Properties

Label 162.2.g.a.97.2
Level $162$
Weight $2$
Character 162.97
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 97.2
Character \(\chi\) \(=\) 162.97
Dual form 162.2.g.a.157.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.973045 - 0.230616i) q^{2} +(-0.598238 + 1.62546i) q^{3} +(0.893633 + 0.448799i) q^{4} +(-1.25008 + 1.67915i) q^{5} +(0.956969 - 1.44368i) q^{6} +(-0.725742 - 0.477328i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(-2.28422 - 1.94482i) q^{9} +O(q^{10})\) \(q+(-0.973045 - 0.230616i) q^{2} +(-0.598238 + 1.62546i) q^{3} +(0.893633 + 0.448799i) q^{4} +(-1.25008 + 1.67915i) q^{5} +(0.956969 - 1.44368i) q^{6} +(-0.725742 - 0.477328i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(-2.28422 - 1.94482i) q^{9} +(1.60363 - 1.34560i) q^{10} +(-4.15887 + 0.486102i) q^{11} +(-1.26411 + 1.18407i) q^{12} +(-0.644916 + 2.15417i) q^{13} +(0.596100 + 0.631829i) q^{14} +(-1.98154 - 3.03649i) q^{15} +(0.597159 + 0.802123i) q^{16} +(0.766633 + 4.34779i) q^{17} +(1.77414 + 2.41918i) q^{18} +(0.162474 - 0.921436i) q^{19} +(-1.87072 + 0.939510i) q^{20} +(1.21004 - 0.894106i) q^{21} +(4.15887 + 0.486102i) q^{22} +(-1.33313 + 0.876812i) q^{23} +(1.50310 - 0.860632i) q^{24} +(0.177167 + 0.591780i) q^{25} +(1.12432 - 1.94737i) q^{26} +(4.52773 - 2.54944i) q^{27} +(-0.434322 - 0.752268i) q^{28} +(-1.00076 + 1.06075i) q^{29} +(1.22787 + 3.41162i) q^{30} +(0.0259757 + 0.445985i) q^{31} +(-0.396080 - 0.918216i) q^{32} +(1.69786 - 7.05087i) q^{33} +(0.256701 - 4.40739i) q^{34} +(1.70875 - 0.621932i) q^{35} +(-1.16842 - 2.76311i) q^{36} +(6.43779 + 2.34316i) q^{37} +(-0.370592 + 0.859129i) q^{38} +(-3.11569 - 2.33699i) q^{39} +(2.03696 - 0.482768i) q^{40} +(12.1745 - 2.88542i) q^{41} +(-1.38362 + 0.590951i) q^{42} +(-4.10222 + 9.51002i) q^{43} +(-3.93466 - 1.43210i) q^{44} +(6.12112 - 1.40437i) q^{45} +(1.49940 - 0.545737i) q^{46} +(0.603651 - 10.3643i) q^{47} +(-1.66106 + 0.490795i) q^{48} +(-2.47370 - 5.73468i) q^{49} +(-0.0359179 - 0.616686i) q^{50} +(-7.52578 - 1.35489i) q^{51} +(-1.54311 + 1.63560i) q^{52} +(6.72311 + 11.6448i) q^{53} +(-4.99363 + 1.43655i) q^{54} +(4.38270 - 7.59105i) q^{55} +(0.249130 + 0.832152i) q^{56} +(1.40056 + 0.815333i) q^{57} +(1.21841 - 0.801363i) q^{58} +(-3.48119 - 0.406893i) q^{59} +(-0.407998 - 3.60282i) q^{60} +(-9.52931 + 4.78580i) q^{61} +(0.0775757 - 0.439954i) q^{62} +(0.729438 + 2.50176i) q^{63} +(0.173648 + 0.984808i) q^{64} +(-2.81098 - 3.77580i) q^{65} +(-3.27813 + 6.46926i) q^{66} +(8.97123 + 9.50895i) q^{67} +(-1.26620 + 4.22939i) q^{68} +(-0.627692 - 2.69149i) q^{69} +(-1.80611 + 0.211104i) q^{70} +(-5.72149 + 4.80090i) q^{71} +(0.499708 + 2.95809i) q^{72} +(0.298511 + 0.250480i) q^{73} +(-5.72389 - 3.76466i) q^{74} +(-1.06790 - 0.0660477i) q^{75} +(0.558732 - 0.750507i) q^{76} +(3.25030 + 1.63236i) q^{77} +(2.49276 + 2.99252i) q^{78} +(-12.5888 - 2.98359i) q^{79} -2.09339 q^{80} +(1.43534 + 8.88481i) q^{81} -12.5118 q^{82} +(1.56415 + 0.370711i) q^{83} +(1.48261 - 0.255936i) q^{84} +(-8.25897 - 4.14781i) q^{85} +(6.18481 - 8.30764i) q^{86} +(-1.12550 - 2.26128i) q^{87} +(3.49834 + 2.30089i) q^{88} +(8.48715 + 7.12157i) q^{89} +(-6.28000 - 0.0451136i) q^{90} +(1.49629 - 1.25553i) q^{91} +(-1.58484 + 0.185241i) q^{92} +(-0.740469 - 0.224583i) q^{93} +(-2.97755 + 9.94570i) q^{94} +(1.34413 + 1.42469i) q^{95} +(1.72947 - 0.0944985i) q^{96} +(2.07315 + 2.78473i) q^{97} +(1.08451 + 6.15057i) q^{98} +(10.4452 + 6.97790i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.973045 0.230616i −0.688047 0.163070i
\(3\) −0.598238 + 1.62546i −0.345393 + 0.938458i
\(4\) 0.893633 + 0.448799i 0.446816 + 0.224400i
\(5\) −1.25008 + 1.67915i −0.559055 + 0.750941i −0.988346 0.152226i \(-0.951356\pi\)
0.429291 + 0.903166i \(0.358763\pi\)
\(6\) 0.956969 1.44368i 0.390681 0.589380i
\(7\) −0.725742 0.477328i −0.274305 0.180413i 0.404902 0.914360i \(-0.367306\pi\)
−0.679207 + 0.733947i \(0.737676\pi\)
\(8\) −0.766044 0.642788i −0.270838 0.227260i
\(9\) −2.28422 1.94482i −0.761407 0.648274i
\(10\) 1.60363 1.34560i 0.507111 0.425517i
\(11\) −4.15887 + 0.486102i −1.25395 + 0.146565i −0.717013 0.697059i \(-0.754491\pi\)
−0.536933 + 0.843625i \(0.680417\pi\)
\(12\) −1.26411 + 1.18407i −0.364917 + 0.341812i
\(13\) −0.644916 + 2.15417i −0.178867 + 0.597459i 0.820789 + 0.571232i \(0.193534\pi\)
−0.999656 + 0.0262267i \(0.991651\pi\)
\(14\) 0.596100 + 0.631829i 0.159314 + 0.168863i
\(15\) −1.98154 3.03649i −0.511633 0.784019i
\(16\) 0.597159 + 0.802123i 0.149290 + 0.200531i
\(17\) 0.766633 + 4.34779i 0.185936 + 1.05449i 0.924747 + 0.380582i \(0.124276\pi\)
−0.738811 + 0.673912i \(0.764613\pi\)
\(18\) 1.77414 + 2.41918i 0.418170 + 0.570205i
\(19\) 0.162474 0.921436i 0.0372741 0.211392i −0.960482 0.278341i \(-0.910215\pi\)
0.997756 + 0.0669492i \(0.0213265\pi\)
\(20\) −1.87072 + 0.939510i −0.418305 + 0.210081i
\(21\) 1.21004 0.894106i 0.264053 0.195110i
\(22\) 4.15887 + 0.486102i 0.886674 + 0.103637i
\(23\) −1.33313 + 0.876812i −0.277976 + 0.182828i −0.680840 0.732432i \(-0.738385\pi\)
0.402864 + 0.915260i \(0.368015\pi\)
\(24\) 1.50310 0.860632i 0.306819 0.175676i
\(25\) 0.177167 + 0.591780i 0.0354335 + 0.118356i
\(26\) 1.12432 1.94737i 0.220497 0.381912i
\(27\) 4.52773 2.54944i 0.871363 0.490639i
\(28\) −0.434322 0.752268i −0.0820792 0.142165i
\(29\) −1.00076 + 1.06075i −0.185837 + 0.196976i −0.813594 0.581434i \(-0.802492\pi\)
0.627756 + 0.778410i \(0.283973\pi\)
\(30\) 1.22787 + 3.41162i 0.224177 + 0.622874i
\(31\) 0.0259757 + 0.445985i 0.00466536 + 0.0801012i 0.999837 0.0180474i \(-0.00574498\pi\)
−0.995172 + 0.0981486i \(0.968708\pi\)
\(32\) −0.396080 0.918216i −0.0700177 0.162319i
\(33\) 1.69786 7.05087i 0.295559 1.22740i
\(34\) 0.256701 4.40739i 0.0440239 0.755862i
\(35\) 1.70875 0.621932i 0.288831 0.105126i
\(36\) −1.16842 2.76311i −0.194737 0.460519i
\(37\) 6.43779 + 2.34316i 1.05837 + 0.385214i 0.811814 0.583916i \(-0.198480\pi\)
0.246552 + 0.969130i \(0.420702\pi\)
\(38\) −0.370592 + 0.859129i −0.0601180 + 0.139369i
\(39\) −3.11569 2.33699i −0.498910 0.374218i
\(40\) 2.03696 0.482768i 0.322072 0.0763324i
\(41\) 12.1745 2.88542i 1.90134 0.450626i 0.901501 0.432778i \(-0.142467\pi\)
0.999841 0.0178481i \(-0.00568154\pi\)
\(42\) −1.38362 + 0.590951i −0.213497 + 0.0911856i
\(43\) −4.10222 + 9.51002i −0.625583 + 1.45026i 0.250506 + 0.968115i \(0.419403\pi\)
−0.876089 + 0.482150i \(0.839856\pi\)
\(44\) −3.93466 1.43210i −0.593173 0.215897i
\(45\) 6.12112 1.40437i 0.912483 0.209351i
\(46\) 1.49940 0.545737i 0.221074 0.0804645i
\(47\) 0.603651 10.3643i 0.0880515 1.51179i −0.608082 0.793874i \(-0.708061\pi\)
0.696134 0.717912i \(-0.254902\pi\)
\(48\) −1.66106 + 0.490795i −0.239753 + 0.0708401i
\(49\) −2.47370 5.73468i −0.353386 0.819240i
\(50\) −0.0359179 0.616686i −0.00507956 0.0872126i
\(51\) −7.52578 1.35489i −1.05382 0.189722i
\(52\) −1.54311 + 1.63560i −0.213990 + 0.226817i
\(53\) 6.72311 + 11.6448i 0.923491 + 1.59953i 0.793971 + 0.607956i \(0.208010\pi\)
0.129520 + 0.991577i \(0.458656\pi\)
\(54\) −4.99363 + 1.43655i −0.679547 + 0.195490i
\(55\) 4.38270 7.59105i 0.590963 1.02358i
\(56\) 0.249130 + 0.832152i 0.0332914 + 0.111201i
\(57\) 1.40056 + 0.815333i 0.185508 + 0.107993i
\(58\) 1.21841 0.801363i 0.159985 0.105224i
\(59\) −3.48119 0.406893i −0.453212 0.0529729i −0.113575 0.993529i \(-0.536230\pi\)
−0.339637 + 0.940557i \(0.610304\pi\)
\(60\) −0.407998 3.60282i −0.0526723 0.465123i
\(61\) −9.52931 + 4.78580i −1.22010 + 0.612759i −0.938003 0.346627i \(-0.887327\pi\)
−0.282099 + 0.959385i \(0.591031\pi\)
\(62\) 0.0775757 0.439954i 0.00985212 0.0558742i
\(63\) 0.729438 + 2.50176i 0.0919005 + 0.315192i
\(64\) 0.173648 + 0.984808i 0.0217060 + 0.123101i
\(65\) −2.81098 3.77580i −0.348659 0.468331i
\(66\) −3.27813 + 6.46926i −0.403510 + 0.796311i
\(67\) 8.97123 + 9.50895i 1.09601 + 1.16170i 0.985822 + 0.167793i \(0.0536640\pi\)
0.110189 + 0.993911i \(0.464855\pi\)
\(68\) −1.26620 + 4.22939i −0.153549 + 0.512889i
\(69\) −0.627692 2.69149i −0.0755652 0.324017i
\(70\) −1.80611 + 0.211104i −0.215872 + 0.0252318i
\(71\) −5.72149 + 4.80090i −0.679015 + 0.569762i −0.915718 0.401820i \(-0.868378\pi\)
0.236703 + 0.971582i \(0.423933\pi\)
\(72\) 0.499708 + 2.95809i 0.0588911 + 0.348614i
\(73\) 0.298511 + 0.250480i 0.0349381 + 0.0293165i 0.660089 0.751187i \(-0.270518\pi\)
−0.625151 + 0.780503i \(0.714963\pi\)
\(74\) −5.72389 3.76466i −0.665389 0.437633i
\(75\) −1.06790 0.0660477i −0.123311 0.00762653i
\(76\) 0.558732 0.750507i 0.0640909 0.0860891i
\(77\) 3.25030 + 1.63236i 0.370406 + 0.186025i
\(78\) 2.49276 + 2.99252i 0.282250 + 0.338837i
\(79\) −12.5888 2.98359i −1.41635 0.335681i −0.550018 0.835153i \(-0.685379\pi\)
−0.866330 + 0.499472i \(0.833527\pi\)
\(80\) −2.09339 −0.234048
\(81\) 1.43534 + 8.88481i 0.159482 + 0.987201i
\(82\) −12.5118 −1.38170
\(83\) 1.56415 + 0.370711i 0.171688 + 0.0406908i 0.315561 0.948905i \(-0.397807\pi\)
−0.143873 + 0.989596i \(0.545956\pi\)
\(84\) 1.48261 0.255936i 0.161766 0.0279250i
\(85\) −8.25897 4.14781i −0.895811 0.449893i
\(86\) 6.18481 8.30764i 0.666925 0.895836i
\(87\) −1.12550 2.26128i −0.120667 0.242434i
\(88\) 3.49834 + 2.30089i 0.372924 + 0.245276i
\(89\) 8.48715 + 7.12157i 0.899637 + 0.754885i 0.970119 0.242628i \(-0.0780095\pi\)
−0.0704828 + 0.997513i \(0.522454\pi\)
\(90\) −6.28000 0.0451136i −0.661970 0.00475539i
\(91\) 1.49629 1.25553i 0.156853 0.131616i
\(92\) −1.58484 + 0.185241i −0.165231 + 0.0193127i
\(93\) −0.740469 0.224583i −0.0767830 0.0232882i
\(94\) −2.97755 + 9.94570i −0.307111 + 1.02582i
\(95\) 1.34413 + 1.42469i 0.137904 + 0.146170i
\(96\) 1.72947 0.0944985i 0.176513 0.00964472i
\(97\) 2.07315 + 2.78473i 0.210497 + 0.282746i 0.894815 0.446437i \(-0.147307\pi\)
−0.684318 + 0.729184i \(0.739900\pi\)
\(98\) 1.08451 + 6.15057i 0.109552 + 0.621302i
\(99\) 10.4452 + 6.97790i 1.04978 + 0.701305i
\(100\) −0.107268 + 0.608347i −0.0107268 + 0.0608347i
\(101\) 7.64492 3.83942i 0.760698 0.382037i −0.0257703 0.999668i \(-0.508204\pi\)
0.786468 + 0.617631i \(0.211908\pi\)
\(102\) 7.01046 + 3.05393i 0.694139 + 0.302384i
\(103\) −6.27863 0.733867i −0.618652 0.0723100i −0.199007 0.979998i \(-0.563772\pi\)
−0.419645 + 0.907688i \(0.637846\pi\)
\(104\) 1.87871 1.23564i 0.184222 0.121165i
\(105\) −0.0113126 + 3.14956i −0.00110399 + 0.307365i
\(106\) −3.85642 12.8813i −0.374569 1.25115i
\(107\) 3.60966 6.25212i 0.348959 0.604415i −0.637106 0.770776i \(-0.719869\pi\)
0.986065 + 0.166361i \(0.0532019\pi\)
\(108\) 5.19032 0.246217i 0.499438 0.0236923i
\(109\) −10.1284 17.5429i −0.970125 1.68031i −0.695164 0.718851i \(-0.744668\pi\)
−0.274962 0.961455i \(-0.588665\pi\)
\(110\) −6.01518 + 6.37572i −0.573525 + 0.607901i
\(111\) −7.66005 + 9.06258i −0.727060 + 0.860182i
\(112\) −0.0505072 0.867175i −0.00477248 0.0819403i
\(113\) −6.77228 15.6999i −0.637083 1.47692i −0.864247 0.503067i \(-0.832205\pi\)
0.227165 0.973856i \(-0.427054\pi\)
\(114\) −1.17478 1.11635i −0.110028 0.104555i
\(115\) 0.194219 3.33462i 0.0181110 0.310955i
\(116\) −1.37038 + 0.498777i −0.127236 + 0.0463103i
\(117\) 5.66260 3.66635i 0.523508 0.338954i
\(118\) 3.29352 + 1.19874i 0.303193 + 0.110353i
\(119\) 1.51894 3.52131i 0.139241 0.322798i
\(120\) −0.433868 + 3.59980i −0.0396066 + 0.328615i
\(121\) 6.35641 1.50650i 0.577856 0.136954i
\(122\) 10.3761 2.45919i 0.939410 0.222644i
\(123\) −2.59315 + 21.5153i −0.233816 + 1.93997i
\(124\) −0.176945 + 0.410204i −0.0158901 + 0.0368374i
\(125\) −11.0509 4.02219i −0.988419 0.359755i
\(126\) −0.132830 2.60255i −0.0118334 0.231853i
\(127\) −8.46853 + 3.08229i −0.751460 + 0.273509i −0.689220 0.724552i \(-0.742047\pi\)
−0.0622403 + 0.998061i \(0.519825\pi\)
\(128\) 0.0581448 0.998308i 0.00513933 0.0882388i
\(129\) −13.0040 12.3572i −1.14494 1.08799i
\(130\) 1.86445 + 4.32228i 0.163523 + 0.379089i
\(131\) −0.421822 7.24240i −0.0368548 0.632772i −0.965274 0.261238i \(-0.915869\pi\)
0.928420 0.371533i \(-0.121168\pi\)
\(132\) 4.68169 5.53889i 0.407488 0.482099i
\(133\) −0.557741 + 0.591171i −0.0483623 + 0.0512610i
\(134\) −6.53650 11.3215i −0.564667 0.978033i
\(135\) −1.37915 + 10.7898i −0.118698 + 0.928636i
\(136\) 2.20743 3.82338i 0.189286 0.327852i
\(137\) 2.33943 + 7.81423i 0.199871 + 0.667615i 0.997887 + 0.0649784i \(0.0206979\pi\)
−0.798016 + 0.602636i \(0.794117\pi\)
\(138\) −0.00992662 + 2.76369i −0.000845010 + 0.235261i
\(139\) 9.76300 6.42123i 0.828087 0.544642i −0.0632419 0.997998i \(-0.520144\pi\)
0.891329 + 0.453357i \(0.149774\pi\)
\(140\) 1.80611 + 0.211104i 0.152644 + 0.0178416i
\(141\) 16.4856 + 7.18152i 1.38834 + 0.604793i
\(142\) 6.67443 3.35202i 0.560105 0.281295i
\(143\) 1.63497 9.27240i 0.136723 0.775397i
\(144\) 0.195944 2.99359i 0.0163287 0.249466i
\(145\) −0.530120 3.00646i −0.0440241 0.249673i
\(146\) −0.232700 0.312570i −0.0192584 0.0258685i
\(147\) 10.8013 0.590187i 0.890879 0.0486778i
\(148\) 4.70141 + 4.98320i 0.386454 + 0.409617i
\(149\) 0.555309 1.85486i 0.0454927 0.151956i −0.932225 0.361878i \(-0.882136\pi\)
0.977718 + 0.209922i \(0.0673209\pi\)
\(150\) 1.02388 + 0.310543i 0.0835999 + 0.0253557i
\(151\) 22.0040 2.57189i 1.79066 0.209298i 0.845068 0.534659i \(-0.179560\pi\)
0.945590 + 0.325362i \(0.105486\pi\)
\(152\) −0.716750 + 0.601425i −0.0581361 + 0.0487820i
\(153\) 6.70452 11.4223i 0.542028 0.923437i
\(154\) −2.78624 2.33793i −0.224521 0.188396i
\(155\) −0.781349 0.513901i −0.0627594 0.0412775i
\(156\) −1.73545 3.48673i −0.138947 0.279162i
\(157\) −8.75505 + 11.7601i −0.698729 + 0.938556i −0.999887 0.0150183i \(-0.995219\pi\)
0.301158 + 0.953574i \(0.402627\pi\)
\(158\) 11.5614 + 5.80634i 0.919774 + 0.461928i
\(159\) −22.9501 + 3.96178i −1.82006 + 0.314190i
\(160\) 2.03696 + 0.482768i 0.161036 + 0.0381662i
\(161\) 1.38603 0.109235
\(162\) 0.652330 8.97633i 0.0512519 0.705247i
\(163\) 13.6797 1.07147 0.535737 0.844385i \(-0.320034\pi\)
0.535737 + 0.844385i \(0.320034\pi\)
\(164\) 12.1745 + 2.88542i 0.950671 + 0.225313i
\(165\) 9.71703 + 11.6651i 0.756470 + 0.908130i
\(166\) −1.43650 0.721436i −0.111494 0.0559943i
\(167\) −9.48873 + 12.7456i −0.734260 + 0.986282i 0.265494 + 0.964112i \(0.414465\pi\)
−0.999754 + 0.0221698i \(0.992943\pi\)
\(168\) −1.50167 0.0928753i −0.115856 0.00716548i
\(169\) 6.63682 + 4.36510i 0.510524 + 0.335777i
\(170\) 7.07979 + 5.94065i 0.542995 + 0.455627i
\(171\) −2.16316 + 1.78878i −0.165421 + 0.136791i
\(172\) −7.93397 + 6.65739i −0.604960 + 0.507621i
\(173\) −1.29303 + 0.151133i −0.0983072 + 0.0114905i −0.165104 0.986276i \(-0.552796\pi\)
0.0667971 + 0.997767i \(0.478722\pi\)
\(174\) 0.573680 + 2.45988i 0.0434905 + 0.186483i
\(175\) 0.153895 0.514047i 0.0116334 0.0388583i
\(176\) −2.87342 3.04565i −0.216592 0.229574i
\(177\) 2.74397 5.41511i 0.206249 0.407024i
\(178\) −6.61604 8.88688i −0.495893 0.666100i
\(179\) 1.50254 + 8.52134i 0.112305 + 0.636915i 0.988049 + 0.154139i \(0.0492604\pi\)
−0.875744 + 0.482776i \(0.839629\pi\)
\(180\) 6.10032 + 1.49216i 0.454691 + 0.111219i
\(181\) −1.76679 + 10.0200i −0.131324 + 0.744777i 0.846025 + 0.533144i \(0.178989\pi\)
−0.977349 + 0.211634i \(0.932122\pi\)
\(182\) −1.74550 + 0.876623i −0.129385 + 0.0649796i
\(183\) −2.07831 18.3525i −0.153633 1.35666i
\(184\) 1.58484 + 0.185241i 0.116836 + 0.0136562i
\(185\) −11.9823 + 7.88089i −0.880957 + 0.579415i
\(186\) 0.668717 + 0.389293i 0.0490327 + 0.0285443i
\(187\) −5.30180 17.7092i −0.387706 1.29503i
\(188\) 5.19092 8.99095i 0.378587 0.655732i
\(189\) −4.50288 0.310980i −0.327537 0.0226205i
\(190\) −0.979339 1.69627i −0.0710487 0.123060i
\(191\) −2.13784 + 2.26598i −0.154689 + 0.163960i −0.800083 0.599889i \(-0.795211\pi\)
0.645395 + 0.763849i \(0.276693\pi\)
\(192\) −1.70465 0.306892i −0.123022 0.0221480i
\(193\) −0.0668182 1.14722i −0.00480968 0.0825790i 0.995049 0.0993846i \(-0.0316874\pi\)
−0.999859 + 0.0168056i \(0.994650\pi\)
\(194\) −1.37507 3.18777i −0.0987242 0.228869i
\(195\) 7.81904 2.31030i 0.559933 0.165444i
\(196\) 0.363141 6.23489i 0.0259386 0.445349i
\(197\) −7.61203 + 2.77055i −0.542335 + 0.197394i −0.598638 0.801020i \(-0.704291\pi\)
0.0563027 + 0.998414i \(0.482069\pi\)
\(198\) −8.55440 9.19863i −0.607935 0.653718i
\(199\) −0.654014 0.238042i −0.0463618 0.0168743i 0.318735 0.947844i \(-0.396742\pi\)
−0.365097 + 0.930969i \(0.618964\pi\)
\(200\) 0.244671 0.567211i 0.0173009 0.0401079i
\(201\) −20.8233 + 8.89374i −1.46876 + 0.627316i
\(202\) −8.32428 + 1.97289i −0.585694 + 0.138812i
\(203\) 1.23262 0.292136i 0.0865130 0.0205040i
\(204\) −6.11721 4.58833i −0.428290 0.321248i
\(205\) −10.3741 + 24.0499i −0.724560 + 1.67972i
\(206\) 5.94015 + 2.16204i 0.413870 + 0.150636i
\(207\) 4.75040 + 0.589863i 0.330176 + 0.0409983i
\(208\) −2.11303 + 0.769078i −0.146512 + 0.0533260i
\(209\) −0.227796 + 3.91111i −0.0157570 + 0.270537i
\(210\) 0.737345 3.06205i 0.0508817 0.211302i
\(211\) 0.797744 + 1.84938i 0.0549190 + 0.127316i 0.943466 0.331469i \(-0.107544\pi\)
−0.888547 + 0.458785i \(0.848285\pi\)
\(212\) 0.781828 + 13.4235i 0.0536962 + 0.921928i
\(213\) −4.38084 12.1721i −0.300170 0.834019i
\(214\) −4.95420 + 5.25115i −0.338662 + 0.358961i
\(215\) −10.8407 18.7766i −0.739327 1.28055i
\(216\) −5.10719 0.957389i −0.347500 0.0651420i
\(217\) 0.194029 0.336069i 0.0131716 0.0228138i
\(218\) 5.80972 + 19.4058i 0.393484 + 1.31433i
\(219\) −0.585726 + 0.335370i −0.0395797 + 0.0226622i
\(220\) 7.32338 4.81666i 0.493742 0.324739i
\(221\) −9.86028 1.15250i −0.663274 0.0775257i
\(222\) 9.54355 7.05177i 0.640521 0.473284i
\(223\) 11.3875 5.71904i 0.762566 0.382975i −0.0246149 0.999697i \(-0.507836\pi\)
0.787181 + 0.616722i \(0.211540\pi\)
\(224\) −0.150839 + 0.855448i −0.0100783 + 0.0571570i
\(225\) 0.746218 1.69632i 0.0497478 0.113088i
\(226\) 2.96908 + 16.8385i 0.197501 + 1.12008i
\(227\) −5.80593 7.79872i −0.385353 0.517619i 0.566546 0.824030i \(-0.308279\pi\)
−0.951899 + 0.306411i \(0.900872\pi\)
\(228\) 0.885662 + 1.35718i 0.0586544 + 0.0898812i
\(229\) −8.49357 9.00266i −0.561271 0.594913i 0.383136 0.923692i \(-0.374844\pi\)
−0.944407 + 0.328779i \(0.893363\pi\)
\(230\) −0.957999 + 3.19994i −0.0631686 + 0.210998i
\(231\) −4.59778 + 4.30668i −0.302512 + 0.283359i
\(232\) 1.44846 0.169301i 0.0950964 0.0111152i
\(233\) −12.4919 + 10.4820i −0.818375 + 0.686698i −0.952591 0.304254i \(-0.901593\pi\)
0.134216 + 0.990952i \(0.457148\pi\)
\(234\) −6.35549 + 2.26164i −0.415471 + 0.147848i
\(235\) 16.6486 + 13.9698i 1.08604 + 0.911292i
\(236\) −2.92829 1.92597i −0.190616 0.125370i
\(237\) 12.3808 18.6776i 0.804219 1.21324i
\(238\) −2.29007 + 3.07610i −0.148443 + 0.199394i
\(239\) −7.78369 3.90912i −0.503485 0.252860i 0.178880 0.983871i \(-0.442752\pi\)
−0.682366 + 0.731011i \(0.739049\pi\)
\(240\) 1.25234 3.40271i 0.0808385 0.219644i
\(241\) 13.1012 + 3.10504i 0.843923 + 0.200013i 0.629765 0.776786i \(-0.283151\pi\)
0.214158 + 0.976799i \(0.431299\pi\)
\(242\) −6.53250 −0.419925
\(243\) −15.3005 2.98215i −0.981531 0.191305i
\(244\) −10.6636 −0.682665
\(245\) 12.7217 + 3.01511i 0.812762 + 0.192628i
\(246\) 7.48503 20.3374i 0.477228 1.29666i
\(247\) 1.88015 + 0.944245i 0.119631 + 0.0600809i
\(248\) 0.266775 0.358341i 0.0169402 0.0227547i
\(249\) −1.53831 + 2.32069i −0.0974864 + 0.147068i
\(250\) 9.82541 + 6.46227i 0.621413 + 0.408710i
\(251\) 19.8124 + 16.6246i 1.25055 + 1.04934i 0.996623 + 0.0821128i \(0.0261668\pi\)
0.253927 + 0.967223i \(0.418278\pi\)
\(252\) −0.470939 + 2.56303i −0.0296664 + 0.161455i
\(253\) 5.11809 4.29458i 0.321771 0.269998i
\(254\) 8.95108 1.04623i 0.561641 0.0656464i
\(255\) 11.6829 10.9432i 0.731612 0.685291i
\(256\) −0.286803 + 0.957990i −0.0179252 + 0.0598743i
\(257\) −1.90977 2.02424i −0.119128 0.126269i 0.665064 0.746786i \(-0.268404\pi\)
−0.784193 + 0.620517i \(0.786923\pi\)
\(258\) 9.80372 + 15.0231i 0.610353 + 0.935297i
\(259\) −3.55372 4.77347i −0.220817 0.296609i
\(260\) −0.817407 4.63575i −0.0506935 0.287497i
\(261\) 4.34893 0.476676i 0.269192 0.0295055i
\(262\) −1.25976 + 7.14446i −0.0778283 + 0.441386i
\(263\) 11.9262 5.98959i 0.735404 0.369334i −0.0413444 0.999145i \(-0.513164\pi\)
0.776748 + 0.629811i \(0.216868\pi\)
\(264\) −5.83285 + 4.30992i −0.358987 + 0.265257i
\(265\) −27.9578 3.26780i −1.71744 0.200739i
\(266\) 0.679041 0.446612i 0.0416347 0.0273835i
\(267\) −16.6531 + 9.53511i −1.01916 + 0.583539i
\(268\) 3.74938 + 12.5238i 0.229030 + 0.765012i
\(269\) −2.03133 + 3.51837i −0.123853 + 0.214519i −0.921284 0.388891i \(-0.872858\pi\)
0.797431 + 0.603410i \(0.206192\pi\)
\(270\) 3.83027 10.1809i 0.233103 0.619589i
\(271\) 6.13785 + 10.6311i 0.372848 + 0.645791i 0.990002 0.141051i \(-0.0450480\pi\)
−0.617155 + 0.786842i \(0.711715\pi\)
\(272\) −3.02966 + 3.21125i −0.183700 + 0.194711i
\(273\) 1.14568 + 3.18326i 0.0693397 + 0.192660i
\(274\) −0.474282 8.14311i −0.0286524 0.491943i
\(275\) −1.02448 2.37502i −0.0617786 0.143219i
\(276\) 0.647010 2.68691i 0.0389454 0.161733i
\(277\) −0.0171617 + 0.294655i −0.00103115 + 0.0177041i −0.998784 0.0492905i \(-0.984304\pi\)
0.997753 + 0.0669946i \(0.0213410\pi\)
\(278\) −10.9807 + 3.99664i −0.658577 + 0.239703i
\(279\) 0.808027 1.06925i 0.0483753 0.0640141i
\(280\) −1.70875 0.621932i −0.102117 0.0371676i
\(281\) −4.53110 + 10.5043i −0.270302 + 0.626632i −0.998258 0.0589923i \(-0.981211\pi\)
0.727956 + 0.685624i \(0.240471\pi\)
\(282\) −14.3850 10.7898i −0.856616 0.642522i
\(283\) 21.7276 5.14954i 1.29157 0.306108i 0.473281 0.880912i \(-0.343070\pi\)
0.818291 + 0.574804i \(0.194922\pi\)
\(284\) −7.26754 + 1.72244i −0.431249 + 0.102208i
\(285\) −3.11988 + 1.33252i −0.184806 + 0.0789314i
\(286\) −3.72927 + 8.64541i −0.220516 + 0.511214i
\(287\) −10.2129 3.71717i −0.602846 0.219418i
\(288\) −0.881033 + 2.86771i −0.0519153 + 0.168982i
\(289\) −2.34078 + 0.851974i −0.137693 + 0.0501161i
\(290\) −0.177507 + 3.04767i −0.0104236 + 0.178966i
\(291\) −5.76670 + 1.70389i −0.338050 + 0.0998839i
\(292\) 0.154344 + 0.357809i 0.00903228 + 0.0209392i
\(293\) 0.609421 + 10.4634i 0.0356027 + 0.611276i 0.968172 + 0.250285i \(0.0805243\pi\)
−0.932569 + 0.360991i \(0.882439\pi\)
\(294\) −10.6463 1.91668i −0.620904 0.111783i
\(295\) 5.03501 5.33680i 0.293150 0.310721i
\(296\) −3.42548 5.93310i −0.199102 0.344854i
\(297\) −17.5910 + 12.8037i −1.02073 + 0.742947i
\(298\) −0.968102 + 1.67680i −0.0560806 + 0.0971345i
\(299\) −1.02905 3.43725i −0.0595112 0.198781i
\(300\) −0.924670 0.538296i −0.0533858 0.0310785i
\(301\) 7.51655 4.94372i 0.433247 0.284951i
\(302\) −22.0040 2.57189i −1.26619 0.147996i
\(303\) 1.66733 + 14.7234i 0.0957857 + 0.845836i
\(304\) 0.836128 0.419919i 0.0479552 0.0240840i
\(305\) 3.87634 21.9838i 0.221959 1.25879i
\(306\) −9.15796 + 9.56822i −0.523525 + 0.546979i
\(307\) −0.212251 1.20374i −0.0121138 0.0687009i 0.978152 0.207893i \(-0.0666606\pi\)
−0.990265 + 0.139192i \(0.955549\pi\)
\(308\) 2.17197 + 2.91746i 0.123759 + 0.166238i
\(309\) 4.94899 9.76662i 0.281538 0.555604i
\(310\) 0.641774 + 0.680240i 0.0364503 + 0.0386351i
\(311\) 0.201906 0.674413i 0.0114490 0.0382425i −0.952074 0.305867i \(-0.901054\pi\)
0.963523 + 0.267625i \(0.0862388\pi\)
\(312\) 0.884573 + 3.79297i 0.0500791 + 0.214734i
\(313\) 24.4482 2.85758i 1.38189 0.161520i 0.607547 0.794284i \(-0.292154\pi\)
0.774345 + 0.632763i \(0.218079\pi\)
\(314\) 11.2311 9.42402i 0.633808 0.531828i
\(315\) −5.11270 1.90257i −0.288068 0.107198i
\(316\) −9.91070 8.31607i −0.557521 0.467815i
\(317\) 18.9963 + 12.4940i 1.06694 + 0.701736i 0.956377 0.292134i \(-0.0943653\pi\)
0.110560 + 0.993869i \(0.464736\pi\)
\(318\) 23.2451 + 1.43767i 1.30352 + 0.0806204i
\(319\) 3.64641 4.89798i 0.204160 0.274235i
\(320\) −1.87072 0.939510i −0.104576 0.0525202i
\(321\) 8.00311 + 9.60761i 0.446690 + 0.536244i
\(322\) −1.34867 0.319641i −0.0751586 0.0178129i
\(323\) 4.13077 0.229842
\(324\) −2.70483 + 8.58393i −0.150268 + 0.476885i
\(325\) −1.38905 −0.0770508
\(326\) −13.3109 3.15475i −0.737224 0.174725i
\(327\) 34.5745 5.96845i 1.91197 0.330056i
\(328\) −11.1809 5.61528i −0.617364 0.310052i
\(329\) −5.38526 + 7.23366i −0.296899 + 0.398804i
\(330\) −6.76494 13.5916i −0.372398 0.748194i
\(331\) 18.6449 + 12.2629i 1.02482 + 0.674032i 0.946436 0.322891i \(-0.104655\pi\)
0.0783803 + 0.996924i \(0.475025\pi\)
\(332\) 1.23140 + 1.03327i 0.0675819 + 0.0567080i
\(333\) −10.1483 17.8727i −0.556124 0.979416i
\(334\) 12.1723 10.2138i 0.666038 0.558872i
\(335\) −27.1818 + 3.17710i −1.48510 + 0.173583i
\(336\) 1.43977 + 0.436680i 0.0785459 + 0.0238228i
\(337\) −0.522125 + 1.74402i −0.0284420 + 0.0950028i −0.971032 0.238949i \(-0.923197\pi\)
0.942590 + 0.333952i \(0.108382\pi\)
\(338\) −5.45126 5.77800i −0.296509 0.314282i
\(339\) 29.5710 1.61576i 1.60607 0.0877561i
\(340\) −5.51895 7.41323i −0.299307 0.402039i
\(341\) −0.324824 1.84217i −0.0175902 0.0997589i
\(342\) 2.51737 1.24171i 0.136124 0.0671438i
\(343\) −1.99793 + 11.3308i −0.107878 + 0.611806i
\(344\) 9.25541 4.64824i 0.499018 0.250616i
\(345\) 5.30409 + 2.31059i 0.285562 + 0.124398i
\(346\) 1.29303 + 0.151133i 0.0695137 + 0.00812498i
\(347\) −12.7058 + 8.35675i −0.682084 + 0.448614i −0.842686 0.538406i \(-0.819027\pi\)
0.160602 + 0.987019i \(0.448656\pi\)
\(348\) 0.00907244 2.52588i 0.000486334 0.135401i
\(349\) −8.19252 27.3649i −0.438536 1.46481i −0.836784 0.547534i \(-0.815567\pi\)
0.398248 0.917278i \(-0.369618\pi\)
\(350\) −0.268295 + 0.464700i −0.0143409 + 0.0248392i
\(351\) 2.57191 + 11.3977i 0.137278 + 0.608363i
\(352\) 2.09359 + 3.62621i 0.111589 + 0.193277i
\(353\) 15.6658 16.6048i 0.833809 0.883786i −0.160853 0.986978i \(-0.551424\pi\)
0.994661 + 0.103193i \(0.0329058\pi\)
\(354\) −3.91881 + 4.63634i −0.208283 + 0.246419i
\(355\) −0.909108 15.6088i −0.0482504 0.828428i
\(356\) 4.38824 + 10.1731i 0.232576 + 0.539173i
\(357\) 4.81505 + 4.57556i 0.254839 + 0.242164i
\(358\) 0.503115 8.63816i 0.0265905 0.456541i
\(359\) 11.0891 4.03610i 0.585261 0.213017i −0.0323831 0.999476i \(-0.510310\pi\)
0.617644 + 0.786458i \(0.288087\pi\)
\(360\) −5.59176 2.85877i −0.294712 0.150671i
\(361\) 17.0315 + 6.19896i 0.896395 + 0.326261i
\(362\) 4.02992 9.34242i 0.211808 0.491026i
\(363\) −1.35390 + 11.2333i −0.0710615 + 0.589597i
\(364\) 1.90061 0.450454i 0.0996192 0.0236102i
\(365\) −0.793759 + 0.188124i −0.0415472 + 0.00984688i
\(366\) −2.21009 + 18.3371i −0.115523 + 0.958497i
\(367\) −10.3919 + 24.0910i −0.542450 + 1.25754i 0.397930 + 0.917416i \(0.369729\pi\)
−0.940380 + 0.340125i \(0.889531\pi\)
\(368\) −1.49940 0.545737i −0.0781616 0.0284485i
\(369\) −33.4209 17.0864i −1.73982 0.889480i
\(370\) 13.4768 4.90515i 0.700625 0.255007i
\(371\) 0.679131 11.6602i 0.0352587 0.605369i
\(372\) −0.560914 0.533016i −0.0290821 0.0276356i
\(373\) −14.3823 33.3420i −0.744690 1.72639i −0.685425 0.728143i \(-0.740384\pi\)
−0.0592644 0.998242i \(-0.518875\pi\)
\(374\) 1.07486 + 18.4546i 0.0555795 + 0.954262i
\(375\) 13.1489 15.5565i 0.679008 0.803333i
\(376\) −7.12446 + 7.55148i −0.367416 + 0.389438i
\(377\) −1.63962 2.83991i −0.0844447 0.146263i
\(378\) 4.30979 + 1.34103i 0.221672 + 0.0689754i
\(379\) −10.5794 + 18.3241i −0.543428 + 0.941244i 0.455277 + 0.890350i \(0.349540\pi\)
−0.998704 + 0.0508940i \(0.983793\pi\)
\(380\) 0.561755 + 1.87639i 0.0288174 + 0.0962570i
\(381\) 0.0560650 15.6092i 0.00287230 0.799682i
\(382\) 2.60278 1.71188i 0.133170 0.0875872i
\(383\) 15.5596 + 1.81865i 0.795057 + 0.0929289i 0.503918 0.863752i \(-0.331891\pi\)
0.291140 + 0.956681i \(0.405966\pi\)
\(384\) 1.58792 + 0.691738i 0.0810333 + 0.0353001i
\(385\) −6.80413 + 3.41716i −0.346770 + 0.174155i
\(386\) −0.199551 + 1.13171i −0.0101569 + 0.0576025i
\(387\) 27.8657 13.7449i 1.41649 0.698693i
\(388\) 0.602854 + 3.41896i 0.0306053 + 0.173571i
\(389\) 8.86577 + 11.9088i 0.449512 + 0.603800i 0.967897 0.251348i \(-0.0808738\pi\)
−0.518384 + 0.855148i \(0.673466\pi\)
\(390\) −8.14107 + 0.444829i −0.412239 + 0.0225248i
\(391\) −4.83421 5.12397i −0.244477 0.259130i
\(392\) −1.79122 + 5.98308i −0.0904701 + 0.302191i
\(393\) 12.0246 + 3.64703i 0.606559 + 0.183968i
\(394\) 8.04578 0.940417i 0.405341 0.0473775i
\(395\) 20.7469 17.4087i 1.04389 0.875929i
\(396\) 6.20247 + 10.9235i 0.311686 + 0.548924i
\(397\) −11.5126 9.66019i −0.577799 0.484831i 0.306424 0.951895i \(-0.400867\pi\)
−0.884224 + 0.467064i \(0.845312\pi\)
\(398\) 0.581488 + 0.382451i 0.0291474 + 0.0191705i
\(399\) −0.627261 1.26025i −0.0314023 0.0630912i
\(400\) −0.368884 + 0.495497i −0.0184442 + 0.0247748i
\(401\) 0.515172 + 0.258729i 0.0257264 + 0.0129203i 0.461616 0.887080i \(-0.347270\pi\)
−0.435889 + 0.900000i \(0.643566\pi\)
\(402\) 22.3131 3.85181i 1.11288 0.192111i
\(403\) −0.977478 0.231667i −0.0486917 0.0115401i
\(404\) 8.55488 0.425621
\(405\) −16.7133 8.69660i −0.830488 0.432138i
\(406\) −1.26677 −0.0628686
\(407\) −27.9130 6.61549i −1.38359 0.327918i
\(408\) 4.89417 + 5.87538i 0.242298 + 0.290875i
\(409\) 8.56582 + 4.30192i 0.423553 + 0.212716i 0.647791 0.761818i \(-0.275693\pi\)
−0.224238 + 0.974534i \(0.571989\pi\)
\(410\) 15.6408 21.0092i 0.772443 1.03757i
\(411\) −14.1012 0.872134i −0.695562 0.0430192i
\(412\) −5.28143 3.47365i −0.260197 0.171135i
\(413\) 2.33222 + 1.95697i 0.114761 + 0.0962961i
\(414\) −4.48632 1.66948i −0.220491 0.0820505i
\(415\) −2.57780 + 2.16303i −0.126539 + 0.106179i
\(416\) 2.23343 0.261051i 0.109503 0.0127991i
\(417\) 4.59683 + 19.7108i 0.225108 + 0.965241i
\(418\) 1.12362 3.75315i 0.0549581 0.183573i
\(419\) 26.4070 + 27.9898i 1.29007 + 1.36739i 0.893292 + 0.449476i \(0.148389\pi\)
0.396775 + 0.917916i \(0.370129\pi\)
\(420\) −1.42363 + 2.80947i −0.0694659 + 0.137088i
\(421\) −5.19429 6.97715i −0.253154 0.340045i 0.657319 0.753612i \(-0.271690\pi\)
−0.910474 + 0.413567i \(0.864283\pi\)
\(422\) −0.349745 1.98350i −0.0170253 0.0965553i
\(423\) −21.5356 + 22.5003i −1.04709 + 1.09400i
\(424\) 2.33491 13.2419i 0.113393 0.643086i
\(425\) −2.43711 + 1.22396i −0.118217 + 0.0593710i
\(426\) 1.45567 + 12.8543i 0.0705275 + 0.622793i
\(427\) 9.20021 + 1.07535i 0.445229 + 0.0520399i
\(428\) 6.03166 3.96708i 0.291551 0.191756i
\(429\) 14.0938 + 8.20469i 0.680454 + 0.396126i
\(430\) 6.21828 + 20.7705i 0.299872 + 1.00164i
\(431\) 9.58237 16.5972i 0.461567 0.799457i −0.537473 0.843281i \(-0.680621\pi\)
0.999039 + 0.0438243i \(0.0139542\pi\)
\(432\) 4.74874 + 2.10938i 0.228474 + 0.101488i
\(433\) −1.63588 2.83343i −0.0786154 0.136166i 0.824037 0.566535i \(-0.191717\pi\)
−0.902653 + 0.430370i \(0.858383\pi\)
\(434\) −0.266302 + 0.282264i −0.0127829 + 0.0135491i
\(435\) 5.20401 + 0.936892i 0.249513 + 0.0449206i
\(436\) −1.17783 20.2225i −0.0564078 0.968484i
\(437\) 0.591327 + 1.37085i 0.0282870 + 0.0655767i
\(438\) 0.647279 0.191252i 0.0309282 0.00913838i
\(439\) 1.77241 30.4312i 0.0845927 1.45240i −0.642723 0.766098i \(-0.722196\pi\)
0.727316 0.686303i \(-0.240767\pi\)
\(440\) −8.23678 + 2.99794i −0.392673 + 0.142921i
\(441\) −5.50245 + 17.9102i −0.262021 + 0.852866i
\(442\) 9.32871 + 3.39537i 0.443722 + 0.161501i
\(443\) −9.24747 + 21.4381i −0.439361 + 1.01855i 0.544360 + 0.838851i \(0.316772\pi\)
−0.983721 + 0.179701i \(0.942487\pi\)
\(444\) −10.9125 + 4.66080i −0.517887 + 0.221192i
\(445\) −22.5679 + 5.34868i −1.06982 + 0.253552i
\(446\) −12.3995 + 2.93873i −0.587133 + 0.139153i
\(447\) 2.68279 + 2.01228i 0.126892 + 0.0951776i
\(448\) 0.344052 0.797603i 0.0162550 0.0376832i
\(449\) −30.1179 10.9620i −1.42135 0.517330i −0.486912 0.873451i \(-0.661877\pi\)
−0.934440 + 0.356121i \(0.884099\pi\)
\(450\) −1.11730 + 1.47850i −0.0526701 + 0.0696973i
\(451\) −49.2297 + 17.9181i −2.31813 + 0.843732i
\(452\) 0.994176 17.0693i 0.0467621 0.802875i
\(453\) −8.98311 + 37.3051i −0.422063 + 1.75275i
\(454\) 3.85092 + 8.92745i 0.180733 + 0.418986i
\(455\) 0.237751 + 4.08202i 0.0111459 + 0.191368i
\(456\) −0.548803 1.52484i −0.0257000 0.0714072i
\(457\) −16.4122 + 17.3959i −0.767729 + 0.813745i −0.986797 0.161965i \(-0.948217\pi\)
0.219068 + 0.975710i \(0.429698\pi\)
\(458\) 6.18847 + 10.7187i 0.289168 + 0.500854i
\(459\) 14.5555 + 17.7312i 0.679394 + 0.827619i
\(460\) 1.67013 2.89276i 0.0778704 0.134875i
\(461\) −2.71503 9.06882i −0.126451 0.422377i 0.871196 0.490936i \(-0.163345\pi\)
−0.997647 + 0.0685589i \(0.978160\pi\)
\(462\) 5.46704 3.13027i 0.254350 0.145633i
\(463\) −31.5131 + 20.7265i −1.46454 + 0.963241i −0.467690 + 0.883893i \(0.654913\pi\)
−0.996847 + 0.0793481i \(0.974716\pi\)
\(464\) −1.44846 0.169301i −0.0672433 0.00785961i
\(465\) 1.30276 0.962614i 0.0604139 0.0446401i
\(466\) 14.5725 7.31860i 0.675060 0.339028i
\(467\) 3.41253 19.3534i 0.157913 0.895570i −0.798161 0.602445i \(-0.794193\pi\)
0.956074 0.293126i \(-0.0946954\pi\)
\(468\) 6.70574 0.735000i 0.309973 0.0339754i
\(469\) −1.97191 11.1833i −0.0910544 0.516395i
\(470\) −12.9782 17.4327i −0.598639 0.804112i
\(471\) −13.8779 21.2663i −0.639459 0.979899i
\(472\) 2.40520 + 2.54936i 0.110708 + 0.117344i
\(473\) 12.4378 41.5450i 0.571889 1.91024i
\(474\) −16.3544 + 15.3189i −0.751183 + 0.703622i
\(475\) 0.574073 0.0670995i 0.0263403 0.00307874i
\(476\) 2.93774 2.46506i 0.134651 0.112986i
\(477\) 7.28993 39.6745i 0.333783 1.81657i
\(478\) 6.67238 + 5.59879i 0.305187 + 0.256083i
\(479\) 21.4509 + 14.1085i 0.980118 + 0.644634i 0.935112 0.354353i \(-0.115299\pi\)
0.0450061 + 0.998987i \(0.485669\pi\)
\(480\) −2.00331 + 3.02218i −0.0914380 + 0.137943i
\(481\) −9.19940 + 12.3569i −0.419457 + 0.563428i
\(482\) −12.0320 6.04269i −0.548042 0.275237i
\(483\) −0.829179 + 2.25294i −0.0377289 + 0.102512i
\(484\) 6.35641 + 1.50650i 0.288928 + 0.0684772i
\(485\) −7.26761 −0.330005
\(486\) 14.2004 + 6.43032i 0.644143 + 0.291685i
\(487\) 10.2205 0.463136 0.231568 0.972819i \(-0.425614\pi\)
0.231568 + 0.972819i \(0.425614\pi\)
\(488\) 10.3761 + 2.45919i 0.469705 + 0.111322i
\(489\) −8.18370 + 22.2357i −0.370080 + 1.00553i
\(490\) −11.6835 5.86767i −0.527806 0.265074i
\(491\) −10.9220 + 14.6707i −0.492901 + 0.662081i −0.977076 0.212890i \(-0.931712\pi\)
0.484175 + 0.874971i \(0.339120\pi\)
\(492\) −11.9734 + 18.0630i −0.539802 + 0.814343i
\(493\) −5.37913 3.53791i −0.242264 0.159339i
\(494\) −1.61171 1.35238i −0.0725142 0.0608466i
\(495\) −24.7743 + 8.81608i −1.11352 + 0.396254i
\(496\) −0.342223 + 0.287159i −0.0153663 + 0.0128938i
\(497\) 6.44392 0.753187i 0.289049 0.0337850i
\(498\) 2.03203 1.90337i 0.0910575 0.0852922i
\(499\) 4.35779 14.5560i 0.195081 0.651617i −0.803344 0.595516i \(-0.796948\pi\)
0.998425 0.0561014i \(-0.0178670\pi\)
\(500\) −8.07026 8.55398i −0.360913 0.382545i
\(501\) −15.0409 23.0484i −0.671976 1.02973i
\(502\) −15.4445 20.7456i −0.689322 0.925919i
\(503\) −0.184478 1.04623i −0.00822547 0.0466490i 0.980419 0.196924i \(-0.0630952\pi\)
−0.988644 + 0.150275i \(0.951984\pi\)
\(504\) 1.04932 2.38533i 0.0467404 0.106251i
\(505\) −3.10981 + 17.6366i −0.138385 + 0.784818i
\(506\) −5.97053 + 2.99851i −0.265422 + 0.133300i
\(507\) −11.0657 + 8.17649i −0.491444 + 0.363131i
\(508\) −8.95108 1.04623i −0.397140 0.0464190i
\(509\) −7.78865 + 5.12267i −0.345226 + 0.227059i −0.710266 0.703933i \(-0.751425\pi\)
0.365041 + 0.930992i \(0.381055\pi\)
\(510\) −13.8917 + 7.95397i −0.615134 + 0.352208i
\(511\) −0.0970806 0.324272i −0.00429459 0.0143449i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) −1.61350 4.58623i −0.0712379 0.202487i
\(514\) 1.39147 + 2.41010i 0.0613752 + 0.106305i
\(515\) 9.08109 9.62540i 0.400161 0.424146i
\(516\) −6.07490 16.8790i −0.267433 0.743058i
\(517\) 2.52760 + 43.3972i 0.111164 + 1.90860i
\(518\) 2.35709 + 5.46434i 0.103564 + 0.240089i
\(519\) 0.527879 2.19218i 0.0231713 0.0962259i
\(520\) −0.273703 + 4.69930i −0.0120027 + 0.206078i
\(521\) 13.1493 4.78597i 0.576083 0.209677i −0.0375146 0.999296i \(-0.511944\pi\)
0.613597 + 0.789619i \(0.289722\pi\)
\(522\) −4.34163 0.539106i −0.190028 0.0235960i
\(523\) −38.9824 14.1884i −1.70458 0.620416i −0.708246 0.705965i \(-0.750513\pi\)
−0.996334 + 0.0855490i \(0.972736\pi\)
\(524\) 2.87343 6.66136i 0.125526 0.291003i
\(525\) 0.743495 + 0.557673i 0.0324488 + 0.0243388i
\(526\) −12.9861 + 3.07775i −0.566219 + 0.134196i
\(527\) −1.91913 + 0.454843i −0.0835988 + 0.0198133i
\(528\) 6.66956 2.84860i 0.290255 0.123969i
\(529\) −8.10140 + 18.7812i −0.352235 + 0.816572i
\(530\) 26.4506 + 9.62723i 1.14894 + 0.418180i
\(531\) 7.16048 + 7.69973i 0.310738 + 0.334140i
\(532\) −0.763733 + 0.277976i −0.0331120 + 0.0120518i
\(533\) −1.63587 + 28.0868i −0.0708574 + 1.21658i
\(534\) 18.4032 5.43761i 0.796385 0.235308i
\(535\) 5.98589 + 13.8768i 0.258793 + 0.599949i
\(536\) −0.760127 13.0509i −0.0328325 0.563712i
\(537\) −14.7500 2.65548i −0.636507 0.114592i
\(538\) 2.78797 2.95508i 0.120198 0.127402i
\(539\) 13.0754 + 22.6473i 0.563199 + 0.975489i
\(540\) −6.07489 + 9.02313i −0.261422 + 0.388294i
\(541\) 3.02808 5.24480i 0.130188 0.225491i −0.793561 0.608490i \(-0.791775\pi\)
0.923749 + 0.382999i \(0.125109\pi\)
\(542\) −3.52071 11.7600i −0.151227 0.505135i
\(543\) −15.2300 8.86616i −0.653584 0.380483i
\(544\) 3.68856 2.42601i 0.158146 0.104014i
\(545\) 42.1186 + 4.92296i 1.80416 + 0.210876i
\(546\) −0.380688 3.36167i −0.0162919 0.143866i
\(547\) −29.3737 + 14.7520i −1.25593 + 0.630752i −0.947275 0.320423i \(-0.896175\pi\)
−0.308655 + 0.951174i \(0.599879\pi\)
\(548\) −1.41643 + 8.03298i −0.0605070 + 0.343152i
\(549\) 31.0746 + 7.60098i 1.32623 + 0.324402i
\(550\) 0.449151 + 2.54726i 0.0191518 + 0.108616i
\(551\) 0.814813 + 1.09448i 0.0347122 + 0.0466266i
\(552\) −1.24921 + 2.46527i −0.0531700 + 0.104929i
\(553\) 7.71205 + 8.17429i 0.327950 + 0.347606i
\(554\) 0.0846513 0.282755i 0.00359649 0.0120131i
\(555\) −5.64177 24.1914i −0.239480 1.02687i
\(556\) 11.6064 1.35659i 0.492220 0.0575323i
\(557\) −2.59467 + 2.17719i −0.109940 + 0.0922503i −0.696100 0.717944i \(-0.745083\pi\)
0.586161 + 0.810195i \(0.300639\pi\)
\(558\) −1.03283 + 0.854080i −0.0437232 + 0.0361561i
\(559\) −17.8406 14.9700i −0.754577 0.633165i
\(560\) 1.51926 + 0.999232i 0.0642004 + 0.0422253i
\(561\) 31.9573 + 1.97650i 1.34924 + 0.0834479i
\(562\) 6.83141 9.17617i 0.288166 0.387074i
\(563\) −16.2820 8.17712i −0.686204 0.344625i 0.0713003 0.997455i \(-0.477285\pi\)
−0.757504 + 0.652830i \(0.773581\pi\)
\(564\) 11.5090 + 13.8164i 0.484616 + 0.581773i
\(565\) 34.8285 + 8.25450i 1.46525 + 0.347270i
\(566\) −22.3295 −0.938579
\(567\) 3.19928 7.13320i 0.134357 0.299566i
\(568\) 7.46887 0.313387
\(569\) 35.2685 + 8.35879i 1.47853 + 0.350419i 0.889218 0.457485i \(-0.151249\pi\)
0.589315 + 0.807903i \(0.299398\pi\)
\(570\) 3.34308 0.577103i 0.140026 0.0241722i
\(571\) 29.6253 + 14.8784i 1.23978 + 0.622640i 0.943155 0.332354i \(-0.107843\pi\)
0.296624 + 0.954994i \(0.404139\pi\)
\(572\) 5.62251 7.55234i 0.235089 0.315779i
\(573\) −2.40431 4.83056i −0.100441 0.201799i
\(574\) 9.08032 + 5.97222i 0.379005 + 0.249276i
\(575\) −0.755067 0.633576i −0.0314885 0.0264220i
\(576\) 1.51862 2.58723i 0.0632760 0.107801i
\(577\) 16.1362 13.5399i 0.671760 0.563674i −0.241826 0.970320i \(-0.577746\pi\)
0.913586 + 0.406646i \(0.133302\pi\)
\(578\) 2.47416 0.289188i 0.102912 0.0120286i
\(579\) 1.90474 + 0.577703i 0.0791581 + 0.0240085i
\(580\) 0.875564 2.92459i 0.0363558 0.121437i
\(581\) −0.958219 1.01565i −0.0397536 0.0421364i
\(582\) 6.00420 0.328070i 0.248882 0.0135990i
\(583\) −33.6211 45.1610i −1.39244 1.87038i
\(584\) −0.0676669 0.383758i −0.00280008 0.0158800i
\(585\) −0.922360 + 14.0916i −0.0381349 + 0.582617i
\(586\) 1.82002 10.3219i 0.0751844 0.426392i
\(587\) −0.262882 + 0.132025i −0.0108503 + 0.00544923i −0.454216 0.890892i \(-0.650081\pi\)
0.443366 + 0.896341i \(0.353784\pi\)
\(588\) 9.91730 + 4.32022i 0.408983 + 0.178163i
\(589\) 0.415167 + 0.0485260i 0.0171066 + 0.00199948i
\(590\) −6.13005 + 4.03180i −0.252370 + 0.165986i
\(591\) 0.0503947 14.0305i 0.00207296 0.577137i
\(592\) 1.96488 + 6.56314i 0.0807559 + 0.269743i
\(593\) −2.28876 + 3.96425i −0.0939881 + 0.162792i −0.909186 0.416391i \(-0.863295\pi\)
0.815198 + 0.579183i \(0.196628\pi\)
\(594\) 20.0695 8.40184i 0.823463 0.344732i
\(595\) 4.01401 + 6.95247i 0.164558 + 0.285024i
\(596\) 1.32870 1.40834i 0.0544258 0.0576880i
\(597\) 0.778182 0.920666i 0.0318489 0.0376803i
\(598\) 0.208623 + 3.58191i 0.00853122 + 0.146475i
\(599\) 10.1227 + 23.4671i 0.413603 + 0.958839i 0.989922 + 0.141614i \(0.0452293\pi\)
−0.576319 + 0.817225i \(0.695511\pi\)
\(600\) 0.775606 + 0.737030i 0.0316640 + 0.0300891i
\(601\) 1.87619 32.2129i 0.0765313 1.31399i −0.713383 0.700774i \(-0.752838\pi\)
0.789914 0.613217i \(-0.210125\pi\)
\(602\) −8.45404 + 3.07702i −0.344561 + 0.125410i
\(603\) −1.99907 39.1680i −0.0814084 1.59504i
\(604\) 20.8177 + 7.57703i 0.847061 + 0.308305i
\(605\) −5.41641 + 12.5566i −0.220208 + 0.510500i
\(606\) 1.77305 14.7110i 0.0720254 0.597594i
\(607\) −3.29304 + 0.780465i −0.133660 + 0.0316781i −0.296902 0.954908i \(-0.595953\pi\)
0.163241 + 0.986586i \(0.447805\pi\)
\(608\) −0.910430 + 0.215776i −0.0369228 + 0.00875087i
\(609\) −0.262546 + 2.17834i −0.0106389 + 0.0882707i
\(610\) −8.84167 + 20.4973i −0.357989 + 0.829911i
\(611\) 21.9371 + 7.98445i 0.887480 + 0.323016i
\(612\) 11.1177 7.19834i 0.449406 0.290976i
\(613\) 35.9310 13.0778i 1.45124 0.528208i 0.508303 0.861178i \(-0.330273\pi\)
0.942938 + 0.332970i \(0.108051\pi\)
\(614\) −0.0710708 + 1.22024i −0.00286818 + 0.0492448i
\(615\) −32.8859 31.2503i −1.32609 1.26013i
\(616\) −1.44061 3.33971i −0.0580439 0.134561i
\(617\) −1.28664 22.0908i −0.0517984 0.889344i −0.919703 0.392614i \(-0.871571\pi\)
0.867905 0.496730i \(-0.165466\pi\)
\(618\) −7.06792 + 8.36204i −0.284314 + 0.336371i
\(619\) −13.2276 + 14.0205i −0.531664 + 0.563530i −0.936414 0.350897i \(-0.885877\pi\)
0.404751 + 0.914427i \(0.367358\pi\)
\(620\) −0.467600 0.809908i −0.0187793 0.0325267i
\(621\) −3.80067 + 7.36870i −0.152516 + 0.295696i
\(622\) −0.351994 + 0.609672i −0.0141137 + 0.0244456i
\(623\) −2.76016 9.21958i −0.110583 0.369374i
\(624\) 0.0139891 3.89472i 0.000560011 0.155914i
\(625\) 17.9878 11.8308i 0.719514 0.473232i
\(626\) −24.4482 2.85758i −0.977146 0.114212i
\(627\) −6.22107 2.71005i −0.248446 0.108229i
\(628\) −13.1017 + 6.57992i −0.522815 + 0.262568i
\(629\) −5.25217 + 29.7865i −0.209418 + 1.18767i
\(630\) 4.53612 + 3.03036i 0.180723 + 0.120732i
\(631\) −0.764140 4.33366i −0.0304200 0.172520i 0.965813 0.259241i \(-0.0834723\pi\)
−0.996233 + 0.0867207i \(0.972361\pi\)
\(632\) 7.72574 + 10.3775i 0.307313 + 0.412794i
\(633\) −3.48333 + 0.190329i −0.138450 + 0.00756492i
\(634\) −15.6029 16.5381i −0.619671 0.656812i
\(635\) 5.41073 18.0731i 0.214718 0.717209i
\(636\) −22.2870 6.75961i −0.883737 0.268036i
\(637\) 13.9488 1.63038i 0.552671 0.0645980i
\(638\) −4.67768 + 3.92504i −0.185191 + 0.155394i
\(639\) 22.4060 + 0.160958i 0.886369 + 0.00636740i
\(640\) 1.60363 + 1.34560i 0.0633889 + 0.0531896i
\(641\) −37.1430 24.4294i −1.46706 0.964902i −0.996592 0.0824856i \(-0.973714\pi\)
−0.470470 0.882416i \(-0.655915\pi\)
\(642\) −5.57172 11.1943i −0.219898 0.441803i
\(643\) 11.3318 15.2213i 0.446883 0.600268i −0.520414 0.853914i \(-0.674222\pi\)
0.967297 + 0.253646i \(0.0816297\pi\)
\(644\) 1.23860 + 0.622051i 0.0488079 + 0.0245122i
\(645\) 37.0058 6.38817i 1.45710 0.251534i
\(646\) −4.01942 0.952621i −0.158142 0.0374804i
\(647\) −28.0313 −1.10202 −0.551012 0.834497i \(-0.685758\pi\)
−0.551012 + 0.834497i \(0.685758\pi\)
\(648\) 4.61151 7.72877i 0.181157 0.303615i
\(649\) 14.6756 0.576068
\(650\) 1.35161 + 0.320338i 0.0530145 + 0.0125647i
\(651\) 0.430189 + 0.516436i 0.0168605 + 0.0202407i
\(652\) 12.2246 + 6.13942i 0.478752 + 0.240438i
\(653\) 18.0184 24.2029i 0.705115 0.947134i −0.294850 0.955544i \(-0.595270\pi\)
0.999965 + 0.00840991i \(0.00267699\pi\)
\(654\) −35.0189 2.16585i −1.36935 0.0846916i
\(655\) 12.6884 + 8.34531i 0.495778 + 0.326078i
\(656\) 9.58458 + 8.04242i 0.374215 + 0.314004i
\(657\) −0.194725 1.15270i −0.00759696 0.0449712i
\(658\) 6.90829 5.79675i 0.269313 0.225981i
\(659\) 1.03605 0.121097i 0.0403589 0.00471728i −0.0958895 0.995392i \(-0.530570\pi\)
0.136248 + 0.990675i \(0.456495\pi\)
\(660\) 3.44815 + 14.7854i 0.134219 + 0.575519i
\(661\) 7.06217 23.5893i 0.274687 0.917517i −0.703659 0.710538i \(-0.748452\pi\)
0.978345 0.206979i \(-0.0663633\pi\)
\(662\) −15.3143 16.2322i −0.595207 0.630883i
\(663\) 7.77214 15.3380i 0.301845 0.595678i
\(664\) −0.959921 1.28940i −0.0372522 0.0500383i
\(665\) −0.295444 1.67555i −0.0114568 0.0649749i
\(666\) 5.75304 + 19.7313i 0.222926 + 0.764571i
\(667\) 0.404070 2.29159i 0.0156456 0.0887309i
\(668\) −14.1996 + 7.13133i −0.549401 + 0.275919i
\(669\) 2.48359 + 21.9313i 0.0960210 + 0.847913i
\(670\) 27.1818 + 3.17710i 1.05012 + 0.122742i
\(671\) 37.3048 24.5357i 1.44013 0.947191i
\(672\) −1.30026 0.756943i −0.0501585 0.0291997i
\(673\) 4.51516 + 15.0817i 0.174047 + 0.581356i 0.999849 + 0.0173963i \(0.00553769\pi\)
−0.825802 + 0.563960i \(0.809277\pi\)
\(674\) 0.910250 1.57660i 0.0350615 0.0607283i
\(675\) 2.31087 + 2.22775i 0.0889456 + 0.0857460i
\(676\) 3.97182 + 6.87940i 0.152762 + 0.264592i
\(677\) −6.37657 + 6.75877i −0.245071 + 0.259760i −0.838220 0.545333i \(-0.816403\pi\)
0.593148 + 0.805093i \(0.297885\pi\)
\(678\) −29.1465 5.24733i −1.11936 0.201522i
\(679\) −0.175346 3.01057i −0.00672915 0.115535i
\(680\) 3.66057 + 8.48617i 0.140377 + 0.325430i
\(681\) 16.1498 4.77180i 0.618862 0.182856i
\(682\) −0.108765 + 1.86742i −0.00416482 + 0.0715072i
\(683\) −34.1423 + 12.4268i −1.30642 + 0.475498i −0.899082 0.437780i \(-0.855765\pi\)
−0.407337 + 0.913278i \(0.633543\pi\)
\(684\) −2.73587 + 0.627691i −0.104609 + 0.0240004i
\(685\) −16.0458 5.84019i −0.613078 0.223142i
\(686\) 4.55713 10.5646i 0.173992 0.403359i
\(687\) 19.7146 8.42020i 0.752160 0.321251i
\(688\) −10.0779 + 2.38850i −0.384216 + 0.0910608i
\(689\) −29.4206 + 6.97282i −1.12084 + 0.265643i
\(690\) −4.62825 3.47151i −0.176195 0.132158i
\(691\) 15.8679 36.7859i 0.603644 1.39940i −0.292769 0.956183i \(-0.594577\pi\)
0.896413 0.443220i \(-0.146164\pi\)
\(692\) −1.22332 0.445253i −0.0465037 0.0169260i
\(693\) −4.24975 10.0499i −0.161435 0.381765i
\(694\) 14.2905 5.20133i 0.542461 0.197440i
\(695\) −1.42234 + 24.4207i −0.0539525 + 0.926329i
\(696\) −0.591335 + 2.45570i −0.0224145 + 0.0930831i
\(697\) 21.8786 + 50.7202i 0.828710 + 1.92117i
\(698\) 1.66090 + 28.5166i 0.0628662 + 1.07937i
\(699\) −9.56486 26.5759i −0.361776 1.00519i
\(700\) 0.368230 0.390301i 0.0139178 0.0147520i
\(701\) 17.5555 + 30.4070i 0.663063 + 1.14846i 0.979807 + 0.199947i \(0.0640771\pi\)
−0.316744 + 0.948511i \(0.602590\pi\)
\(702\) 0.125899 11.6836i 0.00475177 0.440968i
\(703\) 3.20505 5.55131i 0.120881 0.209372i
\(704\) −1.20090 4.01128i −0.0452605 0.151181i
\(705\) −32.6672 + 18.7043i −1.23032 + 0.704445i
\(706\) −19.0729 + 12.5444i −0.717818 + 0.472117i
\(707\) −7.38090 0.862703i −0.277587 0.0324453i
\(708\) 4.88239 3.60762i 0.183492 0.135583i
\(709\) −30.9238 + 15.5305i −1.16137 + 0.583261i −0.921818 0.387623i \(-0.873296\pi\)
−0.239551 + 0.970884i \(0.577000\pi\)
\(710\) −2.71503 + 15.3977i −0.101893 + 0.577865i
\(711\) 22.9530 + 31.2981i 0.860804 + 1.17377i
\(712\) −1.92388 10.9109i −0.0721005 0.408902i
\(713\) −0.425674 0.571779i −0.0159416 0.0214133i
\(714\) −3.63006 5.56265i −0.135852 0.208177i
\(715\) 13.5259 + 14.3367i 0.505841 + 0.536160i
\(716\) −2.48165 + 8.28929i −0.0927436 + 0.309785i
\(717\) 11.0106 10.3135i 0.411199 0.385164i
\(718\) −11.7210 + 1.36999i −0.437423 + 0.0511275i
\(719\) 13.2253 11.0973i 0.493220 0.413860i −0.361959 0.932194i \(-0.617892\pi\)
0.855178 + 0.518334i \(0.173447\pi\)
\(720\) 4.78176 + 4.07126i 0.178206 + 0.151727i
\(721\) 4.20637 + 3.52956i 0.156653 + 0.131448i
\(722\) −15.1428 9.95961i −0.563558 0.370658i
\(723\) −12.8848 + 19.4379i −0.479189 + 0.722903i
\(724\) −6.07581 + 8.16122i −0.225806 + 0.303310i
\(725\) −0.805032 0.404302i −0.0298981 0.0150154i
\(726\) 3.90799 10.6183i 0.145039 0.394082i
\(727\) 1.74465 + 0.413490i 0.0647055 + 0.0153355i 0.262841 0.964839i \(-0.415340\pi\)
−0.198136 + 0.980175i \(0.563489\pi\)
\(728\) −1.95326 −0.0723928
\(729\) 14.0007 23.0863i 0.518546 0.855050i
\(730\) 0.815747 0.0301922
\(731\) −44.4925 10.5449i −1.64561 0.390018i
\(732\) 6.37935 17.3332i 0.235788 0.640652i
\(733\) 20.7469 + 10.4195i 0.766306 + 0.384853i 0.788607 0.614898i \(-0.210803\pi\)
−0.0223008 + 0.999751i \(0.507099\pi\)
\(734\) 15.6675 21.0451i 0.578298 0.776790i
\(735\) −12.5116 + 18.8749i −0.461496 + 0.696211i
\(736\) 1.33313 + 0.876812i 0.0491397 + 0.0323197i
\(737\) −41.9325 35.1856i −1.54460 1.29608i
\(738\) 28.5797 + 24.3332i 1.05203 + 0.895717i
\(739\) −11.0065 + 9.23551i −0.404879 + 0.339734i −0.822376 0.568945i \(-0.807352\pi\)
0.417497 + 0.908678i \(0.362907\pi\)
\(740\) −14.2447 + 1.66497i −0.523646 + 0.0612055i
\(741\) −2.65960 + 2.49121i −0.0977030 + 0.0915170i
\(742\) −3.34986 + 11.1893i −0.122977 + 0.410772i
\(743\) 22.9038 + 24.2766i 0.840257 + 0.890621i 0.995256 0.0972942i \(-0.0310188\pi\)
−0.154999 + 0.987915i \(0.549537\pi\)
\(744\) 0.422873 + 0.648005i 0.0155033 + 0.0237570i
\(745\) 2.42042 + 3.25118i 0.0886772 + 0.119114i
\(746\) 6.30547 + 35.7601i 0.230860 + 1.30927i
\(747\) −2.85190 3.88878i −0.104346 0.142283i
\(748\) 3.21003 18.2050i 0.117370 0.665640i
\(749\) −5.60399 + 2.81443i −0.204765 + 0.102837i
\(750\) −16.3821 + 12.1048i −0.598189 + 0.442005i
\(751\) 27.5632 + 3.22168i 1.00580 + 0.117561i 0.603010 0.797734i \(-0.293968\pi\)
0.402786 + 0.915294i \(0.368042\pi\)
\(752\) 8.67391 5.70492i 0.316305 0.208037i
\(753\) −38.8752 + 22.2588i −1.41669 + 0.811155i
\(754\) 0.940497 + 3.14148i 0.0342509 + 0.114406i
\(755\) −23.1882 + 40.1631i −0.843905 + 1.46169i
\(756\) −3.88436 2.29879i −0.141273 0.0836063i
\(757\) 9.87193 + 17.0987i 0.358802 + 0.621462i 0.987761 0.155976i \(-0.0498522\pi\)
−0.628959 + 0.777438i \(0.716519\pi\)
\(758\) 14.5201 15.3904i 0.527392 0.559003i
\(759\) 3.91883 + 10.8884i 0.142244 + 0.395224i
\(760\) −0.113887 1.95536i −0.00413112 0.0709285i
\(761\) −11.0244 25.5574i −0.399633 0.926454i −0.992623 0.121244i \(-0.961312\pi\)
0.592989 0.805210i \(-0.297948\pi\)
\(762\) −3.65428 + 15.1755i −0.132381 + 0.549750i
\(763\) −1.02311 + 17.5662i −0.0370392 + 0.635939i
\(764\) −2.92741 + 1.06549i −0.105910 + 0.0385481i
\(765\) 10.7986 + 25.5367i 0.390423 + 0.923282i
\(766\) −14.7208 5.35792i −0.531883 0.193589i
\(767\) 3.12159