(41\) −0.0646786 + 0.0685554i −0.0101011 + 0.0107065i −0.732404 0.680870i \(-0.761602\pi\)
0.722303 + 0.691576i \(0.243083\pi\)
\(42\) 1.51838 + 2.92805i 0.234291 + 0.451808i
\(43\) 0.298821 0.401387i 0.0455698 0.0612109i −0.778754 0.627329i \(-0.784148\pi\)
0.824324 + 0.566118i \(0.191555\pi\)
\(44\) −1.17090 + 0.426174i −0.176520 + 0.0642482i
\(45\) 0.717671 0.384048i 0.106984 0.0572505i
\(46\) −1.91932 0.698574i −0.282988 0.102999i
\(47\) −8.22043 + 5.40667i −1.19907 + 0.788643i −0.982252 0.187568i \(-0.939940\pi\)
−0.216822 + 0.976211i \(0.569569\pi\)
\(48\) 1.72767 0.123123i 0.249368 0.0177713i
\(49\) −2.01462 2.70611i −0.287803 0.386587i
\(50\) 4.11593 + 2.70709i 0.582081 + 0.382841i
\(51\) 0.113078 + 8.71963i 0.0158340 + 1.22099i
\(52\) −1.90747 + 6.37138i −0.264518 + 0.883551i
\(53\) 5.41495 9.37896i 0.743800 1.28830i −0.206953 0.978351i \(-0.566355\pi\)
0.950753 0.309948i \(-0.100312\pi\)
\(54\) 5.03205 + 1.29554i 0.684776 + 0.176301i
\(55\) 0.169041 + 0.292787i 0.0227935 + 0.0394794i
\(56\) 1.85296 0.439159i 0.247612 0.0586851i
\(57\) −2.41398 6.37394i −0.319739 0.844248i
\(58\) 5.46554 2.74490i 0.717660 0.360422i
\(59\) −0.219677 + 0.509269i −0.0285995 + 0.0663011i −0.931917 0.362671i \(-0.881865\pi\)
0.903318 + 0.428972i \(0.141124\pi\)
\(60\) −0.114297 0.455834i −0.0147557 0.0588479i
\(61\) −0.127382 2.18707i −0.0163096 0.280025i −0.996596 0.0824426i \(-0.973728\pi\)
0.980286 0.197583i \(-0.0633092\pi\)
\(62\) 0.327503 + 1.85736i 0.0415930 + 0.235885i
\(63\) 5.68953 + 0.515856i 0.716813 + 0.0649918i
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) 1.79231 + 0.209491i 0.222308 + 0.0259841i
\(66\) −0.470447 + 2.10632i −0.0579080 + 0.259270i
\(67\) −3.40189 11.3631i −0.415607 1.38823i −0.868070 0.496442i \(-0.834639\pi\)
0.452462 0.891784i \(-0.350546\pi\)
\(68\) 4.89899 + 1.16108i 0.594090 + 0.140802i
\(69\) −2.81004 + 2.14919i −0.338289 + 0.258732i
\(70\) −0.204645 0.474421i −0.0244598 0.0567042i
\(71\) 3.56320 + 2.98988i 0.422874 + 0.354833i 0.829255 0.558870i \(-0.188765\pi\)
−0.406381 + 0.913704i \(0.633209\pi\)
\(72\) 1.43212 2.63610i 0.168777 0.310667i
\(73\) 0.592380 0.497066i 0.0693329 0.0581772i −0.607463 0.794348i \(-0.707813\pi\)
0.676796 + 0.736171i \(0.263368\pi\)
\(74\) −6.76031 3.39516i −0.785871 0.394679i
\(75\) 7.79042 3.48096i 0.899561 0.401947i
\(76\) −3.90846 + 0.456834i −0.448331 + 0.0524024i
\(77\) −0.137968 + 2.36882i −0.0157229 + 0.269953i
\(78\) 7.51839 + 8.72768i 0.851290 + 0.988216i
\(79\) −9.82654 10.4155i −1.10557 1.17184i −0.983798 0.179280i \(-0.942623\pi\)
−0.121774 0.992558i \(-0.538858\pi\)
\(80\) −0.271323 −0.0303348
\(81\) 6.58519 6.13476i 0.731688 0.681640i
\(82\) 0.0942505 0.0104082
\(83\) 5.24496 + 5.55933i 0.575709 + 0.610216i 0.948144 0.317843i \(-0.102958\pi\)
−0.372434 + 0.928059i \(0.621477\pi\)
\(84\) 1.08781 3.11378i 0.118690 0.339741i
\(85\) 0.0794276 1.36372i 0.00861513 0.147916i
\(86\) −0.497022 + 0.0580935i −0.0535952 + 0.00626439i
\(87\) 1.09328 10.5368i 0.117212 1.12966i
\(88\) 1.11351 + 0.559226i 0.118701 + 0.0596137i
\(89\) −8.83168 + 7.41066i −0.936156 + 0.785528i −0.976912 0.213641i \(-0.931468\pi\)
0.0407561 + 0.999169i \(0.487023\pi\)
\(90\) −0.771842 0.258465i −0.0813593 0.0272446i
\(91\) 9.70196 + 8.14091i 1.01704 + 0.853399i
\(92\) 0.808990 + 1.87545i 0.0843430 + 0.195529i
\(93\) 3.01604 + 1.25486i 0.312749 + 0.130123i
\(94\) 9.57387 + 2.26905i 0.987469 + 0.234035i
\(95\) 0.306212 + 1.02282i 0.0314167 + 0.104939i
\(96\) −1.27515 1.17217i −0.130145 0.119634i
\(97\) 3.13232 + 0.366116i 0.318039 + 0.0371734i 0.273615 0.961839i \(-0.411781\pi\)
0.0444240 + 0.999013i \(0.485855\pi\)
\(98\) −0.585834 + 3.32243i −0.0591782 + 0.335616i
\(99\) 2.63492 + 2.65159i 0.264819 + 0.266495i
\(100\) −0.855458 4.85154i −0.0855458 0.485154i
\(101\) 0.656706 + 11.2752i 0.0653447 + 1.12192i 0.858469 + 0.512865i \(0.171416\pi\)
−0.793125 + 0.609059i \(0.791547\pi\)
\(102\) 6.26483 6.06602i 0.620311 0.600626i
\(103\) 1.26506 2.93275i 0.124651 0.288972i −0.844452 0.535632i \(-0.820074\pi\)
0.969102 + 0.246659i \(0.0793328\pi\)
\(104\) 5.94335 2.98487i 0.582794 0.292690i
\(105\) −0.883256 0.143958i −0.0861970 0.0140489i
\(106\) −10.5380 + 2.49754i −1.02354 + 0.242583i
\(107\) −3.58922 6.21670i −0.346983 0.600992i 0.638729 0.769432i \(-0.279460\pi\)
−0.985712 + 0.168440i \(0.946127\pi\)
\(108\) −2.51086 4.54924i −0.241608 0.437751i
\(109\) −8.59470 + 14.8865i −0.823223 + 1.42586i 0.0800470 + 0.996791i \(0.474493\pi\)
−0.903270 + 0.429073i \(0.858840\pi\)
\(110\) 0.0969629 0.323879i 0.00924505 0.0308806i
\(111\) −11.2616 + 6.69806i −1.06890 + 0.635752i
\(112\) −1.59101 1.04642i −0.150336 0.0988778i
\(113\) −4.23354 5.68664i −0.398258 0.534954i 0.557084 0.830456i \(-0.311920\pi\)
−0.955342 + 0.295503i \(0.904513\pi\)
\(114\) −2.97966 + 6.12992i −0.279071 + 0.574120i
\(115\) 0.463006 0.304524i 0.0431756 0.0283970i
\(116\) −5.74724 2.09183i −0.533618 0.194221i
\(117\) 19.7507 2.82945i 1.82595 0.261583i
\(118\) 0.521180 0.189694i 0.0479785 0.0174628i
\(119\) 5.72528 7.69038i 0.524835 0.704976i
\(120\) −0.253126 + 0.395949i −0.0231071 + 0.0361450i
\(121\) 6.48317 6.87176i 0.589379 0.624706i
\(122\) −1.50340 + 1.59351i −0.136112 + 0.144270i
\(123\) 0.0879294 0.137542i 0.00792833 0.0124018i
\(124\) 1.12625 1.51282i 0.101140 0.135855i
\(125\) −2.53083 + 0.921147i −0.226364 + 0.0823899i
\(126\) −3.52917 4.49242i −0.314404 0.400216i
\(127\) 0.353223 + 0.128563i 0.0313435 + 0.0114081i 0.357644 0.933858i \(-0.383580\pi\)
−0.326301 + 0.945266i \(0.605802\pi\)
\(128\) −0.835488 + 0.549509i −0.0738474 + 0.0485702i
\(129\) −0.378910 + 0.779515i −0.0333612 + 0.0686325i
\(130\) −1.07758 1.44744i −0.0945098 0.126949i
\(131\) 15.7818 + 10.3799i 1.37886 + 0.906893i 0.999829 0.0184896i \(-0.00588575\pi\)
0.379035 + 0.925382i \(0.376256\pi\)
\(132\) 1.85492 1.10326i 0.161450 0.0960261i
\(133\) −2.14916 + 7.17871i −0.186356 + 0.622473i
\(134\) −5.93071 + 10.2723i −0.512335 + 0.887391i
\(135\) −1.09726 + 0.885240i −0.0944373 + 0.0761893i
\(136\) −2.51735 4.36018i −0.215861 0.373883i
\(137\) −21.2886 + 5.04549i −1.81881 + 0.431066i −0.991437 0.130588i \(-0.958314\pi\)
−0.827373 + 0.561654i \(0.810165\pi\)
\(138\) 3.49163 + 0.569087i 0.297227 + 0.0484439i
\(139\) −16.7788 + 8.42665i −1.42316 + 0.714739i −0.983073 0.183214i \(-0.941350\pi\)
−0.440090 + 0.897954i \(0.645053\pi\)
\(140\) −0.204645 + 0.474421i −0.0172957 + 0.0400959i
\(141\) 12.2431 11.8545i 1.03105 0.998333i
\(142\) −0.270456 4.64356i −0.0226962 0.389679i
\(143\) 1.43906 + 8.16130i 0.120340 + 0.682482i
\(144\) −2.90021 + 0.767314i −0.241684 + 0.0639428i
\(145\) −0.288158 + 1.63422i −0.0239302 + 0.135715i
\(146\) −0.768069 0.0897744i −0.0635658 0.00742978i
\(147\) 4.30197 + 3.95453i 0.354820 + 0.326164i
\(148\) 2.16966 + 7.24717i 0.178345 + 0.595714i
\(149\) −20.0058 4.74145i −1.63894 0.388435i −0.695117 0.718897i \(-0.744647\pi\)
−0.943819 + 0.330462i \(0.892796\pi\)
\(150\) −7.87807 3.27777i −0.643242 0.267629i
\(151\) −8.25827 19.1448i −0.672049 1.55798i −0.822123 0.569310i \(-0.807211\pi\)
0.150074 0.988675i \(-0.452049\pi\)
\(152\) 3.01444 + 2.52941i 0.244503 + 0.205163i
\(153\) −3.00765 14.8016i −0.243154 1.19664i
\(154\) 1.81770 1.52523i 0.146474 0.122907i
\(155\) −0.457289 0.229659i −0.0367303 0.0184467i
\(156\) 1.18885 11.4580i 0.0951845 0.917373i
\(157\) −18.3959 + 2.15018i −1.46816 + 0.171603i −0.812281 0.583266i \(-0.801774\pi\)
−0.655876 + 0.754869i \(0.727700\pi\)
\(158\) −0.832596 + 14.2951i −0.0662378 + 1.13726i
\(159\) −6.18648 + 17.7084i −0.490620 + 1.40437i
\(160\) 0.186193 + 0.197353i 0.0147198 + 0.0156021i
\(161\) 3.88950 0.306535
\(162\) −8.98129 0.579967i −0.705637 0.0455665i
\(163\) −9.42363 −0.738116 −0.369058 0.929406i \(-0.620320\pi\)
−0.369058 + 0.929406i \(0.620320\pi\)
\(164\) −0.0646786 0.0685554i −0.00505055 0.00535327i
\(165\) −0.382185 0.443658i −0.0297531 0.0345387i
\(166\) 0.444402 7.63009i 0.0344923 0.592210i
\(167\) 7.01514 0.819953i 0.542848 0.0634498i 0.159750 0.987158i \(-0.448931\pi\)
0.383098 + 0.923708i \(0.374857\pi\)
\(168\) −3.01138 + 1.34556i −0.232333 + 0.103812i
\(169\) 27.9107 + 14.0173i 2.14698 + 1.07825i
\(170\) −1.04644 + 0.878067i −0.0802583 + 0.0673447i
\(171\) 6.16574 + 10.0671i 0.471506 + 0.769851i
\(172\) 0.383333 + 0.321654i 0.0292288 + 0.0245259i
\(173\) −4.95149 11.4789i −0.376455 0.872721i −0.996132 0.0878644i \(-0.971996\pi\)
0.619677 0.784857i \(-0.287263\pi\)
\(174\) −8.41445 + 6.43558i −0.637898 + 0.487880i
\(175\) −9.12839 2.16347i −0.690041 0.163543i
\(176\) −0.357371 1.19370i −0.0269379 0.0899787i
\(177\) 0.209400 0.937544i 0.0157395 0.0704701i
\(178\) 11.4510 + 1.33843i 0.858288 + 0.100319i
\(179\) 3.97165 22.5244i 0.296855 1.68355i −0.362710 0.931902i \(-0.618148\pi\)
0.659565 0.751648i \(-0.270741\pi\)
\(180\) 0.341669 + 0.738787i 0.0254665 + 0.0550659i
\(181\) 0.424716 + 2.40868i 0.0315689 + 0.179036i 0.996515 0.0834113i \(-0.0265815\pi\)
−0.964946 + 0.262447i \(0.915470\pi\)
\(182\) −0.736405 12.6436i −0.0545860 0.937205i
\(183\) 0.922884 + 3.68059i 0.0682216 + 0.272077i
\(184\) 0.808990 1.87545i 0.0596395 0.138260i
\(185\) 1.83423 0.921184i 0.134855 0.0677268i
\(186\) −1.15698 3.05493i −0.0848339 0.223998i
\(187\) 6.10439 1.44677i 0.446397 0.105798i
\(188\) −4.91954 8.52090i −0.358794 0.621450i
\(189\) −9.84838 + 0.959096i −0.716365 + 0.0697640i
\(190\) 0.533837 0.924633i 0.0387286 0.0670799i
\(191\) 1.58267 5.28650i 0.114518 0.382517i −0.881444 0.472288i \(-0.843428\pi\)
0.995962 + 0.0897706i \(0.0286134\pi\)
\(192\) 0.0224596 + 1.73191i 0.00162089 + 0.124989i
\(193\) 10.3779 + 6.82562i 0.747015 + 0.491319i 0.865047 0.501691i \(-0.167288\pi\)
−0.118033 + 0.993010i \(0.537659\pi\)
\(194\) −1.88323 2.52961i −0.135208 0.181615i
\(195\) −3.11759 + 0.222176i −0.223256 + 0.0159104i
\(196\) 2.81867 1.85387i 0.201334 0.132419i
\(197\) 14.4936 + 5.27523i 1.03263 + 0.375845i 0.802080 0.597217i \(-0.203727\pi\)
0.230545 + 0.973062i \(0.425949\pi\)
\(198\) 0.120507 3.73621i 0.00856408 0.265521i
\(199\) 13.6122 4.95444i 0.964944 0.351211i 0.188975 0.981982i \(-0.439483\pi\)
0.775969 + 0.630771i \(0.217261\pi\)
\(200\) −2.94183 + 3.95157i −0.208019 + 0.279418i
\(201\) 9.45768 + 18.2382i 0.667094 + 1.28642i
\(202\) 7.75063 8.21518i 0.545332 0.578018i
\(203\) −7.99252 + 8.47158i −0.560965 + 0.594588i
\(204\) −8.71146 0.394115i −0.609924 0.0275936i
\(205\) −0.0152707 + 0.0205121i −0.00106655 + 0.00143263i
\(206\) −3.00134 + 1.09240i −0.209114 + 0.0761111i
\(207\) 4.08794 4.56451i 0.284131 0.317255i
\(208\) −6.24969 2.27470i −0.433338 0.157722i
\(209\) −4.09664 + 2.69440i −0.283371 + 0.186376i
\(210\) 0.501415 + 0.741247i 0.0346010 + 0.0511509i
\(211\) 2.11061 + 2.83504i 0.145301 + 0.195172i 0.868815 0.495137i \(-0.164882\pi\)
−0.723515 + 0.690309i \(0.757475\pi\)
\(212\) 9.04824 + 5.95112i 0.621436 + 0.408725i
\(213\) −7.02879 3.93744i −0.481605 0.269789i
\(214\) −2.05880 + 6.87686i −0.140737 + 0.470093i
\(215\) 0.0678857 0.117581i 0.00462977 0.00801899i
\(216\) −1.58594 + 4.94821i −0.107910 + 0.336683i
\(217\) −1.79576 3.11035i −0.121904 0.211144i
\(218\) 16.7261 3.96415i 1.13283 0.268486i
\(219\) −0.847567 + 1.03711i −0.0572733 + 0.0700814i
\(220\) −0.302121 + 0.151731i −0.0203690 + 0.0102297i
\(221\) 13.2626 30.7462i 0.892140 2.06821i
\(222\) 12.6001 + 3.59488i 0.845666 + 0.241272i
\(223\) −0.677162 11.6264i −0.0453461 0.778562i −0.941955 0.335739i \(-0.891014\pi\)
0.896609 0.442823i \(-0.146023\pi\)
\(224\) 0.330676 + 1.87536i 0.0220942 + 0.125303i
\(225\) −12.1330 + 8.43875i −0.808870 + 0.562583i
\(226\) −1.23108 + 6.98177i −0.0818899 + 0.464421i
\(227\) 24.6339 + 2.87929i 1.63501 + 0.191105i 0.883438 0.468548i \(-0.155223\pi\)
0.751571 + 0.659653i \(0.229297\pi\)
\(228\) 6.50351 2.03928i 0.430706 0.135055i
\(229\) 3.07611 + 10.2749i 0.203275 + 0.678987i 0.997455 + 0.0713035i \(0.0227159\pi\)
−0.794179 + 0.607683i \(0.792099\pi\)
\(230\) −0.539237 0.127801i −0.0355562 0.00842698i
\(231\) −0.530020 4.07556i −0.0348728 0.268152i
\(232\) 2.42246 + 5.61589i 0.159042 + 0.368701i
\(233\) 14.6151 + 12.2635i 0.957466 + 0.803410i 0.980539 0.196324i \(-0.0629005\pi\)
−0.0230728 + 0.999734i \(0.507345\pi\)
\(234\) −15.6118 12.4245i −1.02058 0.812212i
\(235\) −2.04501 + 1.71596i −0.133402 + 0.111937i
\(236\) −0.495634 0.248917i −0.0322630 0.0162031i
\(237\) 20.0845 + 14.5514i 1.30463 + 0.945216i
\(238\) −9.52271 + 1.11304i −0.617265 + 0.0721480i
\(239\) 1.00152 17.1955i 0.0647831 1.11228i −0.796660 0.604428i \(-0.793402\pi\)
0.861443 0.507855i \(-0.169561\pi\)
\(240\) 0.461708 0.0875994i 0.0298031 0.00565452i
\(241\) −5.66871 6.00848i −0.365153 0.387040i 0.518581 0.855028i \(-0.326460\pi\)
−0.883735 + 0.467988i \(0.844979\pi\)
\(242\) −9.44736 −0.607299
\(243\) −9.22530 + 12.5656i −0.591804 + 0.806082i
\(244\) 2.19078 0.140250
\(245\) −0.628156 0.665807i −0.0401314 0.0425368i
\(246\) −0.160386 + 0.0304298i −0.0102258 + 0.00194013i
\(247\) −1.52173 + 26.1270i −0.0968251 + 1.66242i
\(248\) −1.87326 + 0.218953i −0.118952 + 0.0139035i
\(249\) −10.7202 7.76689i −0.679365 0.492207i
\(250\) 2.40678 + 1.20873i 0.152218 + 0.0764468i
\(251\) −12.1672 + 10.2095i −0.767984 + 0.644415i −0.940192 0.340646i \(-0.889354\pi\)
0.172208 + 0.985061i \(0.444910\pi\)
\(252\) −0.845800 + 5.64991i −0.0532804 + 0.355911i
\(253\) 1.94962 + 1.63592i 0.122572 + 0.102850i
\(254\) −0.148883 0.345150i −0.00934177 0.0216567i
\(255\) 0.305130 + 2.34628i 0.0191080 + 0.146930i
\(256\) 0.973045 + 0.230616i 0.0608153 + 0.0144135i
\(257\) 3.75815 + 12.5531i 0.234427 + 0.783041i 0.991545 + 0.129763i \(0.0414216\pi\)
−0.757118 + 0.653278i \(0.773393\pi\)
\(258\) 0.827023 0.259326i 0.0514882 0.0161449i
\(259\) 14.3085 + 1.67242i 0.889087 + 0.103919i
\(260\) −0.313350 + 1.77709i −0.0194331 + 0.110211i
\(261\) 1.54150 + 18.2834i 0.0954165 + 1.13171i
\(262\) −3.28010 18.6024i −0.202645 1.14926i
\(263\) −1.18342 20.3185i −0.0729728 1.25290i −0.813778 0.581176i \(-0.802593\pi\)
0.740805 0.671720i \(-0.234444\pi\)
\(264\) −2.07541 0.592123i −0.127732 0.0364426i
\(265\) 1.16384 2.69808i 0.0714941 0.165742i
\(266\) 6.69645 3.36308i 0.410585 0.206204i
\(267\) 12.6362 15.4621i 0.773323 0.946263i
\(268\) 11.5417 2.73543i 0.705021 0.167093i
\(269\) −5.12459 8.87605i −0.312452 0.541183i 0.666441 0.745558i \(-0.267817\pi\)
−0.978893 + 0.204376i \(0.934484\pi\)
\(270\) 1.39689 + 0.190631i 0.0850118 + 0.0116014i
\(271\) −0.993514 + 1.72082i −0.0603517 + 0.104532i −0.894623 0.446823i \(-0.852556\pi\)
0.834271 + 0.551355i \(0.185889\pi\)
\(272\) −1.44397 + 4.82319i −0.0875535 + 0.292449i
\(273\) −19.1381 10.7210i −1.15829 0.648862i
\(274\) 18.2791 + 12.0224i 1.10428 + 0.726297i
\(275\) −3.66567 4.92385i −0.221048 0.296919i
\(276\) −1.98216 2.93025i −0.119312 0.176380i
\(277\) −21.8689 + 14.3834i −1.31397 + 0.864213i −0.996462 0.0840422i \(-0.973217\pi\)
−0.317510 + 0.948255i \(0.602847\pi\)
\(278\) 17.6437 + 6.42177i 1.05820 + 0.385152i
\(279\) −5.53752 1.16163i −0.331523 0.0695448i
\(280\) 0.485518 0.176714i 0.0290152 0.0105607i
\(281\) 11.6555 15.6561i 0.695309 0.933963i −0.304519 0.952506i \(-0.598496\pi\)
0.999828 + 0.0185438i \(0.00590302\pi\)
\(282\) −17.0244 0.770200i −1.01379 0.0458648i
\(283\) 3.98059 4.21918i 0.236621 0.250804i −0.598172 0.801368i \(-0.704106\pi\)
0.834793 + 0.550564i \(0.185587\pi\)
\(284\) −3.19200 + 3.38333i −0.189411 + 0.200763i
\(285\) −0.851308 1.64166i −0.0504271 0.0972438i
\(286\) 4.94877 6.64736i 0.292627 0.393066i
\(287\) −0.168656 + 0.0613859i −0.00995547 + 0.00362349i
\(288\) 2.54837 + 1.58297i 0.150164 + 0.0932777i
\(289\) −7.84480 2.85527i −0.461459 0.167957i
\(290\) 1.38644 0.911874i 0.0814144 0.0535471i
\(291\) −5.44845 + 0.388286i −0.319394 + 0.0227617i
\(292\) 0.461781 + 0.620280i 0.0270237 + 0.0362991i
\(293\) −22.2542 14.6368i −1.30010 0.855092i −0.304851 0.952400i \(-0.598607\pi\)
−0.995254 + 0.0973078i \(0.968977\pi\)
\(294\) −0.0757717 5.84290i −0.00441910 0.340765i
\(295\) −0.0431591 + 0.144161i −0.00251282 + 0.00839340i
\(296\) 3.78249 6.55147i 0.219853 0.380796i
\(297\) −5.33992 3.66149i −0.309854 0.212461i
\(298\) 10.2800 + 17.8054i 0.595503 + 1.03144i
\(299\) 13.2180 3.13273i 0.764417 0.181170i
\(300\) 3.02210 + 7.97964i 0.174481 + 0.460705i
\(301\) 0.851557 0.427668i 0.0490829 0.0246504i
\(302\) −8.25827 + 19.1448i −0.475210 + 1.10166i
\(303\) −4.75783 18.9749i −0.273330 1.09008i
\(304\) −0.228804 3.92841i −0.0131228 0.225310i
\(305\) −0.103218 0.585377i −0.00591023 0.0335186i
\(306\) −8.70234 + 12.3452i −0.497480 + 0.705727i
\(307\) 2.64875 15.0218i 0.151172 0.857338i −0.811031 0.585004i \(-0.801093\pi\)
0.962203 0.272335i \(-0.0877958\pi\)
\(308\) −2.35679 0.275470i −0.134291 0.0156963i
\(309\) −1.20588 + 5.39908i −0.0686003 + 0.307143i
\(310\) 0.146763 + 0.490222i 0.00833556 + 0.0278427i
\(311\) −7.54747 1.78878i −0.427978 0.101433i 0.0109813 0.999940i \(-0.496504\pi\)
−0.438959 + 0.898507i \(0.644653\pi\)
\(312\) −9.15007 + 6.99820i −0.518021 + 0.396195i
\(313\) 3.38888 + 7.85630i 0.191551 + 0.444064i 0.986743 0.162293i \(-0.0518891\pi\)
−0.795192 + 0.606358i \(0.792630\pi\)
\(314\) 14.1880 + 11.9052i 0.800678 + 0.671849i
\(315\) 1.54951 0.0401954i 0.0873050 0.00226475i
\(316\) 10.9693 9.20430i 0.617069 0.517783i
\(317\) −7.26843 3.65034i −0.408236 0.205024i 0.232817 0.972521i \(-0.425206\pi\)
−0.641053 + 0.767497i \(0.721502\pi\)
\(318\) 17.1260 7.65235i 0.960380 0.429123i
\(319\) −7.56942 + 0.884738i −0.423806 + 0.0495358i
\(320\) 0.0157760 0.270864i 0.000881906 0.0151417i
\(321\) 8.11488 + 9.42011i 0.452928 + 0.525779i
\(322\) −2.66913 2.82912i −0.148745 0.157661i
\(323\) 19.8119 1.10236
\(324\) 5.74148 + 6.93075i 0.318971 + 0.385042i
\(325\) −32.7643 −1.81744
\(326\) 6.46689 + 6.85450i 0.358168 + 0.379636i
\(327\) 9.81929 28.1071i 0.543008 1.55432i
\(328\) −0.00548018 + 0.0940911i −0.000302592 + 0.00519531i
\(329\) −18.6098 + 2.17517i −1.02599 + 0.119921i
\(330\) −0.0604335 + 0.582448i −0.00332675 + 0.0320627i
\(331\) 25.1810 + 12.6464i 1.38408 + 0.695109i 0.975986 0.217833i \(-0.0698989\pi\)
0.408089 + 0.912942i \(0.366195\pi\)
\(332\) −5.85489 + 4.91284i −0.321329 + 0.269627i
\(333\) 17.0012 15.0340i 0.931660 0.823856i
\(334\) −5.41049 4.53994i −0.296049 0.248415i
\(335\) −1.27469 2.95507i −0.0696439 0.161453i
\(336\) 3.04526 + 1.26702i 0.166133 + 0.0691215i
\(337\) 1.19228 + 0.282575i 0.0649475 + 0.0153928i 0.262961 0.964806i \(-0.415301\pi\)
−0.198014 + 0.980199i \(0.563449\pi\)
\(338\) −8.95769 29.9208i −0.487234 1.62748i
\(339\) 9.04019 + 8.31007i 0.490995 + 0.451341i
\(340\) 1.35679 + 0.158586i 0.0735825 + 0.00860056i
\(341\) 0.408085 2.31437i 0.0220991 0.125330i
\(342\) 3.09136 11.3933i 0.167162 0.616077i
\(343\) −3.43033 19.4544i −0.185220 1.05044i
\(344\) −0.0290960 0.499559i −0.00156875 0.0269344i
\(345\) −0.689576 + 0.667693i −0.0371255 + 0.0359474i
\(346\) −4.95149 + 11.4789i −0.266194 + 0.617107i
\(347\) −30.8028 + 15.4697i −1.65358 + 0.830458i −0.656479 + 0.754344i \(0.727955\pi\)
−0.997099 + 0.0761143i \(0.975749\pi\)
\(348\) 10.4554 + 1.70409i 0.560469 + 0.0913487i
\(349\) 22.3937 5.30741i 1.19871 0.284099i 0.417680 0.908594i \(-0.362843\pi\)
0.781029 + 0.624495i \(0.214695\pi\)
\(350\) 4.69063 + 8.12441i 0.250725 + 0.434268i
\(351\) −32.6961 + 11.1916i −1.74519 + 0.597363i
\(352\) −0.623025 + 1.07911i −0.0332073 + 0.0575168i
\(353\) −5.52530 + 18.4558i −0.294082 + 0.982303i 0.675464 + 0.737393i \(0.263943\pi\)
−0.969546 + 0.244910i \(0.921242\pi\)
\(354\) −0.825644 + 0.491070i −0.0438825 + 0.0261001i
\(355\) 1.05442 + 0.693501i 0.0559627 + 0.0368072i
\(356\) −6.88460 9.24763i −0.364883 0.490123i
\(357\) −7.25975 + 14.9351i −0.384227 + 0.790452i
\(358\) −19.1091 + 12.5683i −1.00995 + 0.664254i
\(359\) −17.2240 6.26901i −0.909046 0.330866i −0.155174 0.987887i \(-0.549594\pi\)
−0.753872 + 0.657021i \(0.771816\pi\)
\(360\) 0.302906 0.755508i 0.0159646 0.0398188i
\(361\) 3.30323 1.20228i 0.173854 0.0632777i
\(362\) 1.46055 1.96187i 0.0767651 0.103113i
\(363\) −8.81375 + 13.7868i −0.462602 + 0.723619i
\(364\) −8.69126 + 9.21219i −0.455546 + 0.482850i
\(365\) 0.143983 0.152613i 0.00753639 0.00798811i
\(366\) 2.04385 3.19706i 0.106834 0.167113i
\(367\) −0.704887 + 0.946827i −0.0367948 + 0.0494240i −0.820140 0.572163i \(-0.806104\pi\)
0.783345 + 0.621587i \(0.213512\pi\)
\(368\) −1.91932 + 0.698574i −0.100051 + 0.0364157i
\(369\) −0.105222 + 0.262444i −0.00547763 + 0.0136623i
\(370\) −1.92877 0.702014i −0.100272 0.0364960i
\(371\) 17.2305 11.3327i 0.894561 0.588362i
\(372\) −1.42810 + 2.93797i −0.0740438 + 0.152327i
\(373\) 1.97074 + 2.64717i 0.102041 + 0.137065i 0.850211 0.526442i \(-0.176474\pi\)
−0.748170 + 0.663508i \(0.769067\pi\)
\(374\) −5.24143 3.44734i −0.271028 0.178258i
\(375\) 4.00930 2.38462i 0.207039 0.123141i
\(376\) −2.82188 + 9.42574i −0.145527 + 0.486095i
\(377\) −20.3384 + 35.2271i −1.04748 + 1.81429i
\(378\) 7.45599 + 6.50528i 0.383495 + 0.334596i
\(379\) 0.989661 + 1.71414i 0.0508355 + 0.0880497i 0.890323 0.455329i \(-0.150478\pi\)
−0.839488 + 0.543378i \(0.817145\pi\)
\(380\) −1.03889 + 0.246223i −0.0532942 + 0.0126310i
\(381\) −0.642585 0.104732i −0.0329206 0.00536561i
\(382\) −4.93135 + 2.47662i −0.252310 + 0.126715i
\(383\) 1.36101 3.15517i 0.0695442 0.161222i −0.879899 0.475161i \(-0.842390\pi\)
0.949443 + 0.313940i \(0.101649\pi\)
\(384\) 1.24433 1.20484i 0.0634994 0.0614843i
\(385\) 0.0374339 + 0.642716i 0.00190781 + 0.0327558i
\(386\) −2.15694 12.2326i −0.109785 0.622623i
\(387\) 0.393115 1.44883i 0.0199831 0.0736482i
\(388\) −0.547624 + 3.10573i −0.0278014 + 0.157670i
\(389\) −7.37009 0.861440i −0.373678 0.0436767i −0.0728188 0.997345i \(-0.523199\pi\)
−0.300860 + 0.953668i \(0.597274\pi\)
\(390\) 2.30103 + 2.11519i 0.116517 + 0.107107i
\(391\) −2.94930 9.85134i −0.149152 0.498204i
\(392\) −3.28275 0.778025i −0.165804 0.0392962i
\(393\) −30.2071 12.5680i −1.52374 0.633973i
\(394\) −6.10904 14.1623i −0.307769 0.713488i
\(395\) −2.97621 2.49734i −0.149749 0.125655i
\(396\) −2.80031 + 2.47629i −0.140721 + 0.124438i
\(397\) −1.63802 + 1.37446i −0.0822097 + 0.0689822i −0.682966 0.730450i \(-0.739310\pi\)
0.600757 + 0.799432i \(0.294866\pi\)
\(398\) −12.9450 6.50122i −0.648874 0.325877i
\(399\) 1.33950 12.9098i 0.0670587 0.646300i
\(400\) 4.89307 0.571918i 0.244654 0.0285959i
\(401\) −0.751896 + 12.9096i −0.0375479 + 0.644672i 0.926064 + 0.377367i \(0.123170\pi\)
−0.963612 + 0.267306i \(0.913867\pi\)
\(402\) 6.77573 19.3951i 0.337943 0.967339i
\(403\) −8.60786 9.12380i −0.428788 0.454489i
\(404\) −11.2943 −0.561913
\(405\) 1.58139 1.86067i 0.0785801 0.0924574i
\(406\) 11.6468 0.578021
\(407\) 6.46875 + 6.85647i 0.320644 + 0.339863i
\(408\) 5.69149 + 6.60694i 0.281771 + 0.327092i
\(409\) −1.05733 + 18.1537i −0.0522816 + 0.897641i 0.865588 + 0.500758i \(0.166945\pi\)
−0.917869 + 0.396883i \(0.870092\pi\)
\(410\) 0.0253994 0.00296876i 0.00125439 0.000146617i
\(411\) 34.5977 15.4591i 1.70658 0.762543i
\(412\) 2.85423 + 1.43345i 0.140618 + 0.0706209i
\(413\) −0.809075 + 0.678895i −0.0398120 + 0.0334062i
\(414\) −6.12542 + 0.158898i −0.301048 + 0.00780939i
\(415\) 1.58857 + 1.33297i 0.0779796 + 0.0654327i
\(416\) 2.63424 + 6.10685i 0.129154 + 0.299413i
\(417\) 25.8318 19.7568i 1.26499 0.967495i
\(418\) 4.77112 + 1.13078i 0.233363 + 0.0553081i
\(419\) 8.37066 + 27.9600i 0.408934 + 1.36593i 0.876256 + 0.481846i \(0.160034\pi\)
−0.467322 + 0.884087i \(0.654781\pi\)
\(420\) 0.195072 0.873391i 0.00951852 0.0426171i
\(421\) −28.0994 3.28435i −1.36948 0.160069i −0.600645 0.799516i \(-0.705090\pi\)
−0.768836 + 0.639446i \(0.779164\pi\)
\(422\) 0.613746 3.48073i 0.0298767 0.169439i
\(423\) −17.0066 + 24.1256i −0.826888 + 1.17303i
\(424\) −1.88059 10.6654i −0.0913296 0.517956i
\(425\) 1.44216 + 24.7609i 0.0699550 + 1.20108i
\(426\) 1.95946 + 7.81459i 0.0949360 + 0.378618i
\(427\) 1.65239 3.83068i 0.0799649 0.185380i
\(428\) 6.41488 3.22167i 0.310075 0.155726i
\(429\) −5.08380 13.4234i −0.245448 0.648089i
\(430\) −0.132112 + 0.0313110i −0.00637099 + 0.00150995i
\(431\) 1.11221 + 1.92640i 0.0535731 + 0.0927913i 0.891568 0.452886i \(-0.149606\pi\)
−0.837995 + 0.545678i \(0.816272\pi\)
\(432\) 4.68754 2.24210i 0.225529 0.107873i
\(433\) 12.3517 21.3937i 0.593584 1.02812i −0.400161 0.916445i \(-0.631046\pi\)
0.993745 0.111673i \(-0.0356209\pi\)
\(434\) −1.03006 + 3.44064i −0.0494444 + 0.165156i
\(435\) −0.0372703 2.87398i −0.00178697 0.137797i
\(436\) −14.3615 9.44573i −0.687793 0.452368i
\(437\) 4.79957 + 6.44695i 0.229595 + 0.308399i
\(438\) 1.33600 0.0952107i 0.0638367 0.00454934i
\(439\) −10.2024 + 6.71023i −0.486934 + 0.320262i −0.769127 0.639096i \(-0.779309\pi\)
0.282193 + 0.959358i \(0.408938\pi\)
\(440\) 0.317693 + 0.115631i 0.0151454 + 0.00551248i
\(441\) −8.59739 5.34046i −0.409400 0.254307i
\(442\) −31.4653 + 11.4524i −1.49665 + 0.544737i
\(443\) −6.78996 + 9.12050i −0.322601 + 0.433328i −0.933607 0.358297i \(-0.883357\pi\)
0.611007 + 0.791625i \(0.290765\pi\)
\(444\) −6.03193 11.6320i −0.286263 0.552029i
\(445\) −2.14661 + 2.27527i −0.101759 + 0.107858i
\(446\) −7.99205 + 8.47108i −0.378435 + 0.401117i
\(447\) 35.5745 + 1.60943i 1.68262 + 0.0761233i
\(448\) 1.13716 1.52747i 0.0537259 0.0721664i
\(449\) 23.8642 8.68587i 1.12622 0.409911i 0.289303 0.957238i \(-0.406577\pi\)
0.836919 + 0.547326i \(0.184354\pi\)
\(450\) 14.4643 + 3.03424i 0.681855 + 0.143035i
\(451\) −0.110358 0.0401671i −0.00519657 0.00189140i
\(452\) 5.92317 3.89573i 0.278603 0.183240i
\(453\) 20.2342 + 29.9124i 0.950684 + 1.40541i
\(454\) −14.8105 19.8939i −0.695090 0.933668i
\(455\) 2.87099 + 1.88828i 0.134594 + 0.0885240i
\(456\) −5.94630 3.33104i −0.278461 0.155990i
\(457\) 0.944041 3.15332i 0.0441604 0.147506i −0.933066 0.359705i \(-0.882877\pi\)
0.977226 + 0.212199i \(0.0680625\pi\)
\(458\) 5.36276 9.28857i 0.250585 0.434027i
\(459\) 9.89696 + 24.2168i 0.461951 + 1.13034i
\(460\) 0.277087 + 0.479929i 0.0129193 + 0.0223768i
\(461\) 11.8525 2.80910i 0.552028 0.130833i 0.0548706 0.998493i \(-0.482525\pi\)
0.497157 + 0.867660i \(0.334377\pi\)
\(462\) −2.60073 + 3.18234i −0.120997 + 0.148056i
\(463\) −1.37839 + 0.692252i −0.0640591 + 0.0321717i −0.480540 0.876973i \(-0.659559\pi\)
0.416481 + 0.909144i \(0.363263\pi\)
\(464\) 2.42246 5.61589i 0.112460 0.260711i
\(465\) 0.852313 + 0.243169i 0.0395251 + 0.0112767i
\(466\) −1.10932 19.0464i −0.0513885 0.882306i
\(467\) 4.46037 + 25.2960i 0.206402 + 1.17056i 0.895219 + 0.445626i \(0.147019\pi\)
−0.688818 + 0.724935i \(0.741870\pi\)
\(468\) 1.67626 + 19.8818i 0.0774853 + 0.919037i
\(469\) 3.92229 22.2444i 0.181115 1.02715i
\(470\) 2.65152 + 0.309918i 0.122305 + 0.0142954i
\(471\) 30.6101 9.59827i 1.41044 0.442265i
\(472\) 0.159069 + 0.531328i 0.00732175 + 0.0244564i
\(473\) 0.606723 + 0.143796i 0.0278971 + 0.00661174i
\(474\) −3.19851 24.5947i −0.146912 1.12967i
\(475\) −7.67827 17.8002i −0.352303 0.816731i
\(476\) 7.34448 + 6.16275i 0.336634 + 0.282469i
\(477\) 4.81015 32.1316i 0.220242 1.47121i
\(478\) −13.1948 + 11.0718i −0.603517 + 0.506411i
\(479\) 7.75830 + 3.89636i 0.354486 + 0.178029i 0.617126 0.786864i \(-0.288297\pi\)
−0.262640 + 0.964894i \(0.584593\pi\)
\(480\) −0.380561 0.275720i −0.0173702 0.0125848i
\(481\) 49.9728 5.84099i 2.27857 0.266326i
\(482\) −0.480306 + 8.24654i −0.0218773 + 0.375619i
\(483\) −6.61873 + 1.25577i −0.301163 + 0.0571393i
\(484\) 6.48317 + 6.87176i 0.294690 + 0.312353i
\(485\) 0.855655 0.0388533
\(486\) 15.4707 1.91278i 0.701763 0.0867654i
\(487\) 20.3116 0.920406 0.460203 0.887814i \(-0.347777\pi\)
0.460203 + 0.887814i \(0.347777\pi\)
\(488\) −1.50340 1.59351i −0.0680558 0.0721349i
\(489\) 16.0361 3.04252i 0.725179 0.137587i
\(490\) −0.0532233 + 0.913808i −0.00240438 + 0.0412817i
\(491\) 30.1909 3.52881i 1.36250 0.159253i 0.596767 0.802414i \(-0.296452\pi\)
0.765731 + 0.643161i \(0.222377\pi\)
\(492\) 0.132197 + 0.0957780i 0.00595990 + 0.00431801i
\(493\) 27.5174 + 13.8197i 1.23932 + 0.622410i
\(494\) 20.0484 16.8226i 0.902019 0.756884i
\(495\) 0.793602 + 0.631577i 0.0356697 + 0.0283873i
\(496\) 1.44477 + 1.21231i 0.0648722 + 0.0544342i
\(497\) 3.50834 + 8.13325i 0.157371 + 0.364826i
\(498\) 1.70722 + 13.1276i 0.0765023 + 0.588260i
\(499\) 0.134422 + 0.0318587i 0.00601757 + 0.00142619i 0.233624 0.972327i \(-0.424942\pi\)
−0.227606 + 0.973753i \(0.573090\pi\)
\(500\) −0.772434 2.58011i −0.0345443 0.115386i
\(501\) −11.6729 + 3.66022i −0.521506 + 0.163527i
\(502\) 15.7757 + 1.84391i 0.704104 + 0.0822979i
\(503\) 0.575906 3.26613i 0.0256784 0.145629i −0.969273 0.245988i \(-0.920888\pi\)
0.994951 + 0.100358i \(0.0319989\pi\)
\(504\) 4.69002 3.26199i 0.208910 0.145301i
\(505\) 0.532128 + 3.01785i 0.0236794 + 0.134292i
\(506\) −0.147981 2.54074i −0.00657857 0.112950i
\(507\) −52.0211 14.8419i −2.31034 0.659150i
\(508\) −0.148883 + 0.345150i −0.00660563 + 0.0153136i
\(509\) 10.5474 5.29710i 0.467505 0.234790i −0.199421 0.979914i \(-0.563906\pi\)
0.666926 + 0.745124i \(0.267610\pi\)
\(510\) 1.49723 1.83206i 0.0662983 0.0811248i
\(511\) 1.43289 0.339601i 0.0633873 0.0150231i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) −13.7425 15.1405i −0.606745 0.668468i
\(514\) 6.55179 11.3480i 0.288987 0.500541i
\(515\) 0.248542 0.830189i 0.0109521 0.0365825i
\(516\) −0.756164 0.423594i −0.0332883 0.0186477i
\(517\) −10.2431 6.73697i −0.450490 0.296292i
\(518\) −8.60261 11.5553i −0.377977 0.507711i
\(519\) 12.1320 + 17.9348i 0.532536 + 0.787253i
\(520\) 1.50764 0.991594i 0.0661146 0.0434843i
\(521\) −3.72320 1.35513i −0.163116 0.0593695i 0.259171 0.965831i \(-0.416551\pi\)
−0.422288 + 0.906462i \(0.638773\pi\)
\(522\) 12.2410 13.6681i 0.535775 0.598235i
\(523\) −18.6206 + 6.77735i −0.814223 + 0.296353i −0.715367 0.698749i \(-0.753740\pi\)
−0.0988557 + 0.995102i \(0.531518\pi\)
\(524\) −11.2799 + 15.1516i −0.492766 + 0.661900i
\(525\) 16.2322 + 0.734362i 0.708432 + 0.0320502i
\(526\) −13.9671 + 14.8042i −0.608993 + 0.645495i
\(527\) −6.51623 + 6.90680i −0.283852 + 0.300865i
\(528\) 0.993536 + 1.91593i 0.0432381 + 0.0833804i
\(529\) −11.2434 + 15.1026i −0.488845 + 0.656633i
\(530\) −2.76119 + 1.00499i −0.119938 + 0.0436540i
\(531\) −0.0536389 + 1.66302i −0.00232773 + 0.0721689i
\(532\) −7.04160 2.56293i −0.305292 0.111117i
\(533\) −0.523717 + 0.344454i −0.0226847 + 0.0149200i
\(534\) −19.9182 + 1.41948i −0.861944 + 0.0614268i
\(535\) −1.16307 1.56227i −0.0502839 0.0675430i
\(536\) −9.91007 6.51796i −0.428050 0.281533i
\(537\) 0.513693 + 39.6119i 0.0221675 + 1.70938i
\(538\) −2.93950 + 9.81861i −0.126731 + 0.423310i
\(539\) 2.10189 3.64058i 0.0905347 0.156811i
\(540\) −0.819942 1.14688i −0.0352847 0.0493538i
\(541\) −7.31210 12.6649i −0.314372 0.544507i 0.664932 0.746904i \(-0.268460\pi\)
−0.979304 + 0.202396i \(0.935127\pi\)
\(542\) 1.93347 0.458240i 0.0830495 0.0196831i
\(543\) −1.50040 3.96172i −0.0643885 0.170014i
\(544\) 4.49918 2.25957i 0.192901 0.0968783i
\(545\) −1.84727 + 4.28245i −0.0791282 + 0.183440i
\(546\) 5.33525 + 21.2777i 0.228328 + 0.910603i
\(547\) −1.40815 24.1770i −0.0602081 1.03373i −0.884193 0.467122i \(-0.845291\pi\)
0.823985 0.566612i \(-0.191746\pi\)
\(548\) −3.79914 21.5460i −0.162291 0.920398i
\(549\) −2.75878 5.96528i −0.117742 0.254592i
\(550\) −1.06594 + 6.04526i −0.0454519 + 0.257771i
\(551\) −23.9045 2.79404i −1.01837 0.119030i
\(552\) −0.771144 + 3.45263i −0.0328221 + 0.146954i
\(553\) −7.82060 26.1226i −0.332566 1.11085i
\(554\) 25.4694 + 6.03636i 1.08209 + 0.256460i
\(555\) −2.82388 + 2.15977i −0.119867 + 0.0916772i
\(556\) −7.43679 17.2404i −0.315390 0.731157i
\(557\) 10.8786 + 9.12823i 0.460941 + 0.386775i 0.843477 0.537165i \(-0.180505\pi\)
−0.382536 + 0.923941i \(0.624949\pi\)
\(558\) 2.95514 + 4.82500i 0.125101 + 0.204259i
\(559\) 2.54946 2.13925i 0.107831 0.0904808i
\(560\) −0.461719 0.231884i −0.0195112 0.00979890i
\(561\) −9.92070 + 4.43282i −0.418852 + 0.187154i
\(562\) −19.3863 + 2.26593i −0.817762 + 0.0955827i
\(563\) 0.693884 11.9135i 0.0292437 0.502096i −0.951605 0.307324i \(-0.900566\pi\)
0.980849 0.194771i \(-0.0623965\pi\)
\(564\) 11.1226 + 12.9116i 0.468347 + 0.543678i
\(565\) −1.32001 1.39913i −0.0555333 0.0588619i
\(566\) −5.80056 −0.243816
\(567\) 16.4493 4.81174i 0.690805 0.202074i
\(568\) 4.65143 0.195170
\(569\) −16.2442 17.2179i −0.680993 0.721811i 0.291025 0.956715i \(-0.406004\pi\)
−0.972018 + 0.234905i \(0.924522\pi\)
\(570\) −0.609900 + 1.74580i −0.0255459 + 0.0731234i
\(571\) −0.294103 + 5.04956i −0.0123078 + 0.211317i 0.986547 + 0.163477i \(0.0522709\pi\)
−0.998855 + 0.0478405i \(0.984766\pi\)
\(572\) −8.23117 + 0.962086i −0.344162 + 0.0402268i
\(573\) −0.986423 + 9.50698i −0.0412084 + 0.397160i
\(574\) 0.160389 + 0.0805506i 0.00669452 + 0.00336212i
\(575\) −7.70802 + 6.46780i −0.321447 + 0.269726i
\(576\) −0.597383 2.93992i −0.0248910 0.122497i
\(577\) −19.0340 15.9714i −0.792395 0.664899i 0.153942 0.988080i \(-0.450803\pi\)
−0.946337 + 0.323181i \(0.895248\pi\)
\(578\) 3.30658 + 7.66551i 0.137535 + 0.318843i
\(579\) −19.8637 8.26452i −0.825505 0.343462i
\(580\) −1.61470 0.382692i −0.0670469 0.0158904i
\(581\) 4.17428 + 13.9431i 0.173178 + 0.578456i
\(582\) 4.02138 + 3.69660i 0.166692 + 0.153229i
\(583\) 13.4033 + 1.56663i 0.555109 + 0.0648830i
\(584\) 0.134282 0.761550i 0.00555662 0.0315131i
\(585\) 5.23346 1.38462i 0.216377 0.0572472i
\(586\) 4.62533 + 26.2315i 0.191070 + 1.08361i
\(587\) −0.562773 9.66244i −0.0232281 0.398812i −0.989804 0.142433i \(-0.954508\pi\)
0.966576 0.256379i \(-0.0825295\pi\)
\(588\) −4.19797 + 4.06476i −0.173122 + 0.167628i
\(589\) 2.93955 6.81464i 0.121122 0.280792i
\(590\) 0.134477 0.0675368i 0.00553632 0.00278044i
\(591\) −26.3668 4.29742i −1.08459 0.176772i
\(592\) −7.36107 + 1.74460i −0.302538 + 0.0717028i
\(593\) 4.42945 + 7.67203i 0.181896 + 0.315052i 0.942526 0.334133i \(-0.108443\pi\)
−0.760630 + 0.649185i \(0.775110\pi\)
\(594\) 1.00121 + 6.39678i 0.0410800 + 0.262463i
\(595\) 1.30066 2.25281i 0.0533218 0.0923560i
\(596\) 5.89666 19.6962i 0.241537 0.806789i
\(597\) −21.5642 + 12.8258i −0.882565 + 0.524924i
\(598\) −11.3494 7.46462i −0.464112 0.305251i
\(599\) 23.9666 + 32.1927i 0.979249 + 1.31536i 0.948818 + 0.315823i \(0.102280\pi\)
0.0304306 + 0.999537i \(0.490312\pi\)
\(600\) 3.73029 7.67416i 0.152289 0.313296i
\(601\) −25.1586 + 16.5471i −1.02624 + 0.674969i −0.946784 0.321870i \(-0.895689\pi\)
−0.0794561 + 0.996838i \(0.525318\pi\)
\(602\) −0.895449 0.325917i −0.0364958 0.0132834i
\(603\) −21.9825 27.9823i −0.895196 1.13953i
\(604\) 19.5926 7.13113i 0.797212 0.290162i
\(605\) 1.53069 2.05607i 0.0622313 0.0835911i
\(606\) −10.5368 + 16.4821i −0.428029 + 0.669539i
\(607\) −18.4472 + 19.5529i −0.748750 + 0.793628i −0.983974 0.178313i \(-0.942936\pi\)
0.235224 + 0.971941i \(0.424418\pi\)
\(608\) −2.70041 + 2.86227i −0.109516 + 0.116080i
\(609\) 10.8657 16.9965i 0.440300 0.688733i
\(610\) −0.354955 + 0.476788i −0.0143717 + 0.0193046i
\(611\) −61.4912 + 22.3810i −2.48767 + 0.905437i
\(612\) 14.9515 2.14192i 0.604377 0.0865821i
\(613\) 11.6813 + 4.25166i 0.471805 + 0.171723i 0.566970 0.823739i \(-0.308116\pi\)
−0.0951649 + 0.995462i \(0.530338\pi\)
\(614\) −12.7441 + 8.38195i −0.514311 + 0.338268i
\(615\) 0.0193635 0.0398357i 0.000780813 0.00160633i
\(616\) 1.41696 + 1.90331i 0.0570910 + 0.0766865i
\(617\) 7.90407 + 5.19859i 0.318206 + 0.209287i 0.698556 0.715555i \(-0.253826\pi\)
−0.380350 + 0.924843i \(0.624197\pi\)
\(618\) 4.75468 2.82795i 0.191261 0.113757i
\(619\) −6.89680 + 23.0369i −0.277206 + 0.925932i 0.700090 + 0.714054i \(0.253143\pi\)
−0.977296 + 0.211878i \(0.932042\pi\)
\(620\) 0.255860 0.443162i 0.0102756 0.0177978i
\(621\) −5.48272 + 9.08723i −0.220014 + 0.364658i
\(622\) 3.87827 + 6.71737i 0.155505 + 0.269342i
\(623\) −21.3626 + 5.06304i −0.855876 + 0.202846i
\(624\) 11.3695 + 1.85307i 0.455143 + 0.0741820i
\(625\) 21.3589 10.7268i 0.854355 0.429073i
\(626\) 3.38888 7.85630i 0.135447 0.314001i
\(627\) 6.10131 5.90769i 0.243663 0.235931i
\(628\) −1.07691 18.4898i −0.0429734 0.737825i
\(629\) −6.61382 37.5088i −0.263710 1.49557i
\(630\) −1.09258 1.09949i −0.0435292 0.0438047i
\(631\) −7.70070 + 43.6728i −0.306560 + 1.73859i 0.309510 + 0.950896i \(0.399835\pi\)
−0.616070 + 0.787692i \(0.711276\pi\)
\(632\) −14.2225 1.66238i −0.565742 0.0661257i
\(633\) −4.50694 4.14294i −0.179135 0.164667i
\(634\) 2.33274 + 7.79188i 0.0926448 + 0.309455i
\(635\) 0.0992390 + 0.0235201i 0.00393818 + 0.000933366i
\(636\) −17.3187 7.20567i −0.686732 0.285723i
\(637\) −8.88709 20.6026i −0.352119 0.816304i
\(638\) 5.83799 + 4.89865i 0.231128 + 0.193939i
\(639\) 13.2321 + 4.43100i 0.523453 + 0.175288i
\(640\) −0.207845 + 0.174403i −0.00821581 + 0.00689388i
\(641\) 21.5547 + 10.8252i 0.851361 + 0.427570i 0.820290 0.571947i \(-0.193812\pi\)
0.0310711 + 0.999517i \(0.490108\pi\)
\(642\) 1.28317 12.3670i 0.0506429 0.488087i
\(643\) 40.7995 4.76878i 1.60897 0.188062i 0.736401 0.676545i \(-0.236524\pi\)
0.872574 + 0.488483i \(0.162449\pi\)
\(644\) −0.226154 + 3.88292i −0.00891172 + 0.153008i
\(645\) −0.0775582 + 0.222005i −0.00305385 + 0.00874145i
\(646\) −13.5958 14.4107i −0.534918 0.566980i
\(647\) 8.33601 0.327723 0.163861 0.986483i \(-0.447605\pi\)
0.163861 + 0.986483i \(0.447605\pi\)
\(648\) 1.10120 8.93238i 0.0432593 0.350897i
\(649\) −0.691094 −0.0271278
\(650\) 22.4842 + 23.8319i 0.881904 + 0.934764i
\(651\) 4.06004 + 4.71308i 0.159126 + 0.184720i
\(652\) 0.547935 9.40769i 0.0214588 0.368434i
\(653\) 8.01744 0.937104i 0.313747 0.0366717i 0.0422375 0.999108i \(-0.486551\pi\)
0.271509 + 0.962436i \(0.412477\pi\)
\(654\) −27.1828 + 12.1460i −1.06293 + 0.474944i
\(655\) 4.57996 + 2.30014i 0.178954 + 0.0898741i
\(656\) 0.0722001 0.0605831i 0.00281894 0.00236537i
\(657\) 1.10746 2.03849i 0.0432060 0.0795291i
\(658\) 14.3530 + 12.0436i 0.559537 + 0.469507i
\(659\) −19.6755 45.6130i −0.766450 1.77683i −0.615259 0.788325i \(-0.710948\pi\)
−0.151191 0.988505i \(-0.548311\pi\)
\(660\) 0.465129 0.355742i 0.0181051 0.0138472i
\(661\) 2.96376 + 0.702423i 0.115277 + 0.0273211i 0.287849 0.957676i \(-0.407060\pi\)
−0.172573 + 0.984997i \(0.555208\pi\)
\(662\) −8.08163 26.9945i −0.314101 1.04917i
\(663\) −12.6422 + 56.6026i −0.490981 + 2.19826i
\(664\) 7.59134 + 0.887301i 0.294601 + 0.0344339i
\(665\) −0.353055 + 2.00227i −0.0136909 + 0.0776448i
\(666\) −22.6022 2.04929i −0.875819 0.0794084i
\(667\) 2.16922 + 12.3023i 0.0839927 + 0.476346i
\(668\) 0.410671 + 7.05095i 0.0158893 + 0.272809i
\(669\) 4.90603 + 19.5660i 0.189678 + 0.756464i
\(670\) −1.27469 + 2.95507i −0.0492457 + 0.114164i
\(671\) 2.43945 1.22514i 0.0941740 0.0472960i
\(672\) −1.16819 3.08452i −0.0450639 0.118988i
\(673\) 31.9544 7.57332i 1.23175 0.291930i 0.437331 0.899301i \(-0.355924\pi\)
0.794419 + 0.607370i \(0.207776\pi\)
\(674\) −0.612653 1.06115i −0.0235985 0.0408738i
\(675\) 17.9222 18.2774i 0.689825 0.703499i
\(676\) −15.6164 + 27.0485i −0.600632 + 1.04033i
\(677\) 2.44012 8.15058i 0.0937816 0.313252i −0.898208 0.439570i \(-0.855131\pi\)
0.991990 + 0.126318i \(0.0403160\pi\)
\(678\) −0.159227 12.2783i −0.00611508 0.471546i
\(679\) 5.01748 + 3.30005i 0.192553 + 0.126644i
\(680\) −0.815737 1.09572i −0.0312821 0.0420191i
\(681\) −42.8489 + 3.05365i −1.64198 + 0.117016i
\(682\) −1.96345 + 1.29138i −0.0751846 + 0.0494497i
\(683\) −32.4005 11.7928i −1.23977 0.451240i −0.362838 0.931852i \(-0.618192\pi\)
−0.876933 + 0.480612i \(0.840414\pi\)
\(684\) −10.4086 + 5.56996i −0.397982 + 0.212973i
\(685\) −5.57810 + 2.03026i −0.213128 + 0.0775724i
\(686\) −11.7966 + 15.8455i −0.450395 + 0.604985i
\(687\) −8.55198 16.4916i −0.326278 0.629195i
\(688\) −0.343399 + 0.363982i −0.0130920 + 0.0138767i
\(689\) 49.4281 52.3907i 1.88306 1.99593i
\(690\) 0.958878 + 0.0433806i 0.0365039 + 0.00165147i
\(691\) −17.4480 + 23.4368i −0.663755 + 0.891578i −0.998716 0.0506543i \(-0.983869\pi\)
0.334961 + 0.942232i \(0.391277\pi\)
\(692\) 11.7473 4.27568i 0.446567 0.162537i
\(693\) 2.21777 + 6.76423i 0.0842461 + 0.256952i
\(694\) 32.3904 + 11.7891i 1.22952 + 0.447510i
\(695\) −4.25627 + 2.79939i −0.161450 + 0.106187i
\(696\) −5.93543 8.77441i −0.224982 0.332593i
\(697\) 0.283366 + 0.380626i 0.0107332 + 0.0144173i
\(698\) −19.2280 12.6464i −0.727790 0.478675i
\(699\) −28.8298 16.1501i −1.09044 0.610853i
\(700\) 2.69058 8.98715i 0.101694 0.339682i
\(701\) 1.62951 2.82240i 0.0615458 0.106600i −0.833611 0.552352i \(-0.813730\pi\)
0.895157 + 0.445752i \(0.147064\pi\)
\(702\) 30.5779 + 16.1022i 1.15409 + 0.607737i
\(703\) 14.8844 + 25.7805i 0.561375 + 0.972329i
\(704\) 1.21246 0.287359i 0.0456964 0.0108302i
\(705\) 2.92596 3.58030i 0.110198 0.134842i
\(706\) 17.2159 8.64617i 0.647931 0.325403i
\(707\) −8.51874 + 19.7487i −0.320380 + 0.742725i
\(708\) 0.923782 + 0.263559i 0.0347179 + 0.00990516i
\(709\) 0.398378 + 6.83989i 0.0149614 + 0.256878i 0.997492 + 0.0707772i \(0.0225479\pi\)
−0.982531 + 0.186100i \(0.940415\pi\)
\(710\) −0.219151 1.24286i −0.00822458 0.0466439i
\(711\) −38.8758 18.2776i −1.45796 0.685462i
\(712\) −2.00198 + 11.3538i −0.0750273 + 0.425501i
\(713\) −3.82613 0.447210i −0.143290 0.0167481i
\(714\) 15.8454 4.96857i 0.592998 0.185944i
\(715\) 0.644879 + 2.15405i 0.0241171 + 0.0805568i
\(716\) 22.2553 + 5.27461i 0.831720 + 0.197121i
\(717\) 3.84746 + 29.5848i 0.143686 + 1.10486i
\(718\) 7.25989 + 16.8303i 0.270937 + 0.628102i
\(719\) −32.0452 26.8891i −1.19508 1.00279i −0.999757 0.0220555i \(-0.992979\pi\)
−0.195326 0.980738i \(-0.562577\pi\)
\(720\) −0.757404 + 0.298135i −0.0282268 + 0.0111108i
\(721\) 4.65926 3.90958i 0.173520 0.145600i
\(722\) −3.14132 1.57763i −0.116908 0.0587133i
\(723\) 11.5863 + 8.39439i 0.430899 + 0.312191i
\(724\) −2.42930 + 0.283945i −0.0902843 + 0.0105527i
\(725\) 1.75192 30.0792i 0.0650645 1.11711i
\(726\) 16.0765 3.05018i 0.596655 0.113203i
\(727\) −12.2805 13.0166i −0.455459 0.482759i 0.458425 0.888733i \(-0.348414\pi\)
−0.913884 + 0.405974i \(0.866932\pi\)
\(728\) 12.6650 0.469396
\(729\) 11.6417 24.3613i 0.431175 0.902269i
\(730\) −0.209813 −0.00776554
\(731\) −1.72891 1.83254i −0.0639461 0.0677790i
\(732\) −3.72803 + 0.707315i −0.137792 + 0.0261431i
\(733\) 2.90117 49.8111i 0.107157 1.83982i −0.334221 0.942495i \(-0.608473\pi\)
0.441378 0.897321i \(-0.354490\pi\)
\(734\) 1.17242 0.137036i 0.0432748 0.00505810i
\(735\) 1.28389 + 0.930192i 0.0473571 + 0.0343106i
\(736\) 1.82524 + 0.916669i 0.0672792 + 0.0337889i
\(737\) 11.3221 9.50035i 0.417054 0.349950i
\(738\) 0.263102 0.103564i 0.00968493 0.00381226i
\(739\) 15.2533 + 12.7991i 0.561103 + 0.470822i 0.878680 0.477411i \(-0.158425\pi\)
−0.317577 + 0.948233i \(0.602869\pi\)
\(740\) 0.812974 + 1.88469i 0.0298855 + 0.0692824i
\(741\) −5.84587 44.9515i −0.214754 1.65133i
\(742\) −20.0673 4.75605i −0.736695 0.174600i
\(743\) 9.12533 + 30.4807i 0.334776 + 1.11823i 0.945292 + 0.326225i \(0.105777\pi\)
−0.610516 + 0.792004i \(0.709038\pi\)
\(744\) 3.11703 0.977394i 0.114276 0.0358330i
\(745\) −5.54067 0.647611i −0.202994 0.0237266i
\(746\) 0.573074 3.25006i 0.0209817 0.118993i
\(747\) 20.7501 + 9.75573i 0.759207 + 0.356944i
\(748\) 1.08938 + 6.17818i 0.0398317 + 0.225897i
\(749\) −0.794829 13.6467i −0.0290424 0.498639i
\(750\) −4.48585 1.27983i −0.163800 0.0467329i
\(751\) −3.66595 + 8.49862i −0.133772 + 0.310119i −0.971915 0.235332i \(-0.924382\pi\)
0.838143 + 0.545451i \(0.183642\pi\)
\(752\) 8.79253 4.41577i 0.320630 0.161027i
\(753\) 17.4085 21.3017i 0.634402 0.776275i
\(754\) 39.5803 9.38071i 1.44143 0.341625i
\(755\) −2.82854 4.89918i −0.102941 0.178299i
\(756\) −0.384841 9.88749i −0.0139965 0.359605i
\(757\) −6.13904 + 10.6331i −0.223127 + 0.386468i −0.955756 0.294161i \(-0.904960\pi\)
0.732629 + 0.680628i \(0.238293\pi\)
\(758\) 0.567676 1.89617i 0.0206189 0.0688720i
\(759\) −3.84583 2.15439i −0.139595 0.0781993i
\(760\) 0.892029 + 0.586697i 0.0323573 + 0.0212817i
\(761\) −1.44141 1.93615i −0.0522511 0.0701854i 0.775230 0.631680i \(-0.217634\pi\)
−0.827481 + 0.561494i \(0.810227\pi\)
\(762\) 0.364789 + 0.539271i 0.0132149 + 0.0195357i
\(763\) −27.3485 + 17.9874i −0.990083 + 0.651188i
\(764\) 5.18553 + 1.88738i 0.187606 + 0.0682829i
\(765\) −1.27676 3.89413i −0.0461613 0.140793i
\(766\) −3.22897 + 1.17525i −0.116667 + 0.0424634i
\(767\) −2.20275 +