Properties

Label 162.2.g.a.157.4
Level $162$
Weight $2$
Character 162.157
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 157.4
Character \(\chi\) \(=\) 162.157
Dual form 162.2.g.a.97.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.973045 + 0.230616i) q^{2} +(1.56608 + 0.739857i) q^{3} +(0.893633 - 0.448799i) q^{4} +(0.149985 + 0.201464i) q^{5} +(-1.69449 - 0.358751i) q^{6} +(1.83964 - 1.20995i) q^{7} +(-0.766044 + 0.642788i) q^{8} +(1.90522 + 2.31735i) q^{9} +O(q^{10})\) \(q+(-0.973045 + 0.230616i) q^{2} +(1.56608 + 0.739857i) q^{3} +(0.893633 - 0.448799i) q^{4} +(0.149985 + 0.201464i) q^{5} +(-1.69449 - 0.358751i) q^{6} +(1.83964 - 1.20995i) q^{7} +(-0.766044 + 0.642788i) q^{8} +(1.90522 + 2.31735i) q^{9} +(-0.192403 - 0.161445i) q^{10} +(-1.53567 - 0.179494i) q^{11} +(1.73155 - 0.0416959i) q^{12} +(-0.160681 - 0.536712i) q^{13} +(-1.51101 + 1.60158i) q^{14} +(0.0858335 + 0.426477i) q^{15} +(0.597159 - 0.802123i) q^{16} +(-0.434239 + 2.46269i) q^{17} +(-2.38829 - 1.81551i) q^{18} +(0.461285 + 2.61608i) q^{19} +(0.224448 + 0.112722i) q^{20} +(3.77621 - 0.533809i) q^{21} +(1.53567 - 0.179494i) q^{22} +(0.530931 + 0.349199i) q^{23} +(-1.67526 + 0.439895i) q^{24} +(1.41592 - 4.72951i) q^{25} +(0.280124 + 0.485189i) q^{26} +(1.26923 + 5.03876i) q^{27} +(1.10093 - 1.90688i) q^{28} +(-4.73037 - 5.01390i) q^{29} +(-0.181872 - 0.395187i) q^{30} +(0.0928412 - 1.59402i) q^{31} +(-0.396080 + 0.918216i) q^{32} +(-2.27218 - 1.41728i) q^{33} +(-0.145402 - 2.49645i) q^{34} +(0.519679 + 0.189148i) q^{35} +(2.74260 + 1.21580i) q^{36} +(-9.81113 + 3.57096i) q^{37} +(-1.05216 - 2.43918i) q^{38} +(0.145450 - 0.959416i) q^{39} +(-0.244394 - 0.0579224i) q^{40} +(-7.44978 - 1.76563i) q^{41} +(-3.55131 + 1.39027i) q^{42} +(-3.30017 - 7.65066i) q^{43} +(-1.45288 + 0.528805i) q^{44} +(-0.181110 + 0.731402i) q^{45} +(-0.597151 - 0.217345i) q^{46} +(-0.468659 - 8.04657i) q^{47} +(1.52866 - 0.814379i) q^{48} +(-0.852272 + 1.97579i) q^{49} +(-0.287056 + 4.92856i) q^{50} +(-2.50209 + 3.53550i) q^{51} +(-0.384466 - 0.407510i) q^{52} +(3.36870 - 5.83476i) q^{53} +(-2.39703 - 4.61023i) q^{54} +(-0.194165 - 0.336304i) q^{55} +(-0.631503 + 2.10937i) q^{56} +(-1.21311 + 4.43828i) q^{57} +(5.75915 + 3.78785i) q^{58} +(8.40601 - 0.982521i) q^{59} +(0.268106 + 0.342592i) q^{60} +(0.457807 + 0.229919i) q^{61} +(0.277268 + 1.57246i) q^{62} +(6.30879 + 1.95786i) q^{63} +(0.173648 - 0.984808i) q^{64} +(0.0840287 - 0.112870i) q^{65} +(2.53778 + 0.855072i) q^{66} +(-5.52629 + 5.85752i) q^{67} +(0.717204 + 2.39563i) q^{68} +(0.573125 + 0.939687i) q^{69} +(-0.549291 - 0.0642029i) q^{70} +(12.2320 + 10.2639i) q^{71} +(-2.94905 - 0.550541i) q^{72} +(-10.6126 + 8.90507i) q^{73} +(8.72315 - 5.73731i) q^{74} +(5.71662 - 6.35922i) q^{75} +(1.58631 + 2.13079i) q^{76} +(-3.04225 + 1.52787i) q^{77} +(0.0797266 + 0.967098i) q^{78} +(15.0282 - 3.56174i) q^{79} +0.251164 q^{80} +(-1.74025 + 8.83015i) q^{81} +7.65615 q^{82} +(-7.27842 + 1.72502i) q^{83} +(3.13497 - 2.17179i) q^{84} +(-0.561274 + 0.281882i) q^{85} +(4.97558 + 6.68337i) q^{86} +(-3.69858 - 11.3520i) q^{87} +(1.29177 - 0.849608i) q^{88} +(11.9905 - 10.0612i) q^{89} +(0.00755494 - 0.753454i) q^{90} +(-0.944987 - 0.792939i) q^{91} +(0.631178 + 0.0737741i) q^{92} +(1.32474 - 2.42768i) q^{93} +(2.31169 + 7.72159i) q^{94} +(-0.457861 + 0.485304i) q^{95} +(-1.29964 + 1.14496i) q^{96} +(-9.83490 + 13.2106i) q^{97} +(0.373651 - 2.11908i) q^{98} +(-2.50984 - 3.90066i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{25}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.973045 + 0.230616i −0.688047 + 0.163070i
\(3\) 1.56608 + 0.739857i 0.904178 + 0.427157i
\(4\) 0.893633 0.448799i 0.446816 0.224400i
\(5\) 0.149985 + 0.201464i 0.0670752 + 0.0900976i 0.834395 0.551167i \(-0.185817\pi\)
−0.767320 + 0.641265i \(0.778410\pi\)
\(6\) −1.69449 0.358751i −0.691773 0.146459i
\(7\) 1.83964 1.20995i 0.695317 0.457317i −0.152017 0.988378i \(-0.548577\pi\)
0.847334 + 0.531061i \(0.178206\pi\)
\(8\) −0.766044 + 0.642788i −0.270838 + 0.227260i
\(9\) 1.90522 + 2.31735i 0.635075 + 0.772451i
\(10\) −0.192403 0.161445i −0.0608431 0.0510534i
\(11\) −1.53567 0.179494i −0.463021 0.0541194i −0.118615 0.992940i \(-0.537846\pi\)
−0.344406 + 0.938821i \(0.611920\pi\)
\(12\) 1.73155 0.0416959i 0.499855 0.0120366i
\(13\) −0.160681 0.536712i −0.0445649 0.148857i 0.932811 0.360365i \(-0.117348\pi\)
−0.977376 + 0.211508i \(0.932163\pi\)
\(14\) −1.51101 + 1.60158i −0.403836 + 0.428041i
\(15\) 0.0858335 + 0.426477i 0.0221621 + 0.110116i
\(16\) 0.597159 0.802123i 0.149290 0.200531i
\(17\) −0.434239 + 2.46269i −0.105318 + 0.597290i 0.885774 + 0.464116i \(0.153628\pi\)
−0.991093 + 0.133174i \(0.957483\pi\)
\(18\) −2.38829 1.81551i −0.562924 0.427921i
\(19\) 0.461285 + 2.61608i 0.105826 + 0.600170i 0.990887 + 0.134695i \(0.0430053\pi\)
−0.885061 + 0.465475i \(0.845884\pi\)
\(20\) 0.224448 + 0.112722i 0.0501882 + 0.0252054i
\(21\) 3.77621 0.533809i 0.824036 0.116487i
\(22\) 1.53567 0.179494i 0.327405 0.0382682i
\(23\) 0.530931 + 0.349199i 0.110707 + 0.0728130i 0.603655 0.797246i \(-0.293710\pi\)
−0.492948 + 0.870059i \(0.664081\pi\)
\(24\) −1.67526 + 0.439895i −0.341961 + 0.0897931i
\(25\) 1.41592 4.72951i 0.283185 0.945903i
\(26\) 0.280124 + 0.485189i 0.0549369 + 0.0951534i
\(27\) 1.26923 + 5.03876i 0.244263 + 0.969709i
\(28\) 1.10093 1.90688i 0.208057 0.360366i
\(29\) −4.73037 5.01390i −0.878408 0.931059i 0.119683 0.992812i \(-0.461812\pi\)
−0.998091 + 0.0617536i \(0.980331\pi\)
\(30\) −0.181872 0.395187i −0.0332052 0.0721509i
\(31\) 0.0928412 1.59402i 0.0166748 0.286295i −0.979655 0.200691i \(-0.935681\pi\)
0.996329 0.0856034i \(-0.0272818\pi\)
\(32\) −0.396080 + 0.918216i −0.0700177 + 0.162319i
\(33\) −2.27218 1.41728i −0.395536 0.246716i
\(34\) −0.145402 2.49645i −0.0249362 0.428138i
\(35\) 0.519679 + 0.189148i 0.0878417 + 0.0319718i
\(36\) 2.74260 + 1.21580i 0.457099 + 0.202633i
\(37\) −9.81113 + 3.57096i −1.61294 + 0.587062i −0.982019 0.188784i \(-0.939545\pi\)
−0.630922 + 0.775846i \(0.717323\pi\)
\(38\) −1.05216 2.43918i −0.170683 0.395688i
\(39\) 0.145450 0.959416i 0.0232907 0.153629i
\(40\) −0.244394 0.0579224i −0.0386421 0.00915834i
\(41\) −7.44978 1.76563i −1.16346 0.275745i −0.396865 0.917877i \(-0.629902\pi\)
−0.766594 + 0.642132i \(0.778050\pi\)
\(42\) −3.55131 + 1.39027i −0.547980 + 0.214524i
\(43\) −3.30017 7.65066i −0.503272 1.16672i −0.960730 0.277484i \(-0.910499\pi\)
0.457459 0.889231i \(-0.348760\pi\)
\(44\) −1.45288 + 0.528805i −0.219030 + 0.0797203i
\(45\) −0.181110 + 0.731402i −0.0269982 + 0.109031i
\(46\) −0.597151 0.217345i −0.0880451 0.0320458i
\(47\) −0.468659 8.04657i −0.0683610 1.17371i −0.841781 0.539819i \(-0.818493\pi\)
0.773420 0.633894i \(-0.218544\pi\)
\(48\) 1.52866 0.814379i 0.220642 0.117545i
\(49\) −0.852272 + 1.97579i −0.121753 + 0.282256i
\(50\) −0.287056 + 4.92856i −0.0405959 + 0.697004i
\(51\) −2.50209 + 3.53550i −0.350363 + 0.495069i
\(52\) −0.384466 0.407510i −0.0533158 0.0565114i
\(53\) 3.36870 5.83476i 0.462727 0.801466i −0.536369 0.843984i \(-0.680204\pi\)
0.999096 + 0.0425173i \(0.0135378\pi\)
\(54\) −2.39703 4.61023i −0.326195 0.627373i
\(55\) −0.194165 0.336304i −0.0261812 0.0453472i
\(56\) −0.631503 + 2.10937i −0.0843882 + 0.281876i
\(57\) −1.21311 + 4.43828i −0.160681 + 0.587864i
\(58\) 5.75915 + 3.78785i 0.756214 + 0.497370i
\(59\) 8.40601 0.982521i 1.09437 0.127913i 0.450297 0.892879i \(-0.351318\pi\)
0.644072 + 0.764965i \(0.277244\pi\)
\(60\) 0.268106 + 0.342592i 0.0346124 + 0.0442284i
\(61\) 0.457807 + 0.229919i 0.0586162 + 0.0294381i 0.477866 0.878433i \(-0.341411\pi\)
−0.419250 + 0.907871i \(0.637707\pi\)
\(62\) 0.277268 + 1.57246i 0.0352131 + 0.199703i
\(63\) 6.30879 + 1.95786i 0.794833 + 0.246668i
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) 0.0840287 0.112870i 0.0104225 0.0139998i
\(66\) 2.53778 + 0.855072i 0.312379 + 0.105252i
\(67\) −5.52629 + 5.85752i −0.675143 + 0.715610i −0.970855 0.239667i \(-0.922962\pi\)
0.295712 + 0.955277i \(0.404443\pi\)
\(68\) 0.717204 + 2.39563i 0.0869737 + 0.290512i
\(69\) 0.573125 + 0.939687i 0.0689961 + 0.113125i
\(70\) −0.549291 0.0642029i −0.0656528 0.00767372i
\(71\) 12.2320 + 10.2639i 1.45168 + 1.21810i 0.931345 + 0.364138i \(0.118636\pi\)
0.520332 + 0.853964i \(0.325808\pi\)
\(72\) −2.94905 0.550541i −0.347549 0.0648819i
\(73\) −10.6126 + 8.90507i −1.24212 + 1.04226i −0.244761 + 0.969583i \(0.578709\pi\)
−0.997356 + 0.0726761i \(0.976846\pi\)
\(74\) 8.72315 5.73731i 1.01405 0.666949i
\(75\) 5.71662 6.35922i 0.660098 0.734300i
\(76\) 1.58631 + 2.13079i 0.181963 + 0.244418i
\(77\) −3.04225 + 1.52787i −0.346696 + 0.174117i
\(78\) 0.0797266 + 0.967098i 0.00902726 + 0.109502i
\(79\) 15.0282 3.56174i 1.69080 0.400727i 0.731216 0.682146i \(-0.238953\pi\)
0.959585 + 0.281418i \(0.0908048\pi\)
\(80\) 0.251164 0.0280810
\(81\) −1.74025 + 8.83015i −0.193361 + 0.981128i
\(82\) 7.65615 0.845480
\(83\) −7.27842 + 1.72502i −0.798911 + 0.189345i −0.609743 0.792599i \(-0.708727\pi\)
−0.189168 + 0.981945i \(0.560579\pi\)
\(84\) 3.13497 2.17179i 0.342053 0.236962i
\(85\) −0.561274 + 0.281882i −0.0608787 + 0.0305744i
\(86\) 4.97558 + 6.68337i 0.536531 + 0.720686i
\(87\) −3.69858 11.3520i −0.396530 1.21706i
\(88\) 1.29177 0.849608i 0.137703 0.0905685i
\(89\) 11.9905 10.0612i 1.27099 1.06649i 0.276569 0.960994i \(-0.410802\pi\)
0.994420 0.105493i \(-0.0336420\pi\)
\(90\) 0.00755494 0.753454i 0.000796360 0.0794210i
\(91\) −0.944987 0.792939i −0.0990616 0.0831226i
\(92\) 0.631178 + 0.0737741i 0.0658048 + 0.00769148i
\(93\) 1.32474 2.42768i 0.137370 0.251739i
\(94\) 2.31169 + 7.72159i 0.238433 + 0.796421i
\(95\) −0.457861 + 0.485304i −0.0469756 + 0.0497912i
\(96\) −1.29964 + 1.14496i −0.132644 + 0.116857i
\(97\) −9.83490 + 13.2106i −0.998582 + 1.34133i −0.0592790 + 0.998241i \(0.518880\pi\)
−0.939303 + 0.343088i \(0.888527\pi\)
\(98\) 0.373651 2.11908i 0.0377444 0.214059i
\(99\) −2.50984 3.90066i −0.252248 0.392031i
\(100\) −0.857287 4.86191i −0.0857287 0.486191i
\(101\) −1.76455 0.886190i −0.175579 0.0881792i 0.358839 0.933400i \(-0.383173\pi\)
−0.534418 + 0.845220i \(0.679469\pi\)
\(102\) 1.61931 4.01722i 0.160335 0.397764i
\(103\) 11.7330 1.37139i 1.15609 0.135127i 0.483636 0.875269i \(-0.339316\pi\)
0.672451 + 0.740142i \(0.265242\pi\)
\(104\) 0.468081 + 0.307861i 0.0458991 + 0.0301883i
\(105\) 0.673917 + 0.680708i 0.0657676 + 0.0664303i
\(106\) −1.93231 + 6.45436i −0.187682 + 0.626903i
\(107\) 1.86672 + 3.23326i 0.180463 + 0.312571i 0.942038 0.335505i \(-0.108907\pi\)
−0.761575 + 0.648076i \(0.775574\pi\)
\(108\) 3.39561 + 3.93317i 0.326743 + 0.378469i
\(109\) −0.246494 + 0.426940i −0.0236098 + 0.0408934i −0.877589 0.479414i \(-0.840849\pi\)
0.853979 + 0.520307i \(0.174183\pi\)
\(110\) 0.266488 + 0.282461i 0.0254087 + 0.0269316i
\(111\) −18.0070 1.66642i −1.70915 0.158170i
\(112\) 0.128027 2.19814i 0.0120974 0.207705i
\(113\) −1.75394 + 4.06609i −0.164997 + 0.382506i −0.980576 0.196140i \(-0.937159\pi\)
0.815579 + 0.578646i \(0.196419\pi\)
\(114\) 0.156877 4.59841i 0.0146928 0.430680i
\(115\) 0.00928040 + 0.159338i 0.000865402 + 0.0148584i
\(116\) −6.47745 2.35760i −0.601416 0.218898i
\(117\) 0.937617 1.39491i 0.0866828 0.128960i
\(118\) −7.95284 + 2.89460i −0.732118 + 0.266469i
\(119\) 2.18089 + 5.05586i 0.199921 + 0.463470i
\(120\) −0.339886 0.271528i −0.0310272 0.0247870i
\(121\) −8.37744 1.98549i −0.761585 0.180499i
\(122\) −0.498490 0.118144i −0.0451311 0.0106963i
\(123\) −10.3606 8.27689i −0.934188 0.746302i
\(124\) −0.632430 1.46614i −0.0567939 0.131663i
\(125\) 2.34528 0.853612i 0.209768 0.0763494i
\(126\) −6.59025 0.450182i −0.587106 0.0401054i
\(127\) −1.62043 0.589788i −0.143790 0.0523352i 0.269123 0.963106i \(-0.413266\pi\)
−0.412913 + 0.910771i \(0.635489\pi\)
\(128\) 0.0581448 + 0.998308i 0.00513933 + 0.0882388i
\(129\) 0.492054 14.4232i 0.0433229 1.26989i
\(130\) −0.0557340 + 0.129206i −0.00488820 + 0.0113321i
\(131\) −0.190399 + 3.26902i −0.0166352 + 0.285616i 0.979723 + 0.200355i \(0.0642095\pi\)
−0.996359 + 0.0852612i \(0.972828\pi\)
\(132\) −2.66657 0.246771i −0.232095 0.0214787i
\(133\) 4.01391 + 4.25450i 0.348050 + 0.368912i
\(134\) 4.02649 6.97408i 0.347836 0.602469i
\(135\) −0.824766 + 1.01144i −0.0709845 + 0.0870509i
\(136\) −1.25034 2.16565i −0.107216 0.185703i
\(137\) −3.76625 + 12.5801i −0.321772 + 1.07479i 0.632177 + 0.774824i \(0.282162\pi\)
−0.953949 + 0.299970i \(0.903023\pi\)
\(138\) −0.774383 0.782186i −0.0659198 0.0665841i
\(139\) 6.29646 + 4.14125i 0.534059 + 0.351256i 0.787716 0.616038i \(-0.211263\pi\)
−0.253657 + 0.967294i \(0.581634\pi\)
\(140\) 0.549291 0.0642029i 0.0464236 0.00542614i
\(141\) 5.21935 12.9483i 0.439549 1.09045i
\(142\) −14.2694 7.16634i −1.19746 0.601386i
\(143\) 0.150416 + 0.853052i 0.0125784 + 0.0713358i
\(144\) 2.99652 0.144397i 0.249710 0.0120331i
\(145\) 0.300639 1.70501i 0.0249668 0.141593i
\(146\) 8.27293 11.1125i 0.684673 0.919675i
\(147\) −2.79653 + 2.46369i −0.230654 + 0.203202i
\(148\) −7.16491 + 7.59436i −0.588952 + 0.624252i
\(149\) −5.37822 17.9645i −0.440601 1.47171i −0.833702 0.552214i \(-0.813783\pi\)
0.393101 0.919495i \(-0.371402\pi\)
\(150\) −4.09599 + 7.50615i −0.334436 + 0.612875i
\(151\) −2.46180 0.287743i −0.200338 0.0234162i 0.0153319 0.999882i \(-0.495120\pi\)
−0.215670 + 0.976466i \(0.569194\pi\)
\(152\) −2.03495 1.70752i −0.165056 0.138498i
\(153\) −6.53425 + 3.68569i −0.528262 + 0.297971i
\(154\) 2.60789 2.18828i 0.210150 0.176337i
\(155\) 0.335063 0.220375i 0.0269129 0.0177009i
\(156\) −0.300606 0.922643i −0.0240677 0.0738706i
\(157\) 4.93937 + 6.63473i 0.394205 + 0.529509i 0.954273 0.298938i \(-0.0966323\pi\)
−0.560068 + 0.828447i \(0.689225\pi\)
\(158\) −13.8017 + 6.93147i −1.09800 + 0.551438i
\(159\) 9.59255 6.64536i 0.760739 0.527011i
\(160\) −0.244394 + 0.0579224i −0.0193210 + 0.00457917i
\(161\) 1.39923 0.110275
\(162\) −0.343034 8.99346i −0.0269513 0.706593i
\(163\) 9.90658 0.775943 0.387972 0.921671i \(-0.373176\pi\)
0.387972 + 0.921671i \(0.373176\pi\)
\(164\) −7.44978 + 1.76563i −0.581730 + 0.137873i
\(165\) −0.0552617 0.670333i −0.00430212 0.0521854i
\(166\) 6.68442 3.35704i 0.518811 0.260557i
\(167\) 5.52496 + 7.42131i 0.427534 + 0.574278i 0.962735 0.270447i \(-0.0871714\pi\)
−0.535201 + 0.844725i \(0.679764\pi\)
\(168\) −2.54962 + 2.83622i −0.196707 + 0.218819i
\(169\) 10.5991 6.97114i 0.815315 0.536241i
\(170\) 0.481138 0.403723i 0.0369016 0.0309641i
\(171\) −5.18352 + 6.05317i −0.396394 + 0.462898i
\(172\) −6.38275 5.35577i −0.486680 0.408373i
\(173\) 14.5022 + 1.69506i 1.10258 + 0.128873i 0.647859 0.761760i \(-0.275664\pi\)
0.454722 + 0.890633i \(0.349739\pi\)
\(174\) 6.21683 + 10.1930i 0.471297 + 0.772732i
\(175\) −3.11768 10.4138i −0.235674 0.787207i
\(176\) −1.06101 + 1.12461i −0.0799769 + 0.0847705i
\(177\) 13.8914 + 4.68053i 1.04414 + 0.351810i
\(178\) −9.34701 + 12.5552i −0.700588 + 0.941053i
\(179\) −2.19130 + 12.4275i −0.163786 + 0.928874i 0.786522 + 0.617562i \(0.211880\pi\)
−0.950308 + 0.311312i \(0.899232\pi\)
\(180\) 0.166407 + 0.734887i 0.0124033 + 0.0547752i
\(181\) 2.00310 + 11.3601i 0.148889 + 0.844393i 0.964162 + 0.265315i \(0.0854760\pi\)
−0.815273 + 0.579077i \(0.803413\pi\)
\(182\) 1.10238 + 0.553636i 0.0817138 + 0.0410382i
\(183\) 0.546856 + 0.698784i 0.0404247 + 0.0516556i
\(184\) −0.631178 + 0.0737741i −0.0465310 + 0.00543870i
\(185\) −2.19094 1.44101i −0.161081 0.105945i
\(186\) −0.729175 + 2.66775i −0.0534657 + 0.195609i
\(187\) 1.10888 3.70393i 0.0810896 0.270858i
\(188\) −4.03010 6.98034i −0.293925 0.509094i
\(189\) 8.43154 + 7.73378i 0.613305 + 0.562550i
\(190\) 0.333600 0.577813i 0.0242019 0.0419190i
\(191\) 4.43970 + 4.70580i 0.321245 + 0.340500i 0.867791 0.496929i \(-0.165539\pi\)
−0.546546 + 0.837429i \(0.684058\pi\)
\(192\) 1.00056 1.41381i 0.0722095 0.102033i
\(193\) 1.05094 18.0440i 0.0756486 1.29884i −0.720381 0.693578i \(-0.756033\pi\)
0.796030 0.605257i \(-0.206930\pi\)
\(194\) 6.52323 15.1225i 0.468341 1.08574i
\(195\) 0.215103 0.114595i 0.0154039 0.00820629i
\(196\) 0.125114 + 2.14813i 0.00893673 + 0.153438i
\(197\) −22.5434 8.20512i −1.60615 0.584591i −0.625476 0.780243i \(-0.715095\pi\)
−0.980673 + 0.195653i \(0.937317\pi\)
\(198\) 3.34174 + 3.21671i 0.237487 + 0.228601i
\(199\) 9.19041 3.34504i 0.651491 0.237123i 0.00493270 0.999988i \(-0.498430\pi\)
0.646558 + 0.762864i \(0.276208\pi\)
\(200\) 1.95541 + 4.53316i 0.138269 + 0.320543i
\(201\) −12.9883 + 5.08470i −0.916127 + 0.358647i
\(202\) 1.92136 + 0.455370i 0.135186 + 0.0320397i
\(203\) −14.7687 3.50025i −1.03656 0.245670i
\(204\) −0.649222 + 4.28238i −0.0454546 + 0.299826i
\(205\) −0.761641 1.76568i −0.0531953 0.123321i
\(206\) −11.1005 + 4.04024i −0.773407 + 0.281497i
\(207\) 0.202326 + 1.89566i 0.0140626 + 0.131757i
\(208\) −0.526461 0.191616i −0.0365035 0.0132862i
\(209\) −0.238811 4.10022i −0.0165189 0.283618i
\(210\) −0.812734 0.506944i −0.0560839 0.0349824i
\(211\) 0.281254 0.652020i 0.0193623 0.0448869i −0.908261 0.418405i \(-0.862589\pi\)
0.927623 + 0.373518i \(0.121849\pi\)
\(212\) 0.391745 6.72601i 0.0269052 0.461944i
\(213\) 11.5626 + 25.1241i 0.792254 + 1.72147i
\(214\) −2.56205 2.71561i −0.175138 0.185635i
\(215\) 1.04636 1.81235i 0.0713612 0.123601i
\(216\) −4.21113 3.04407i −0.286531 0.207123i
\(217\) −1.75789 3.04475i −0.119333 0.206691i
\(218\) 0.141390 0.472277i 0.00957617 0.0319866i
\(219\) −23.2088 + 6.09422i −1.56830 + 0.411810i
\(220\) −0.324445 0.213391i −0.0218741 0.0143868i
\(221\) 1.39153 0.162646i 0.0936044 0.0109408i
\(222\) 17.9060 2.53121i 1.20177 0.169884i
\(223\) −12.0491 6.05129i −0.806868 0.405224i −0.00297286 0.999996i \(-0.500946\pi\)
−0.803895 + 0.594771i \(0.797243\pi\)
\(224\) 0.382351 + 2.16842i 0.0255469 + 0.144884i
\(225\) 13.6576 5.72959i 0.910507 0.381973i
\(226\) 0.768957 4.36097i 0.0511503 0.290088i
\(227\) −9.89164 + 13.2868i −0.656531 + 0.881875i −0.998322 0.0579015i \(-0.981559\pi\)
0.341791 + 0.939776i \(0.388966\pi\)
\(228\) 0.907818 + 4.51063i 0.0601217 + 0.298724i
\(229\) 1.87718 1.98970i 0.124048 0.131483i −0.662373 0.749174i \(-0.730450\pi\)
0.786421 + 0.617691i \(0.211932\pi\)
\(230\) −0.0457762 0.152903i −0.00301839 0.0100821i
\(231\) −5.89481 + 0.141948i −0.387850 + 0.00933948i
\(232\) 6.84655 + 0.800247i 0.449498 + 0.0525388i
\(233\) 11.4780 + 9.63120i 0.751950 + 0.630961i 0.936018 0.351953i \(-0.114482\pi\)
−0.184068 + 0.982914i \(0.558927\pi\)
\(234\) −0.590655 + 1.57354i −0.0386123 + 0.102866i
\(235\) 1.55081 1.30128i 0.101163 0.0848862i
\(236\) 7.07093 4.65062i 0.460278 0.302730i
\(237\) 26.1705 + 5.54072i 1.69996 + 0.359908i
\(238\) −3.28806 4.41663i −0.213133 0.286288i
\(239\) 9.29814 4.66970i 0.601447 0.302058i −0.121900 0.992542i \(-0.538899\pi\)
0.723347 + 0.690484i \(0.242603\pi\)
\(240\) 0.393343 + 0.185825i 0.0253902 + 0.0119950i
\(241\) 16.5544 3.92346i 1.06636 0.252732i 0.340268 0.940329i \(-0.389482\pi\)
0.726093 + 0.687596i \(0.241334\pi\)
\(242\) 8.60951 0.553440
\(243\) −9.25842 + 12.5412i −0.593928 + 0.804518i
\(244\) 0.512299 0.0327966
\(245\) −0.525879 + 0.124636i −0.0335972 + 0.00796268i
\(246\) 11.9902 + 5.66446i 0.764464 + 0.361152i
\(247\) 1.32996 0.667931i 0.0846234 0.0424994i
\(248\) 0.953497 + 1.28077i 0.0605471 + 0.0813289i
\(249\) −12.6749 2.68347i −0.803238 0.170058i
\(250\) −2.08521 + 1.37146i −0.131880 + 0.0867389i
\(251\) −7.47331 + 6.27085i −0.471711 + 0.395813i −0.847418 0.530926i \(-0.821844\pi\)
0.375707 + 0.926738i \(0.377400\pi\)
\(252\) 6.51643 1.08177i 0.410496 0.0681450i
\(253\) −0.752655 0.631552i −0.0473190 0.0397054i
\(254\) 1.71277 + 0.200194i 0.107468 + 0.0125613i
\(255\) −1.08755 + 0.0261884i −0.0681052 + 0.00163998i
\(256\) −0.286803 0.957990i −0.0179252 0.0598743i
\(257\) 11.3853 12.0677i 0.710197 0.752764i −0.267323 0.963607i \(-0.586139\pi\)
0.977520 + 0.210842i \(0.0676207\pi\)
\(258\) 2.84743 + 14.1479i 0.177273 + 0.880811i
\(259\) −13.7282 + 18.4402i −0.853031 + 1.14582i
\(260\) 0.0244348 0.138576i 0.00151538 0.00859414i
\(261\) 2.60656 20.5146i 0.161342 1.26982i
\(262\) −0.568622 3.22482i −0.0351296 0.199230i
\(263\) −8.74253 4.39067i −0.539088 0.270740i 0.158353 0.987383i \(-0.449382\pi\)
−0.697441 + 0.716643i \(0.745678\pi\)
\(264\) 2.65160 0.374833i 0.163195 0.0230694i
\(265\) 1.68075 0.196452i 0.103248 0.0120679i
\(266\) −4.88687 3.21415i −0.299633 0.197072i
\(267\) 26.2219 6.88544i 1.60476 0.421382i
\(268\) −2.30962 + 7.71466i −0.141082 + 0.471248i
\(269\) −5.88050 10.1853i −0.358540 0.621010i 0.629177 0.777262i \(-0.283392\pi\)
−0.987717 + 0.156252i \(0.950059\pi\)
\(270\) 0.569280 1.17438i 0.0346453 0.0714705i
\(271\) 14.1330 24.4791i 0.858520 1.48700i −0.0148203 0.999890i \(-0.504718\pi\)
0.873340 0.487110i \(-0.161949\pi\)
\(272\) 1.71607 + 1.81893i 0.104052 + 0.110289i
\(273\) −0.893266 1.94096i −0.0540629 0.117472i
\(274\) 0.763547 13.1096i 0.0461276 0.791980i
\(275\) −3.02331 + 7.00881i −0.182312 + 0.422647i
\(276\) 0.933894 + 0.582518i 0.0562138 + 0.0350634i
\(277\) 0.590081 + 10.1313i 0.0354545 + 0.608730i 0.968506 + 0.248989i \(0.0800982\pi\)
−0.933052 + 0.359742i \(0.882865\pi\)
\(278\) −7.08178 2.57756i −0.424737 0.154592i
\(279\) 3.87079 2.82182i 0.231738 0.168938i
\(280\) −0.519679 + 0.189148i −0.0310567 + 0.0113037i
\(281\) 7.16336 + 16.6065i 0.427330 + 0.990662i 0.986819 + 0.161825i \(0.0517380\pi\)
−0.559489 + 0.828837i \(0.689003\pi\)
\(282\) −2.09257 + 13.8030i −0.124611 + 0.821955i
\(283\) −20.6263 4.88853i −1.22611 0.290593i −0.433965 0.900930i \(-0.642886\pi\)
−0.792142 + 0.610337i \(0.791034\pi\)
\(284\) 15.5374 + 3.68243i 0.921975 + 0.218512i
\(285\) −1.07610 + 0.421275i −0.0637429 + 0.0249542i
\(286\) −0.343089 0.795370i −0.0202873 0.0470312i
\(287\) −15.8412 + 5.76572i −0.935076 + 0.340340i
\(288\) −2.88245 + 0.831550i −0.169850 + 0.0489996i
\(289\) 10.0985 + 3.67555i 0.594029 + 0.216209i
\(290\) 0.100667 + 1.72838i 0.00591137 + 0.101494i
\(291\) −25.1762 + 13.4124i −1.47585 + 0.786249i
\(292\) −5.48722 + 12.7208i −0.321115 + 0.744429i
\(293\) −0.506130 + 8.68992i −0.0295684 + 0.507671i 0.950714 + 0.310069i \(0.100352\pi\)
−0.980282 + 0.197601i \(0.936685\pi\)
\(294\) 2.15298 3.04220i 0.125565 0.177425i
\(295\) 1.45872 + 1.54615i 0.0849297 + 0.0900202i
\(296\) 5.22040 9.04199i 0.303429 0.525555i
\(297\) −1.04468 7.96567i −0.0606187 0.462215i
\(298\) 9.37615 + 16.2400i 0.543146 + 0.940756i
\(299\) 0.102109 0.341067i 0.00590510 0.0197244i
\(300\) 2.25454 8.24842i 0.130166 0.476223i
\(301\) −15.3280 10.0814i −0.883492 0.581082i
\(302\) 2.46180 0.287743i 0.141660 0.0165577i
\(303\) −2.10778 2.69336i −0.121089 0.154730i
\(304\) 2.37388 + 1.19221i 0.136151 + 0.0683777i
\(305\) 0.0223435 + 0.126716i 0.00127938 + 0.00725575i
\(306\) 5.50814 5.09324i 0.314879 0.291161i
\(307\) 2.06704 11.7228i 0.117972 0.669053i −0.867264 0.497849i \(-0.834123\pi\)
0.985236 0.171204i \(-0.0547656\pi\)
\(308\) −2.03294 + 2.73072i −0.115838 + 0.155597i
\(309\) 19.3895 + 6.53303i 1.10303 + 0.371651i
\(310\) −0.275210 + 0.291705i −0.0156309 + 0.0165678i
\(311\) −1.44175 4.81578i −0.0817542 0.273078i 0.907332 0.420414i \(-0.138115\pi\)
−0.989086 + 0.147336i \(0.952930\pi\)
\(312\) 0.505279 + 0.828449i 0.0286058 + 0.0469017i
\(313\) 26.5783 + 3.10656i 1.50230 + 0.175593i 0.827104 0.562049i \(-0.189987\pi\)
0.675192 + 0.737642i \(0.264061\pi\)
\(314\) −6.33631 5.31679i −0.357578 0.300044i
\(315\) 0.551782 + 1.56465i 0.0310894 + 0.0881579i
\(316\) 11.8312 9.92752i 0.665555 0.558467i
\(317\) −11.9562 + 7.86374i −0.671529 + 0.441671i −0.838946 0.544215i \(-0.816828\pi\)
0.167417 + 0.985886i \(0.446457\pi\)
\(318\) −7.80146 + 8.67843i −0.437484 + 0.486662i
\(319\) 6.36432 + 8.54876i 0.356333 + 0.478639i
\(320\) 0.224448 0.112722i 0.0125470 0.00630136i
\(321\) 0.531292 + 6.44466i 0.0296538 + 0.359706i
\(322\) −1.36152 + 0.322685i −0.0758743 + 0.0179825i
\(323\) −6.64290 −0.369621
\(324\) 2.40782 + 8.67193i 0.133768 + 0.481774i
\(325\) −2.76590 −0.153424
\(326\) −9.63954 + 2.28461i −0.533885 + 0.126533i
\(327\) −0.701904 + 0.486252i −0.0388154 + 0.0268898i
\(328\) 6.84179 3.43607i 0.377774 0.189725i
\(329\) −10.5981 14.2357i −0.584291 0.784839i
\(330\) 0.208362 + 0.639520i 0.0114699 + 0.0352044i
\(331\) −0.0386053 + 0.0253911i −0.00212194 + 0.00139562i −0.550570 0.834789i \(-0.685589\pi\)
0.548448 + 0.836185i \(0.315219\pi\)
\(332\) −5.73005 + 4.80808i −0.314477 + 0.263878i
\(333\) −26.9676 15.9324i −1.47781 0.873089i
\(334\) −7.08751 5.94712i −0.387811 0.325412i
\(335\) −2.00894 0.234812i −0.109760 0.0128291i
\(336\) 1.82681 3.34775i 0.0996609 0.182635i
\(337\) −8.01302 26.7654i −0.436497 1.45800i −0.839780 0.542927i \(-0.817316\pi\)
0.403283 0.915075i \(-0.367869\pi\)
\(338\) −8.70575 + 9.22755i −0.473530 + 0.501913i
\(339\) −5.75514 + 5.07016i −0.312576 + 0.275374i
\(340\) −0.375064 + 0.503799i −0.0203407 + 0.0273223i
\(341\) −0.428690 + 2.43122i −0.0232149 + 0.131658i
\(342\) 3.64784 7.08541i 0.197253 0.383135i
\(343\) 3.49919 + 19.8449i 0.188938 + 1.07152i
\(344\) 7.44583 + 3.73944i 0.401452 + 0.201617i
\(345\) −0.103354 + 0.256403i −0.00556438 + 0.0138043i
\(346\) −14.5022 + 1.69506i −0.779643 + 0.0911272i
\(347\) 11.2451 + 7.39600i 0.603667 + 0.397038i 0.814230 0.580542i \(-0.197159\pi\)
−0.210563 + 0.977580i \(0.567530\pi\)
\(348\) −8.39993 8.48458i −0.450284 0.454821i
\(349\) −2.89665 + 9.67548i −0.155054 + 0.517917i −0.999853 0.0171679i \(-0.994535\pi\)
0.844799 + 0.535084i \(0.179720\pi\)
\(350\) 5.43522 + 9.41408i 0.290525 + 0.503204i
\(351\) 2.50042 1.49084i 0.133463 0.0795752i
\(352\) 0.773061 1.33898i 0.0412043 0.0713679i
\(353\) −3.14161 3.32991i −0.167211 0.177233i 0.638350 0.769746i \(-0.279617\pi\)
−0.805561 + 0.592513i \(0.798136\pi\)
\(354\) −14.5964 1.35079i −0.775789 0.0717936i
\(355\) −0.233192 + 4.00375i −0.0123765 + 0.212497i
\(356\) 6.19963 14.3724i 0.328580 0.761733i
\(357\) −0.325169 + 9.53143i −0.0172098 + 0.504457i
\(358\) −0.733742 12.5979i −0.0387794 0.665817i
\(359\) −35.1480 12.7928i −1.85504 0.675180i −0.982392 0.186831i \(-0.940178\pi\)
−0.872648 0.488349i \(-0.837599\pi\)
\(360\) −0.331398 0.676702i −0.0174662 0.0356653i
\(361\) 11.2231 4.08487i 0.590688 0.214993i
\(362\) −4.56893 10.5920i −0.240138 0.556702i
\(363\) −11.6508 9.30754i −0.611507 0.488519i
\(364\) −1.20034 0.284486i −0.0629150 0.0149111i
\(365\) −3.38579 0.802447i −0.177220 0.0420020i
\(366\) −0.693266 0.553835i −0.0362376 0.0289494i
\(367\) −10.1408 23.5089i −0.529344 1.22716i −0.947784 0.318912i \(-0.896682\pi\)
0.418440 0.908244i \(-0.362577\pi\)
\(368\) 0.597151 0.217345i 0.0311286 0.0113299i
\(369\) −10.1019 20.6277i −0.525884 1.07383i
\(370\) 2.46420 + 0.896897i 0.128108 + 0.0466274i
\(371\) −0.862572 14.8098i −0.0447825 0.768886i
\(372\) 0.0942949 2.76400i 0.00488896 0.143307i
\(373\) −5.35273 + 12.4090i −0.277154 + 0.642515i −0.998760 0.0497893i \(-0.984145\pi\)
0.721606 + 0.692304i \(0.243404\pi\)
\(374\) −0.224809 + 3.85982i −0.0116246 + 0.199586i
\(375\) 4.30445 + 0.398345i 0.222281 + 0.0205705i
\(376\) 5.53125 + 5.86278i 0.285252 + 0.302350i
\(377\) −1.93094 + 3.34449i −0.0994485 + 0.172250i
\(378\) −9.98780 5.58087i −0.513717 0.287049i
\(379\) −3.06071 5.30130i −0.157218 0.272309i 0.776647 0.629937i \(-0.216919\pi\)
−0.933864 + 0.357627i \(0.883586\pi\)
\(380\) −0.191355 + 0.639171i −0.00981632 + 0.0327888i
\(381\) −2.10137 2.12254i −0.107656 0.108741i
\(382\) −5.40526 3.55509i −0.276557 0.181894i
\(383\) 21.2157 2.47976i 1.08407 0.126710i 0.444754 0.895653i \(-0.353291\pi\)
0.639317 + 0.768943i \(0.279217\pi\)
\(384\) −0.647546 + 1.60645i −0.0330449 + 0.0819789i
\(385\) −0.764103 0.383747i −0.0389423 0.0195575i
\(386\) 3.13862 + 17.8000i 0.159751 + 0.905995i
\(387\) 11.4417 22.2239i 0.581615 1.12970i
\(388\) −2.85990 + 16.2193i −0.145189 + 0.823409i
\(389\) −3.52828 + 4.73931i −0.178891 + 0.240292i −0.882520 0.470276i \(-0.844155\pi\)
0.703629 + 0.710568i \(0.251562\pi\)
\(390\) −0.182878 + 0.161112i −0.00926039 + 0.00815822i
\(391\) −1.09052 + 1.15588i −0.0551500 + 0.0584556i
\(392\) −0.617134 2.06137i −0.0311700 0.104115i
\(393\) −2.71679 + 4.97869i −0.137044 + 0.251142i
\(394\) 23.8280 + 2.78509i 1.20043 + 0.140311i
\(395\) 2.97156 + 2.49344i 0.149515 + 0.125458i
\(396\) −3.99349 2.35934i −0.200680 0.118561i
\(397\) −6.09144 + 5.11133i −0.305721 + 0.256530i −0.782721 0.622373i \(-0.786169\pi\)
0.477000 + 0.878903i \(0.341724\pi\)
\(398\) −8.17127 + 5.37433i −0.409589 + 0.269391i
\(399\) 3.13840 + 9.63262i 0.157116 + 0.482234i
\(400\) −2.94812 3.96002i −0.147406 0.198001i
\(401\) 4.91089 2.46634i 0.245238 0.123163i −0.321935 0.946762i \(-0.604333\pi\)
0.567173 + 0.823598i \(0.308037\pi\)
\(402\) 11.4656 7.94296i 0.571854 0.396159i
\(403\) −0.870448 + 0.206300i −0.0433601 + 0.0102765i
\(404\) −1.97458 −0.0982391
\(405\) −2.03997 + 0.973790i −0.101367 + 0.0483880i
\(406\) 15.1778 0.753264
\(407\) 15.7076 3.72277i 0.778597 0.184531i
\(408\) −0.355862 4.31666i −0.0176178 0.213707i
\(409\) −17.5940 + 8.83606i −0.869969 + 0.436915i −0.827027 0.562162i \(-0.809970\pi\)
−0.0429426 + 0.999078i \(0.513673\pi\)
\(410\) 1.14831 + 1.54244i 0.0567108 + 0.0761758i
\(411\) −15.2058 + 16.9150i −0.750044 + 0.834357i
\(412\) 9.86951 6.49128i 0.486236 0.319802i
\(413\) 14.2752 11.9783i 0.702436 0.589414i
\(414\) −0.634041 1.79790i −0.0311614 0.0883620i
\(415\) −1.43918 1.20762i −0.0706467 0.0592796i
\(416\) 0.556460 + 0.0650408i 0.0272827 + 0.00318889i
\(417\) 6.79684 + 11.1440i 0.332843 + 0.545725i
\(418\) 1.17795 + 3.93463i 0.0576154 + 0.192449i
\(419\) 20.2581 21.4723i 0.989672 1.04899i −0.00912551 0.999958i \(-0.502905\pi\)
0.998797 0.0490323i \(-0.0156137\pi\)
\(420\) 0.907736 + 0.305850i 0.0442930 + 0.0149239i
\(421\) −23.2515 + 31.2321i −1.13321 + 1.52216i −0.313310 + 0.949651i \(0.601438\pi\)
−0.819897 + 0.572511i \(0.805969\pi\)
\(422\) −0.123307 + 0.699306i −0.00600247 + 0.0340417i
\(423\) 17.7538 16.4166i 0.863221 0.798200i
\(424\) 1.16994 + 6.63505i 0.0568172 + 0.322226i
\(425\) 11.0325 + 5.54072i 0.535154 + 0.268764i
\(426\) −17.0449 21.7804i −0.825828 1.05526i
\(427\) 1.12039 0.130955i 0.0542194 0.00633734i
\(428\) 3.11925 + 2.05156i 0.150775 + 0.0991661i
\(429\) −0.395573 + 1.44724i −0.0190984 + 0.0698732i
\(430\) −0.600199 + 2.00481i −0.0289442 + 0.0966803i
\(431\) 14.3523 + 24.8589i 0.691325 + 1.19741i 0.971404 + 0.237433i \(0.0763060\pi\)
−0.280079 + 0.959977i \(0.590361\pi\)
\(432\) 4.79963 + 1.99086i 0.230922 + 0.0957853i
\(433\) −5.02440 + 8.70251i −0.241457 + 0.418216i −0.961130 0.276098i \(-0.910959\pi\)
0.719673 + 0.694314i \(0.244292\pi\)
\(434\) 2.41267 + 2.55728i 0.115812 + 0.122753i
\(435\) 1.73229 2.44776i 0.0830570 0.117361i
\(436\) −0.0286647 + 0.492153i −0.00137279 + 0.0235699i
\(437\) −0.668621 + 1.55004i −0.0319845 + 0.0741484i
\(438\) 21.1777 11.2823i 1.01191 0.539087i
\(439\) 1.48711 + 25.5326i 0.0709757 + 1.21861i 0.826291 + 0.563244i \(0.190447\pi\)
−0.755315 + 0.655362i \(0.772516\pi\)
\(440\) 0.364911 + 0.132817i 0.0173964 + 0.00633179i
\(441\) −6.20237 + 1.78930i −0.295351 + 0.0852050i
\(442\) −1.31651 + 0.479171i −0.0626201 + 0.0227918i
\(443\) 4.63197 + 10.7381i 0.220072 + 0.510184i 0.992107 0.125396i \(-0.0400203\pi\)
−0.772035 + 0.635580i \(0.780761\pi\)
\(444\) −16.8396 + 6.59238i −0.799170 + 0.312860i
\(445\) 3.82537 + 0.906629i 0.181340 + 0.0429783i
\(446\) 13.1198 + 3.10946i 0.621243 + 0.147237i
\(447\) 4.86843 32.1130i 0.230269 1.51889i
\(448\) −0.872116 2.02179i −0.0412036 0.0955207i
\(449\) 6.66383 2.42544i 0.314486 0.114463i −0.179955 0.983675i \(-0.557595\pi\)
0.494441 + 0.869211i \(0.335373\pi\)
\(450\) −11.9681 + 8.72481i −0.564183 + 0.411291i
\(451\) 11.1235 + 4.04861i 0.523783 + 0.190642i
\(452\) 0.257480 + 4.42076i 0.0121108 + 0.207935i
\(453\) −3.64249 2.27201i −0.171139 0.106748i
\(454\) 6.56087 15.2098i 0.307917 0.713831i
\(455\) 0.0180153 0.309310i 0.000844568 0.0145007i
\(456\) −1.92357 4.17969i −0.0900795 0.195732i
\(457\) −11.4945 12.1835i −0.537690 0.569918i 0.400387 0.916346i \(-0.368876\pi\)
−0.938076 + 0.346428i \(0.887394\pi\)
\(458\) −1.36773 + 2.36898i −0.0639098 + 0.110695i
\(459\) −12.9600 + 0.937688i −0.604923 + 0.0437675i
\(460\) 0.0798042 + 0.138225i 0.00372089 + 0.00644477i
\(461\) 7.60047 25.3873i 0.353989 1.18241i −0.576811 0.816877i \(-0.695703\pi\)
0.930800 0.365528i \(-0.119112\pi\)
\(462\) 5.70318 1.49756i 0.265336 0.0696728i
\(463\) −2.88462 1.89725i −0.134060 0.0881726i 0.480708 0.876881i \(-0.340380\pi\)
−0.614768 + 0.788708i \(0.710750\pi\)
\(464\) −6.84655 + 0.800247i −0.317843 + 0.0371505i
\(465\) 0.687782 0.0972257i 0.0318951 0.00450874i
\(466\) −13.3897 6.72458i −0.620268 0.311510i
\(467\) 2.43750 + 13.8238i 0.112794 + 0.639688i 0.987819 + 0.155609i \(0.0497340\pi\)
−0.875024 + 0.484079i \(0.839155\pi\)
\(468\) 0.211851 1.66734i 0.00979281 0.0770728i
\(469\) −3.07906 + 17.4622i −0.142178 + 0.806330i
\(470\) −1.20891 + 1.62384i −0.0557627 + 0.0749024i
\(471\) 2.82671 + 14.0450i 0.130248 + 0.647158i
\(472\) −5.80782 + 6.15593i −0.267327 + 0.283350i
\(473\) 3.69472 + 12.3412i 0.169884 + 0.567450i
\(474\) −26.7429 + 0.643971i −1.22834 + 0.0295786i
\(475\) 13.0259 + 1.52251i 0.597670 + 0.0698577i
\(476\) 4.21798 + 3.53930i 0.193331 + 0.162224i
\(477\) 19.9393 3.31006i 0.912959 0.151557i
\(478\) −7.97060 + 6.68813i −0.364567 + 0.305908i
\(479\) 14.6921 9.66318i 0.671301 0.441522i −0.167564 0.985861i \(-0.553590\pi\)
0.838865 + 0.544339i \(0.183220\pi\)
\(480\) −0.425595 0.0901052i −0.0194257 0.00411272i
\(481\) 3.49304 + 4.69197i 0.159269 + 0.213935i
\(482\) −15.2033 + 7.63540i −0.692493 + 0.347783i
\(483\) 2.19131 + 1.03523i 0.0997082 + 0.0471047i
\(484\) −8.37744 + 1.98549i −0.380793 + 0.0902495i
\(485\) −4.13654 −0.187831
\(486\) 6.11665 14.3383i 0.277457 0.650398i
\(487\) −26.6256 −1.20652 −0.603261 0.797544i \(-0.706132\pi\)
−0.603261 + 0.797544i \(0.706132\pi\)
\(488\) −0.498490 + 0.118144i −0.0225656 + 0.00534814i
\(489\) 15.5145 + 7.32945i 0.701590 + 0.331449i
\(490\) 0.482961 0.242552i 0.0218180 0.0109574i
\(491\) −1.65145 2.21828i −0.0745289 0.100110i 0.763295 0.646050i \(-0.223580\pi\)
−0.837824 + 0.545940i \(0.816173\pi\)
\(492\) −12.9733 2.74665i −0.584880 0.123828i
\(493\) 14.4018 9.47222i 0.648625 0.426607i
\(494\) −1.14008 + 0.956637i −0.0512944 + 0.0430411i
\(495\) 0.409406 1.09068i 0.0184015 0.0490225i
\(496\) −1.22316 1.02635i −0.0549215 0.0460846i
\(497\) 34.9213 + 4.08171i 1.56643 + 0.183090i
\(498\) 12.9521 0.311887i 0.580396 0.0139760i
\(499\) 10.3345 + 34.5195i 0.462634 + 1.54531i 0.797666 + 0.603100i \(0.206068\pi\)
−0.335031 + 0.942207i \(0.608747\pi\)
\(500\) 1.71272 1.81538i 0.0765951 0.0811861i
\(501\) 3.16183 + 15.7101i 0.141260 + 0.701874i
\(502\) 5.82571 7.82528i 0.260014 0.349259i
\(503\) 6.73651 38.2046i 0.300366 1.70346i −0.344187 0.938901i \(-0.611845\pi\)
0.644553 0.764560i \(-0.277044\pi\)
\(504\) −6.09131 + 2.55540i −0.271328 + 0.113827i
\(505\) −0.0861197 0.488409i −0.00383228 0.0217339i
\(506\) 0.878013 + 0.440955i 0.0390324 + 0.0196028i
\(507\) 21.7567 3.07555i 0.966249 0.136590i
\(508\) −1.71277 + 0.200194i −0.0759917 + 0.00888215i
\(509\) −4.29416 2.82431i −0.190335 0.125185i 0.450765 0.892643i \(-0.351151\pi\)
−0.641100 + 0.767457i \(0.721522\pi\)
\(510\) 1.05220 0.276290i 0.0465921 0.0122343i
\(511\) −8.74874 + 29.2228i −0.387021 + 1.29274i
\(512\) 0.500000 + 0.866025i 0.0220971 + 0.0382733i
\(513\) −12.5963 + 5.64470i −0.556140 + 0.249220i
\(514\) −8.29541 + 14.3681i −0.365895 + 0.633749i
\(515\) 2.03606 + 2.15809i 0.0897194 + 0.0950970i
\(516\) −6.03341 13.1099i −0.265606 0.577131i
\(517\) −0.724604 + 12.4410i −0.0318681 + 0.547153i
\(518\) 9.10558 21.1091i 0.400076 0.927481i
\(519\) 21.4575 + 13.3842i 0.941880 + 0.587499i
\(520\) 0.00818180 + 0.140476i 0.000358796 + 0.00616028i
\(521\) 12.3521 + 4.49581i 0.541157 + 0.196965i 0.598113 0.801411i \(-0.295917\pi\)
−0.0569559 + 0.998377i \(0.518139\pi\)
\(522\) 2.19468 + 20.5627i 0.0960585 + 0.900005i
\(523\) 25.8403 9.40509i 1.12992 0.411256i 0.291654 0.956524i \(-0.405794\pi\)
0.838262 + 0.545268i \(0.183572\pi\)
\(524\) 1.29699 + 3.00676i 0.0566592 + 0.131351i
\(525\) 2.82216 18.6155i 0.123169 0.812445i
\(526\) 9.51943 + 2.25615i 0.415067 + 0.0983727i
\(527\) 3.88527 + 0.920825i 0.169245 + 0.0401118i
\(528\) −2.49368 + 0.976230i −0.108524 + 0.0424850i
\(529\) −8.94989 20.7482i −0.389125 0.902094i
\(530\) −1.59014 + 0.578764i −0.0690713 + 0.0251399i
\(531\) 18.2922 + 17.6078i 0.793813 + 0.764112i
\(532\) 5.49638 + 2.00052i 0.238298 + 0.0867335i
\(533\) 0.249403 + 4.28209i 0.0108028 + 0.185478i
\(534\) −23.9272 + 12.7470i −1.03543 + 0.551618i
\(535\) −0.371407 + 0.861019i −0.0160573 + 0.0372251i
\(536\) 0.468239 8.03935i 0.0202248 0.347247i
\(537\) −12.6263 + 17.8412i −0.544866 + 0.769905i
\(538\) 8.07088 + 8.55464i 0.347960 + 0.368817i
\(539\) 1.66345 2.88118i 0.0716498 0.124101i
\(540\) −0.283104 + 1.27401i −0.0121829 + 0.0548247i
\(541\) 0.893814 + 1.54813i 0.0384281 + 0.0665594i 0.884600 0.466351i \(-0.154432\pi\)
−0.846172 + 0.532910i \(0.821098\pi\)
\(542\) −8.10679 + 27.0786i −0.348217 + 1.16312i
\(543\) −5.26786 + 19.2729i −0.226066 + 0.827080i
\(544\) −2.08929 1.37415i −0.0895775 0.0589161i
\(545\) −0.122983 + 0.0143747i −0.00526803 + 0.000615745i
\(546\) 1.31680 + 1.68264i 0.0563541 + 0.0720104i
\(547\) −37.3558 18.7608i −1.59722 0.802154i −1.00000 7.60691e-5i \(-0.999976\pi\)
−0.597220 0.802078i \(-0.703728\pi\)
\(548\) 2.28032 + 12.9323i 0.0974102 + 0.552441i
\(549\) 0.339420 + 1.49895i 0.0144861 + 0.0639735i
\(550\) 1.32547 7.51711i 0.0565182 0.320531i
\(551\) 10.9347 14.6879i 0.465834 0.625724i
\(552\) −1.04306 0.351445i −0.0443955 0.0149585i
\(553\) 23.3368 24.7356i 0.992383 1.05186i
\(554\) −2.91061 9.72212i −0.123660 0.413053i
\(555\) −2.36506 3.87772i −0.100391 0.164600i
\(556\) 7.48531 + 0.874908i 0.317448 + 0.0371044i
\(557\) −7.29261 6.11922i −0.308998 0.259280i 0.475080 0.879943i \(-0.342419\pi\)
−0.784078 + 0.620663i \(0.786864\pi\)
\(558\) −3.11570 + 3.63842i −0.131898 + 0.154027i
\(559\) −3.57593 + 3.00056i −0.151246 + 0.126910i
\(560\) 0.462050 0.303895i 0.0195252 0.0128419i
\(561\) 4.47698 4.98024i 0.189018 0.210266i
\(562\) −10.8000 14.5069i −0.455570 0.611937i
\(563\) 14.7031 7.38420i 0.619664 0.311207i −0.111129 0.993806i \(-0.535447\pi\)
0.730793 + 0.682599i \(0.239150\pi\)
\(564\) −1.14702 13.9135i −0.0482980 0.585863i
\(565\) −1.08224 + 0.256495i −0.0455300 + 0.0107908i
\(566\) 21.1977 0.891006
\(567\) 7.48260 + 18.3499i 0.314239 + 0.770622i
\(568\) −15.9678 −0.669994
\(569\) 2.81704 0.667651i 0.118097 0.0279894i −0.171143 0.985246i \(-0.554746\pi\)
0.289239 + 0.957257i \(0.406598\pi\)
\(570\) 0.949944 0.658086i 0.0397888 0.0275642i
\(571\) −6.23285 + 3.13026i −0.260837 + 0.130997i −0.574412 0.818566i \(-0.694769\pi\)
0.313576 + 0.949563i \(0.398473\pi\)
\(572\) 0.517266 + 0.694809i 0.0216280 + 0.0290514i
\(573\) 3.47131 + 10.6544i 0.145016 + 0.445094i
\(574\) 14.0845 9.26354i 0.587877 0.386653i
\(575\) 2.40330 2.01661i 0.100225 0.0840984i
\(576\) 2.61299 1.47387i 0.108874 0.0614115i
\(577\) −16.4046 13.7651i −0.682931 0.573047i 0.233930 0.972253i \(-0.424841\pi\)
−0.916861 + 0.399206i \(0.869286\pi\)
\(578\) −10.6739 1.24760i −0.443977 0.0518934i
\(579\) 14.9958 27.4808i 0.623206 1.14206i
\(580\) −0.496546 1.65858i −0.0206180 0.0688688i
\(581\) −11.3025 + 11.9799i −0.468905 + 0.497011i
\(582\) 21.4044 18.8569i 0.887242 0.781643i
\(583\) −6.22051 + 8.35559i −0.257627 + 0.346053i
\(584\) 2.40569 13.6434i 0.0995482 0.564566i
\(585\) 0.421653 0.0203187i 0.0174332 0.000840074i
\(586\) −1.51155 8.57241i −0.0624414 0.354123i
\(587\) −34.0988 17.1250i −1.40741 0.706826i −0.427081 0.904213i \(-0.640458\pi\)
−0.980326 + 0.197387i \(0.936754\pi\)
\(588\) −1.39337 + 3.45671i −0.0574616 + 0.142552i
\(589\) 4.21291 0.492419i 0.173590 0.0202898i
\(590\) −1.77596 1.16807i −0.0731152 0.0480886i
\(591\) −29.2342 29.5288i −1.20253 1.21465i
\(592\) −2.99445 + 10.0022i −0.123071 + 0.411087i
\(593\) −10.6532 18.4518i −0.437473 0.757725i 0.560021 0.828478i \(-0.310793\pi\)
−0.997494 + 0.0707531i \(0.977460\pi\)
\(594\) 2.85353 + 7.51004i 0.117082 + 0.308140i
\(595\) −0.691477 + 1.19767i −0.0283478 + 0.0490998i
\(596\) −12.8686 13.6399i −0.527119 0.558713i
\(597\) 16.8678 + 1.56099i 0.690353 + 0.0638871i
\(598\) −0.0207009 + 0.355421i −0.000846524 + 0.0145343i
\(599\) −16.9415 + 39.2748i −0.692210 + 1.60472i 0.100366 + 0.994951i \(0.467999\pi\)
−0.792576 + 0.609773i \(0.791261\pi\)
\(600\) −0.291551 + 8.54602i −0.0119025 + 0.348890i
\(601\) 0.583496 + 10.0182i 0.0238013 + 0.408653i 0.989075 + 0.147412i \(0.0470945\pi\)
−0.965274 + 0.261240i \(0.915868\pi\)
\(602\) 17.2398 + 6.27476i 0.702641 + 0.255740i
\(603\) −24.1028 1.64647i −0.981540 0.0670493i
\(604\) −2.32908 + 0.847716i −0.0947690 + 0.0344931i
\(605\) −0.856482 1.98555i −0.0348210 0.0807240i
\(606\) 2.67209 + 2.13467i 0.108546 + 0.0867152i
\(607\) 25.9485 + 6.14992i 1.05322 + 0.249617i 0.720533 0.693420i \(-0.243897\pi\)
0.332686 + 0.943038i \(0.392045\pi\)
\(608\) −2.58483 0.612616i −0.104829 0.0248449i
\(609\) −20.5393 16.4084i −0.832296 0.664903i
\(610\) −0.0509640 0.118148i −0.00206347 0.00478366i
\(611\) −4.24338 + 1.54447i −0.171669 + 0.0624824i
\(612\) −4.18508 + 6.22622i −0.169172 + 0.251680i
\(613\) −19.8734 7.23333i −0.802680 0.292152i −0.0920832 0.995751i \(-0.529353\pi\)
−0.710596 + 0.703600i \(0.751575\pi\)
\(614\) 0.692132 + 11.8835i 0.0279322 + 0.479577i
\(615\) 0.113560 3.32871i 0.00457919 0.134226i
\(616\) 1.34840 3.12594i 0.0543285 0.125948i
\(617\) −2.33116 + 40.0244i −0.0938488 + 1.61132i 0.542592 + 0.839997i \(0.317443\pi\)
−0.636441 + 0.771326i \(0.719594\pi\)
\(618\) −20.3734 1.88541i −0.819540 0.0758424i
\(619\) −20.5839 21.8177i −0.827338 0.876928i 0.166694 0.986009i \(-0.446691\pi\)
−0.994033 + 0.109081i \(0.965209\pi\)
\(620\) 0.200520 0.347310i 0.00805306 0.0139483i
\(621\) −1.08566 + 3.11845i −0.0435659 + 0.125139i
\(622\) 2.51349 + 4.35348i 0.100782 + 0.174559i
\(623\) 9.88459 33.0168i 0.396018 1.32279i
\(624\) −0.682712 0.689592i −0.0273304 0.0276058i
\(625\) −20.0999 13.2199i −0.803998 0.528798i
\(626\) −26.5783 + 3.10656i −1.06228 + 0.124163i
\(627\) 2.65958 6.59797i 0.106213 0.263498i
\(628\) 7.39165 + 3.71223i 0.294959 + 0.148134i
\(629\) −4.53380 25.7124i −0.180774 1.02522i
\(630\) −0.897741 1.39522i −0.0357669 0.0555870i
\(631\) 5.09831 28.9139i 0.202960 1.15105i −0.697657 0.716432i \(-0.745774\pi\)
0.900617 0.434614i \(-0.143115\pi\)
\(632\) −9.22280 + 12.3884i −0.366863 + 0.492783i
\(633\) 0.922868 0.813029i 0.0366807 0.0323150i
\(634\) 9.82045 10.4091i 0.390020 0.413397i
\(635\) −0.124218 0.414918i −0.00492946 0.0164655i
\(636\) 5.58979 10.2436i 0.221649 0.406187i
\(637\) 1.19737 + 0.139953i 0.0474417 + 0.00554513i
\(638\) −8.16425 6.85062i −0.323226 0.271218i
\(639\) −0.480307 + 47.9010i −0.0190006 + 1.89493i
\(640\) −0.192403 + 0.161445i −0.00760539 + 0.00638168i
\(641\) −21.7826 + 14.3267i −0.860362 + 0.565869i −0.901252 0.433295i \(-0.857351\pi\)
0.0408904 + 0.999164i \(0.486981\pi\)
\(642\) −2.00321 6.14842i −0.0790605 0.242659i
\(643\) 11.4253 + 15.3468i 0.450568 + 0.605218i 0.968136 0.250424i \(-0.0805700\pi\)
−0.517568 + 0.855642i \(0.673163\pi\)
\(644\) 1.25040 0.627974i 0.0492727 0.0247457i
\(645\) 2.97957 2.06413i 0.117320 0.0812751i
\(646\) 6.46384 1.53196i 0.254316 0.0602741i
\(647\) −33.7736 −1.32778 −0.663889 0.747831i \(-0.731095\pi\)
−0.663889 + 0.747831i \(0.731095\pi\)
\(648\) −4.34280 7.88290i −0.170601 0.309669i
\(649\) −13.0852 −0.513639
\(650\) 2.69134 0.637860i 0.105563 0.0250189i
\(651\) −0.500316 6.06891i −0.0196089 0.237860i
\(652\) 8.85284 4.44606i 0.346704 0.174121i
\(653\) −25.1651 33.8025i −0.984785 1.32280i −0.946215 0.323540i \(-0.895127\pi\)
−0.0385701 0.999256i \(-0.512280\pi\)
\(654\) 0.570846 0.635016i 0.0223219 0.0248311i
\(655\) −0.687149 + 0.451945i −0.0268491 + 0.0176590i
\(656\) −5.86495 + 4.92128i −0.228988 + 0.192144i
\(657\) −40.8557 7.62710i −1.59393 0.297562i
\(658\) 13.5954 + 11.4079i 0.530004 + 0.444726i
\(659\) −40.9098 4.78167i −1.59362 0.186268i −0.727502 0.686106i \(-0.759319\pi\)
−0.866119 + 0.499838i \(0.833393\pi\)
\(660\) −0.350229 0.574230i −0.0136326 0.0223519i
\(661\) 2.03687 + 6.80360i 0.0792249 + 0.264630i 0.988420 0.151740i \(-0.0484875\pi\)
−0.909196 + 0.416369i \(0.863302\pi\)
\(662\) 0.0317091 0.0336097i 0.00123241 0.00130628i
\(663\) 2.29958 + 0.774815i 0.0893084 + 0.0300913i
\(664\) 4.46678 5.99992i 0.173345 0.232842i
\(665\) −0.255105 + 1.44677i −0.00989254 + 0.0561034i
\(666\) 29.9149 + 9.28377i 1.15918 + 0.359739i
\(667\) −0.760654 4.31388i −0.0294526 0.167034i
\(668\) 8.26796 + 4.15233i 0.319897 + 0.160658i
\(669\) −14.3928 18.3914i −0.556458 0.711054i
\(670\) 2.00894 0.234812i 0.0776122 0.00907156i
\(671\) −0.661770 0.435253i −0.0255473 0.0168028i
\(672\) −1.00553 + 3.67881i −0.0387890 + 0.141913i
\(673\) 3.42140 11.4283i 0.131885 0.440527i −0.866381 0.499383i \(-0.833560\pi\)
0.998266 + 0.0588559i \(0.0187453\pi\)
\(674\) 13.9695 + 24.1960i 0.538087 + 0.931994i
\(675\) 25.6280 + 1.13167i 0.986422 + 0.0435580i
\(676\) 6.34306 10.9865i 0.243964 0.422558i
\(677\) 6.70101 + 7.10265i 0.257541 + 0.272977i 0.843223 0.537563i \(-0.180655\pi\)
−0.585683 + 0.810540i \(0.699174\pi\)
\(678\) 4.43075 6.26072i 0.170162 0.240442i
\(679\) −2.10854 + 36.2023i −0.0809185 + 1.38932i
\(680\) 0.248770 0.576714i 0.00953990 0.0221160i
\(681\) −25.3214 + 13.4898i −0.970319 + 0.516930i
\(682\) −0.143544 2.46455i −0.00549657 0.0943725i
\(683\) 40.0570 + 14.5795i 1.53274 + 0.557871i 0.964290 0.264849i \(-0.0853221\pi\)
0.568447 + 0.822720i \(0.307544\pi\)
\(684\) −1.91551 + 7.73568i −0.0732412 + 0.295781i
\(685\) −3.09933 + 1.12806i −0.118419 + 0.0431011i
\(686\) −7.98141 18.5030i −0.304731 0.706447i
\(687\) 4.41192 1.72718i 0.168325 0.0658962i
\(688\) −8.10750 1.92151i −0.309096 0.0732570i
\(689\) −3.67287 0.870487i −0.139925 0.0331629i
\(690\) 0.0414372 0.273327i 0.00157749 0.0104054i
\(691\) −16.8677 39.1037i −0.641677 1.48757i −0.859264 0.511533i \(-0.829078\pi\)
0.217587 0.976041i \(-0.430181\pi\)
\(692\) 13.7204 4.99381i 0.521571 0.189836i
\(693\) −9.33678 4.13902i −0.354675 0.157228i
\(694\) −12.6476 4.60335i −0.480096 0.174741i
\(695\) 0.110059 + 1.88964i 0.00417477 + 0.0716780i
\(696\) 10.1302 + 6.31872i 0.383984 + 0.239511i
\(697\) 7.58318 17.5798i 0.287234 0.665882i
\(698\) 0.587250 10.0827i 0.0222277 0.381635i
\(699\) 10.8498 + 23.5753i 0.410377 + 0.891701i
\(700\) −7.45975 7.90688i −0.281952 0.298852i
\(701\) −12.4900 + 21.6334i −0.471742 + 0.817080i −0.999477 0.0323282i \(-0.989708\pi\)
0.527736 + 0.849409i \(0.323041\pi\)
\(702\) −2.08921 + 2.02729i −0.0788521 + 0.0765152i
\(703\) −13.8676 24.0195i −0.523028 0.905911i
\(704\) −0.443433 + 1.48117i −0.0167125 + 0.0558236i
\(705\) 3.39145 0.890537i 0.127729 0.0335396i
\(706\) 3.82485 + 2.51565i 0.143950 + 0.0946776i
\(707\) −4.31837 + 0.504745i −0.162409 + 0.0189829i
\(708\) 14.5144 2.05178i 0.545486 0.0771106i
\(709\) 28.2852 + 14.2054i 1.06227 + 0.533493i 0.892061 0.451914i \(-0.149259\pi\)
0.170211 + 0.985408i \(0.445555\pi\)
\(710\) −0.696423 3.94961i −0.0261363 0.148226i
\(711\) 36.8858 + 28.0397i 1.38333 + 1.05157i
\(712\) −2.71802 + 15.4147i −0.101862 + 0.577689i
\(713\) 0.605923 0.813896i 0.0226920 0.0304806i
\(714\) −1.88170 9.34950i −0.0704207 0.349896i
\(715\) −0.149300 + 0.158248i −0.00558349 + 0.00591815i
\(716\) 3.61923 + 12.0891i 0.135257 + 0.451790i
\(717\) 18.0166 0.433841i 0.672841 0.0162021i
\(718\) 37.1508 + 4.34231i 1.38646 + 0.162053i
\(719\) −18.0831 15.1736i −0.674387 0.565878i 0.239973 0.970780i \(-0.422861\pi\)
−0.914360 + 0.404901i \(0.867306\pi\)
\(720\) 0.478523 + 0.582035i 0.0178335 + 0.0216912i
\(721\) 19.9251 16.7192i 0.742051 0.622655i
\(722\) −9.97852 + 6.56298i −0.371362 + 0.244249i
\(723\) 28.8283 + 6.10341i 1.07214 + 0.226988i
\(724\) 6.88846 + 9.25280i 0.256007 + 0.343878i
\(725\) −30.4112 + 15.2731i −1.12944 + 0.567228i
\(726\) 13.4832 + 6.36980i 0.500408 + 0.236406i
\(727\) 7.09810 1.68228i 0.263254 0.0623923i −0.0968691 0.995297i \(-0.530883\pi\)
0.360123 + 0.932905i \(0.382735\pi\)
\(728\) 1.23359 0.0457200
\(729\) −23.7781 + 12.7906i −0.880671 + 0.473728i
\(730\) 3.47958 0.128785
\(731\) 20.2743 4.80509i 0.749871 0.177723i
\(732\) 0.802302 + 0.379028i 0.0296539 + 0.0140093i
\(733\) 21.8143 10.9555i 0.805729 0.404652i 0.00225878 0.999997i \(-0.499281\pi\)
0.803470 + 0.595345i \(0.202985\pi\)
\(734\) 15.2890 + 20.5366i 0.564326 + 0.758021i
\(735\) −0.915782 0.193886i −0.0337791 0.00715158i
\(736\) −0.530931 + 0.349199i −0.0195704 + 0.0128716i
\(737\) 9.53793 8.00327i 0.351334 0.294804i
\(738\) 14.5867 + 17.7420i 0.536943 + 0.653092i
\(739\) 21.5680 + 18.0977i 0.793393 + 0.665736i 0.946583 0.322461i \(-0.104510\pi\)
−0.153189 + 0.988197i \(0.548954\pi\)
\(740\) −2.60462 0.304436i −0.0957477 0.0111913i
\(741\) 2.57700 0.0620544i 0.0946685 0.00227963i
\(742\) 4.25469 + 14.2117i 0.156195 + 0.521727i
\(743\) −23.1674 + 24.5560i −0.849930 + 0.900873i −0.996086 0.0883887i \(-0.971828\pi\)
0.146156 + 0.989261i \(0.453310\pi\)
\(744\) 0.545668 + 2.71124i 0.0200052 + 0.0993988i
\(745\) 2.81256 3.77792i 0.103044 0.138412i
\(746\) 2.34673 13.3090i 0.0859198 0.487276i
\(747\) −17.8645 13.5801i −0.653628 0.496871i
\(748\) −0.671386 3.80762i −0.0245483 0.139220i
\(749\) 7.34617 + 3.68938i 0.268423 + 0.134807i
\(750\) −4.28029 + 0.605067i −0.156294 + 0.0220939i
\(751\) −4.98975 + 0.583218i −0.182078 + 0.0212819i −0.206643 0.978416i \(-0.566254\pi\)
0.0245650 + 0.999698i \(0.492180\pi\)
\(752\) −6.73420 4.42915i −0.245571 0.161515i
\(753\) −16.3433 + 4.29148i −0.595585 + 0.156390i
\(754\) 1.10760 3.69964i 0.0403364 0.134733i
\(755\) −0.311262 0.539122i −0.0113280 0.0196206i
\(756\) 11.0056 + 3.12709i 0.400270 + 0.113731i
\(757\) −4.96049 + 8.59183i −0.180292 + 0.312275i −0.941980 0.335669i \(-0.891038\pi\)
0.761688 + 0.647944i \(0.224371\pi\)
\(758\) 4.20077 + 4.45255i 0.152579 + 0.161724i
\(759\) −0.711461 1.54592i −0.0258244 0.0561133i
\(760\) 0.0387943 0.666072i 0.00140722 0.0241610i
\(761\) −19.9171 + 46.1731i −0.721996 + 1.67377i 0.0168119 + 0.999859i \(0.494648\pi\)
−0.738808 + 0.673916i \(0.764611\pi\)
\(762\) 2.53422 + 1.58072i 0.0918050 + 0.0572635i
\(763\) 0.0631159 + 1.08366i 0.00228495 + 0.0392311i
\(764\) 6.07942 + 2.21273i 0.219946 + 0.0800537i
\(765\) −1.72257 0.763621i −0.0622798 0.0276088i
\(766\) −20.0719 + 7.30559i −0.725229 + 0.263962i