Properties

Label 162.2.g.a.151.4
Level $162$
Weight $2$
Character 162.151
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 151.4
Character \(\chi\) \(=\) 162.151
Dual form 162.2.g.a.103.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.686242 - 0.727374i) q^{2} +(1.65061 - 0.524883i) q^{3} +(-0.0581448 - 0.998308i) q^{4} +(-1.97104 - 0.230382i) q^{5} +(0.750928 - 1.56080i) q^{6} +(0.868864 - 0.436360i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(2.44900 - 1.73275i) q^{9} +O(q^{10})\) \(q+(0.686242 - 0.727374i) q^{2} +(1.65061 - 0.524883i) q^{3} +(-0.0581448 - 0.998308i) q^{4} +(-1.97104 - 0.230382i) q^{5} +(0.750928 - 1.56080i) q^{6} +(0.868864 - 0.436360i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(2.44900 - 1.73275i) q^{9} +(-1.52019 + 1.27559i) q^{10} +(-1.12994 + 2.61950i) q^{11} +(-0.619969 - 1.61729i) q^{12} +(1.19896 - 0.284159i) q^{13} +(0.278854 - 0.931437i) q^{14} +(-3.37434 + 0.654298i) q^{15} +(-0.993238 + 0.116093i) q^{16} +(0.944814 + 5.35831i) q^{17} +(0.420246 - 2.97042i) q^{18} +(-0.724393 + 4.10824i) q^{19} +(-0.115386 + 1.98110i) q^{20} +(1.20511 - 1.17631i) q^{21} +(1.12994 + 2.61950i) q^{22} +(-5.83149 - 2.92869i) q^{23} +(-1.60183 - 0.658905i) q^{24} +(-1.03329 - 0.244894i) q^{25} +(0.616088 - 1.06710i) q^{26} +(3.13283 - 4.14552i) q^{27} +(-0.486141 - 0.842022i) q^{28} +(1.00971 + 3.37266i) q^{29} +(-1.83969 + 2.90341i) q^{30} +(7.08842 - 4.66213i) q^{31} +(-0.597159 + 0.802123i) q^{32} +(-0.490156 + 4.91685i) q^{33} +(4.54586 + 2.98986i) q^{34} +(-1.81310 + 0.659913i) q^{35} +(-1.87221 - 2.34410i) q^{36} +(-3.74261 - 1.36220i) q^{37} +(2.49111 + 3.34615i) q^{38} +(1.82986 - 1.09835i) q^{39} +(1.36182 + 1.44344i) q^{40} +(-6.52714 - 6.91836i) q^{41} +(-0.0286179 - 1.68380i) q^{42} +(6.25458 + 8.40136i) q^{43} +(2.68077 + 0.975719i) q^{44} +(-5.22627 + 2.85112i) q^{45} +(-6.13206 + 2.23189i) q^{46} +(-3.54890 - 2.33415i) q^{47} +(-1.57851 + 0.712958i) q^{48} +(-3.61560 + 4.85659i) q^{49} +(-0.887215 + 0.583531i) q^{50} +(4.37200 + 8.34854i) q^{51} +(-0.353392 - 1.18041i) q^{52} +(0.380960 + 0.659842i) q^{53} +(-0.865464 - 5.12357i) q^{54} +(2.83065 - 4.90283i) q^{55} +(-0.946075 - 0.224224i) q^{56} +(0.960658 + 7.16130i) q^{57} +(3.14608 + 1.58002i) q^{58} +(-0.0874810 - 0.202804i) q^{59} +(0.849391 + 3.33058i) q^{60} +(0.258923 - 4.44553i) q^{61} +(1.47326 - 8.35528i) q^{62} +(1.37174 - 2.57417i) q^{63} +(0.173648 + 0.984808i) q^{64} +(-2.42867 + 0.283871i) q^{65} +(3.24002 + 3.73067i) q^{66} +(2.08086 - 6.95054i) q^{67} +(5.29431 - 1.25477i) q^{68} +(-11.1627 - 1.77325i) q^{69} +(-0.764219 + 1.77166i) q^{70} +(11.3942 - 9.56084i) q^{71} +(-2.98983 - 0.246820i) q^{72} +(-5.51892 - 4.63093i) q^{73} +(-3.55916 + 1.78748i) q^{74} +(-1.83409 + 0.138133i) q^{75} +(4.14341 + 0.484295i) q^{76} +(0.161279 + 2.76905i) q^{77} +(0.456817 - 2.08473i) q^{78} +(-1.53350 + 1.62541i) q^{79} +1.98446 q^{80} +(2.99515 - 8.48699i) q^{81} -9.51143 q^{82} +(8.03965 - 8.52153i) q^{83} +(-1.24439 - 1.13468i) q^{84} +(-0.627813 - 10.7791i) q^{85} +(10.4031 + 1.21595i) q^{86} +(3.43688 + 5.03695i) q^{87} +(2.54937 - 1.28034i) q^{88} +(0.108478 + 0.0910242i) q^{89} +(-1.51265 + 5.75801i) q^{90} +(0.917739 - 0.770075i) q^{91} +(-2.58466 + 5.99192i) q^{92} +(9.25311 - 11.4159i) q^{93} +(-4.13320 + 0.979586i) q^{94} +(2.37427 - 7.93063i) q^{95} +(-0.564652 + 1.63743i) q^{96} +(-10.5566 + 1.23389i) q^{97} +(1.05138 + 5.96268i) q^{98} +(1.77172 + 8.37304i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{20}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.686242 0.727374i 0.485246 0.514331i
\(3\) 1.65061 0.524883i 0.952977 0.303041i
\(4\) −0.0581448 0.998308i −0.0290724 0.499154i
\(5\) −1.97104 0.230382i −0.881477 0.103030i −0.336701 0.941612i \(-0.609311\pi\)
−0.544776 + 0.838582i \(0.683385\pi\)
\(6\) 0.750928 1.56080i 0.306565 0.637195i
\(7\) 0.868864 0.436360i 0.328400 0.164928i −0.276958 0.960882i \(-0.589326\pi\)
0.605358 + 0.795954i \(0.293030\pi\)
\(8\) −0.766044 0.642788i −0.270838 0.227260i
\(9\) 2.44900 1.73275i 0.816332 0.577583i
\(10\) −1.52019 + 1.27559i −0.480725 + 0.403376i
\(11\) −1.12994 + 2.61950i −0.340690 + 0.789809i 0.658613 + 0.752482i \(0.271143\pi\)
−0.999303 + 0.0373267i \(0.988116\pi\)
\(12\) −0.619969 1.61729i −0.178970 0.466872i
\(13\) 1.19896 0.284159i 0.332532 0.0788116i −0.0609580 0.998140i \(-0.519416\pi\)
0.393490 + 0.919329i \(0.371267\pi\)
\(14\) 0.278854 0.931437i 0.0745268 0.248937i
\(15\) −3.37434 + 0.654298i −0.871250 + 0.168939i
\(16\) −0.993238 + 0.116093i −0.248310 + 0.0290232i
\(17\) 0.944814 + 5.35831i 0.229151 + 1.29958i 0.854588 + 0.519306i \(0.173810\pi\)
−0.625437 + 0.780275i \(0.715079\pi\)
\(18\) 0.420246 2.97042i 0.0990529 0.700135i
\(19\) −0.724393 + 4.10824i −0.166187 + 0.942494i 0.781645 + 0.623724i \(0.214381\pi\)
−0.947832 + 0.318770i \(0.896730\pi\)
\(20\) −0.115386 + 1.98110i −0.0258011 + 0.442988i
\(21\) 1.20511 1.17631i 0.262977 0.256692i
\(22\) 1.12994 + 2.61950i 0.240904 + 0.558479i
\(23\) −5.83149 2.92869i −1.21595 0.610673i −0.279052 0.960276i \(-0.590020\pi\)
−0.936898 + 0.349603i \(0.886317\pi\)
\(24\) −1.60183 0.658905i −0.326971 0.134498i
\(25\) −1.03329 0.244894i −0.206658 0.0489788i
\(26\) 0.616088 1.06710i 0.120825 0.209275i
\(27\) 3.13283 4.14552i 0.602914 0.797806i
\(28\) −0.486141 0.842022i −0.0918721 0.159127i
\(29\) 1.00971 + 3.37266i 0.187498 + 0.626287i 0.999114 + 0.0420949i \(0.0134032\pi\)
−0.811616 + 0.584192i \(0.801412\pi\)
\(30\) −1.83969 + 2.90341i −0.335880 + 0.530088i
\(31\) 7.08842 4.66213i 1.27312 0.837343i 0.280645 0.959812i \(-0.409452\pi\)
0.992472 + 0.122469i \(0.0390811\pi\)
\(32\) −0.597159 + 0.802123i −0.105564 + 0.141797i
\(33\) −0.490156 + 4.91685i −0.0853252 + 0.855913i
\(34\) 4.54586 + 2.98986i 0.779609 + 0.512757i
\(35\) −1.81310 + 0.659913i −0.306469 + 0.111546i
\(36\) −1.87221 2.34410i −0.312036 0.390684i
\(37\) −3.74261 1.36220i −0.615281 0.223944i 0.0155313 0.999879i \(-0.495056\pi\)
−0.630812 + 0.775935i \(0.717278\pi\)
\(38\) 2.49111 + 3.34615i 0.404112 + 0.542817i
\(39\) 1.82986 1.09835i 0.293013 0.175877i
\(40\) 1.36182 + 1.44344i 0.215323 + 0.228229i
\(41\) −6.52714 6.91836i −1.01937 1.08047i −0.996737 0.0807225i \(-0.974277\pi\)
−0.0226309 0.999744i \(-0.507204\pi\)
\(42\) −0.0286179 1.68380i −0.00441584 0.259816i
\(43\) 6.25458 + 8.40136i 0.953815 + 1.28120i 0.959645 + 0.281213i \(0.0907368\pi\)
−0.00583023 + 0.999983i \(0.501856\pi\)
\(44\) 2.68077 + 0.975719i 0.404141 + 0.147095i
\(45\) −5.22627 + 2.85112i −0.779086 + 0.425020i
\(46\) −6.13206 + 2.23189i −0.904123 + 0.329074i
\(47\) −3.54890 2.33415i −0.517660 0.340470i 0.263645 0.964620i \(-0.415075\pi\)
−0.781305 + 0.624149i \(0.785446\pi\)
\(48\) −1.57851 + 0.712958i −0.227838 + 0.102907i
\(49\) −3.61560 + 4.85659i −0.516514 + 0.693798i
\(50\) −0.887215 + 0.583531i −0.125471 + 0.0825237i
\(51\) 4.37200 + 8.34854i 0.612203 + 1.16903i
\(52\) −0.353392 1.18041i −0.0490067 0.163694i
\(53\) 0.380960 + 0.659842i 0.0523288 + 0.0906362i 0.891003 0.453997i \(-0.150002\pi\)
−0.838674 + 0.544633i \(0.816669\pi\)
\(54\) −0.865464 5.12357i −0.117775 0.697230i
\(55\) 2.83065 4.90283i 0.381685 0.661097i
\(56\) −0.946075 0.224224i −0.126425 0.0299632i
\(57\) 0.960658 + 7.16130i 0.127242 + 0.948537i
\(58\) 3.14608 + 1.58002i 0.413101 + 0.207467i
\(59\) −0.0874810 0.202804i −0.0113891 0.0264028i 0.912427 0.409240i \(-0.134206\pi\)
−0.923816 + 0.382837i \(0.874947\pi\)
\(60\) 0.849391 + 3.33058i 0.109656 + 0.429977i
\(61\) 0.258923 4.44553i 0.0331517 0.569192i −0.940307 0.340328i \(-0.889462\pi\)
0.973458 0.228864i \(-0.0735011\pi\)
\(62\) 1.47326 8.35528i 0.187104 1.06112i
\(63\) 1.37174 2.57417i 0.172823 0.324314i
\(64\) 0.173648 + 0.984808i 0.0217060 + 0.123101i
\(65\) −2.42867 + 0.283871i −0.301240 + 0.0352099i
\(66\) 3.24002 + 3.73067i 0.398819 + 0.459214i
\(67\) 2.08086 6.95054i 0.254217 0.849144i −0.731659 0.681670i \(-0.761254\pi\)
0.985877 0.167474i \(-0.0535610\pi\)
\(68\) 5.29431 1.25477i 0.642029 0.152164i
\(69\) −11.1627 1.77325i −1.34383 0.213474i
\(70\) −0.764219 + 1.77166i −0.0913417 + 0.211754i
\(71\) 11.3942 9.56084i 1.35224 1.13466i 0.373943 0.927452i \(-0.378006\pi\)
0.978296 0.207212i \(-0.0664389\pi\)
\(72\) −2.98983 0.246820i −0.352355 0.0290880i
\(73\) −5.51892 4.63093i −0.645941 0.542009i 0.259895 0.965637i \(-0.416312\pi\)
−0.905836 + 0.423628i \(0.860756\pi\)
\(74\) −3.55916 + 1.78748i −0.413744 + 0.207790i
\(75\) −1.83409 + 0.138133i −0.211783 + 0.0159502i
\(76\) 4.14341 + 0.484295i 0.475281 + 0.0555524i
\(77\) 0.161279 + 2.76905i 0.0183794 + 0.315562i
\(78\) 0.456817 2.08473i 0.0517244 0.236049i
\(79\) −1.53350 + 1.62541i −0.172532 + 0.182873i −0.807870 0.589361i \(-0.799379\pi\)
0.635338 + 0.772234i \(0.280861\pi\)
\(80\) 1.98446 0.221870
\(81\) 2.99515 8.48699i 0.332795 0.942999i
\(82\) −9.51143 −1.05036
\(83\) 8.03965 8.52153i 0.882466 0.935360i −0.115856 0.993266i \(-0.536961\pi\)
0.998322 + 0.0579063i \(0.0184425\pi\)
\(84\) −1.24439 1.13468i −0.135774 0.123803i
\(85\) −0.627813 10.7791i −0.0680958 1.16916i
\(86\) 10.4031 + 1.21595i 1.12179 + 0.131119i
\(87\) 3.43688 + 5.03695i 0.368472 + 0.540017i
\(88\) 2.54937 1.28034i 0.271763 0.136485i
\(89\) 0.108478 + 0.0910242i 0.0114987 + 0.00964855i 0.648519 0.761199i \(-0.275389\pi\)
−0.637020 + 0.770847i \(0.719833\pi\)
\(90\) −1.51265 + 5.75801i −0.159448 + 0.606947i
\(91\) 0.917739 0.770075i 0.0962052 0.0807258i
\(92\) −2.58466 + 5.99192i −0.269469 + 0.624700i
\(93\) 9.25311 11.4159i 0.959503 1.18378i
\(94\) −4.13320 + 0.979586i −0.426307 + 0.101037i
\(95\) 2.37427 7.93063i 0.243595 0.813665i
\(96\) −0.564652 + 1.63743i −0.0576296 + 0.167119i
\(97\) −10.5566 + 1.23389i −1.07186 + 0.125283i −0.633674 0.773601i \(-0.718454\pi\)
−0.438188 + 0.898883i \(0.644380\pi\)
\(98\) 1.05138 + 5.96268i 0.106206 + 0.602322i
\(99\) 1.77172 + 8.37304i 0.178064 + 0.841523i
\(100\) −0.184399 + 1.04578i −0.0184399 + 0.104578i
\(101\) −0.296004 + 5.08219i −0.0294535 + 0.505697i 0.951030 + 0.309097i \(0.100027\pi\)
−0.980484 + 0.196599i \(0.937010\pi\)
\(102\) 9.07275 + 2.54903i 0.898337 + 0.252392i
\(103\) −6.19951 14.3721i −0.610856 1.41612i −0.890039 0.455885i \(-0.849323\pi\)
0.279183 0.960238i \(-0.409936\pi\)
\(104\) −1.10111 0.553000i −0.107973 0.0542261i
\(105\) −2.64633 + 2.04092i −0.258255 + 0.199173i
\(106\) 0.741382 + 0.175711i 0.0720094 + 0.0170665i
\(107\) −2.98808 + 5.17551i −0.288869 + 0.500336i −0.973540 0.228516i \(-0.926613\pi\)
0.684671 + 0.728852i \(0.259946\pi\)
\(108\) −4.32067 2.88649i −0.415756 0.277753i
\(109\) −1.48611 2.57401i −0.142343 0.246546i 0.786035 0.618182i \(-0.212130\pi\)
−0.928379 + 0.371636i \(0.878797\pi\)
\(110\) −1.62368 5.42346i −0.154812 0.517107i
\(111\) −6.89256 0.284019i −0.654213 0.0269579i
\(112\) −0.812330 + 0.534278i −0.0767580 + 0.0504845i
\(113\) −9.71400 + 13.0482i −0.913816 + 1.22747i 0.0595531 + 0.998225i \(0.481032\pi\)
−0.973369 + 0.229243i \(0.926375\pi\)
\(114\) 5.86818 + 4.21562i 0.549606 + 0.394829i
\(115\) 10.8194 + 7.11604i 1.00892 + 0.663574i
\(116\) 3.30824 1.20410i 0.307163 0.111798i
\(117\) 2.44388 2.77341i 0.225936 0.256402i
\(118\) −0.207547 0.0755410i −0.0191063 0.00695412i
\(119\) 3.15907 + 4.24336i 0.289591 + 0.388988i
\(120\) 3.00547 + 1.66776i 0.274360 + 0.152245i
\(121\) 1.96365 + 2.08135i 0.178514 + 0.189214i
\(122\) −3.05588 3.23904i −0.276666 0.293249i
\(123\) −14.4051 7.99350i −1.29886 0.720749i
\(124\) −5.06639 6.80535i −0.454976 0.611138i
\(125\) 11.3042 + 4.11438i 1.01107 + 0.368001i
\(126\) −0.931035 2.76427i −0.0829432 0.246261i
\(127\) −6.20947 + 2.26006i −0.551002 + 0.200548i −0.602492 0.798125i \(-0.705825\pi\)
0.0514898 + 0.998674i \(0.483603\pi\)
\(128\) 0.835488 + 0.549509i 0.0738474 + 0.0485702i
\(129\) 14.7336 + 10.5844i 1.29722 + 0.931905i
\(130\) −1.46018 + 1.96136i −0.128066 + 0.172022i
\(131\) 17.9758 11.8229i 1.57055 1.03297i 0.597646 0.801760i \(-0.296103\pi\)
0.972904 0.231208i \(-0.0742677\pi\)
\(132\) 4.93703 + 0.203438i 0.429713 + 0.0177070i
\(133\) 1.16327 + 3.88559i 0.100868 + 0.336924i
\(134\) −3.62767 6.28331i −0.313383 0.542796i
\(135\) −7.13000 + 7.44926i −0.613653 + 0.641130i
\(136\) 2.72048 4.71202i 0.233280 0.404052i
\(137\) 19.7062 + 4.67046i 1.68362 + 0.399024i 0.957474 0.288520i \(-0.0931633\pi\)
0.726142 + 0.687545i \(0.241311\pi\)
\(138\) −8.95013 + 6.90258i −0.761886 + 0.587587i
\(139\) 0.844890 + 0.424320i 0.0716626 + 0.0359903i 0.484270 0.874919i \(-0.339085\pi\)
−0.412607 + 0.910909i \(0.635382\pi\)
\(140\) 0.764219 + 1.77166i 0.0645883 + 0.149733i
\(141\) −7.08299 1.99000i −0.596495 0.167588i
\(142\) 0.864848 14.8489i 0.0725764 1.24609i
\(143\) −0.610402 + 3.46176i −0.0510444 + 0.289487i
\(144\) −2.23128 + 2.00534i −0.185940 + 0.167112i
\(145\) −1.21318 6.88027i −0.100749 0.571375i
\(146\) −7.15573 + 0.836385i −0.592212 + 0.0692197i
\(147\) −3.41878 + 9.91408i −0.281976 + 0.817699i
\(148\) −1.14228 + 3.81548i −0.0938949 + 0.313631i
\(149\) −13.5047 + 3.20067i −1.10635 + 0.262209i −0.742898 0.669404i \(-0.766549\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(150\) −1.15816 + 1.42886i −0.0945631 + 0.116666i
\(151\) −8.89594 + 20.6231i −0.723942 + 1.67829i 0.0108032 + 0.999942i \(0.496561\pi\)
−0.734745 + 0.678344i \(0.762698\pi\)
\(152\) 3.19564 2.68146i 0.259201 0.217495i
\(153\) 11.5985 + 11.4853i 0.937680 + 0.928535i
\(154\) 2.12481 + 1.78293i 0.171222 + 0.143672i
\(155\) −15.0457 + 7.55621i −1.20850 + 0.606929i
\(156\) −1.20289 1.76290i −0.0963082 0.141145i
\(157\) −13.9173 1.62669i −1.11072 0.129824i −0.459110 0.888380i \(-0.651832\pi\)
−0.651609 + 0.758555i \(0.725906\pi\)
\(158\) 0.129932 + 2.23085i 0.0103369 + 0.177477i
\(159\) 0.975154 + 0.889179i 0.0773347 + 0.0705164i
\(160\) 1.36182 1.44344i 0.107661 0.114114i
\(161\) −6.34473 −0.500035
\(162\) −4.11782 8.00272i −0.323526 0.628753i
\(163\) 13.5318 1.05990 0.529948 0.848030i \(-0.322211\pi\)
0.529948 + 0.848030i \(0.322211\pi\)
\(164\) −6.52714 + 6.91836i −0.509684 + 0.540233i
\(165\) 2.09887 9.57839i 0.163397 0.745677i
\(166\) −0.681195 11.6957i −0.0528710 0.907759i
\(167\) −6.19397 0.723971i −0.479304 0.0560226i −0.126989 0.991904i \(-0.540531\pi\)
−0.352315 + 0.935882i \(0.614605\pi\)
\(168\) −1.67929 + 0.126474i −0.129560 + 0.00975766i
\(169\) −10.2605 + 5.15300i −0.789266 + 0.396384i
\(170\) −8.27128 6.94043i −0.634378 0.532307i
\(171\) 5.34451 + 11.3162i 0.408705 + 0.865375i
\(172\) 8.02348 6.73250i 0.611785 0.513348i
\(173\) 4.76907 11.0560i 0.362586 0.840569i −0.635090 0.772438i \(-0.719037\pi\)
0.997676 0.0681309i \(-0.0217035\pi\)
\(174\) 6.02227 + 0.956667i 0.456547 + 0.0725248i
\(175\) −1.00465 + 0.238106i −0.0759443 + 0.0179991i
\(176\) 0.818196 2.73296i 0.0616738 0.206005i
\(177\) −0.250845 0.288832i −0.0188547 0.0217099i
\(178\) 0.140651 0.0164397i 0.0105422 0.00123221i
\(179\) 1.82508 + 10.3506i 0.136413 + 0.773637i 0.973865 + 0.227126i \(0.0729330\pi\)
−0.837452 + 0.546510i \(0.815956\pi\)
\(180\) 3.15018 + 5.05165i 0.234800 + 0.376528i
\(181\) −3.69405 + 20.9500i −0.274577 + 1.55720i 0.465727 + 0.884929i \(0.345793\pi\)
−0.740303 + 0.672273i \(0.765318\pi\)
\(182\) 0.0696589 1.19600i 0.00516346 0.0886532i
\(183\) −1.90601 7.47372i −0.140896 0.552473i
\(184\) 2.58466 + 5.99192i 0.190544 + 0.441730i
\(185\) 7.06302 + 3.54718i 0.519283 + 0.260794i
\(186\) −1.95377 14.5646i −0.143258 1.06792i
\(187\) −15.1037 3.57963i −1.10449 0.261769i
\(188\) −2.12385 + 3.67861i −0.154898 + 0.268290i
\(189\) 0.913065 4.96894i 0.0664157 0.361437i
\(190\) −4.13920 7.16931i −0.300289 0.520116i
\(191\) −1.54218 5.15125i −0.111589 0.372732i 0.883893 0.467690i \(-0.154914\pi\)
−0.995481 + 0.0949580i \(0.969728\pi\)
\(192\) 0.803534 + 1.53438i 0.0579900 + 0.110735i
\(193\) 1.48697 0.977995i 0.107034 0.0703977i −0.494863 0.868971i \(-0.664782\pi\)
0.601898 + 0.798573i \(0.294411\pi\)
\(194\) −6.34689 + 8.52535i −0.455680 + 0.612085i
\(195\) −3.85978 + 1.74333i −0.276405 + 0.124842i
\(196\) 5.05860 + 3.32709i 0.361329 + 0.237650i
\(197\) 13.2546 4.82428i 0.944352 0.343716i 0.176469 0.984306i \(-0.443532\pi\)
0.767883 + 0.640590i \(0.221310\pi\)
\(198\) 7.30616 + 4.45723i 0.519226 + 0.316762i
\(199\) 26.4129 + 9.61351i 1.87236 + 0.681484i 0.965722 + 0.259578i \(0.0835833\pi\)
0.906639 + 0.421906i \(0.138639\pi\)
\(200\) 0.634130 + 0.851785i 0.0448398 + 0.0602303i
\(201\) −0.213552 12.5648i −0.0150628 0.886254i
\(202\) 3.49352 + 3.70291i 0.245803 + 0.260536i
\(203\) 2.34899 + 2.48978i 0.164867 + 0.174749i
\(204\) 8.08020 4.85003i 0.565727 0.339570i
\(205\) 11.2714 + 15.1401i 0.787229 + 1.05743i
\(206\) −14.7082 5.35336i −1.02477 0.372986i
\(207\) −19.3560 + 2.93218i −1.34533 + 0.203801i
\(208\) −1.15787 + 0.421429i −0.0802836 + 0.0292208i
\(209\) −9.94300 6.53961i −0.687772 0.452355i
\(210\) −0.331510 + 3.32544i −0.0228764 + 0.229477i
\(211\) −4.64579 + 6.24038i −0.319830 + 0.429606i −0.932742 0.360545i \(-0.882591\pi\)
0.612912 + 0.790151i \(0.289998\pi\)
\(212\) 0.636574 0.418682i 0.0437201 0.0287552i
\(213\) 13.7890 21.7618i 0.944803 1.49109i
\(214\) 1.71398 + 5.72511i 0.117166 + 0.391360i
\(215\) −10.3925 18.0004i −0.708765 1.22762i
\(216\) −5.06458 + 1.16191i −0.344601 + 0.0790579i
\(217\) 4.12451 7.14385i 0.279990 0.484956i
\(218\) −2.89210 0.685440i −0.195878 0.0464239i
\(219\) −11.5403 4.74704i −0.779818 0.320775i
\(220\) −5.05912 2.54079i −0.341086 0.171300i
\(221\) 2.65541 + 6.15593i 0.178622 + 0.414093i
\(222\) −4.93655 + 4.81856i −0.331320 + 0.323401i
\(223\) 1.33370 22.8987i 0.0893110 1.53341i −0.594705 0.803944i \(-0.702731\pi\)
0.684016 0.729467i \(-0.260232\pi\)
\(224\) −0.168835 + 0.957512i −0.0112808 + 0.0639764i
\(225\) −2.95486 + 1.19069i −0.196991 + 0.0793792i
\(226\) 2.82474 + 16.0199i 0.187899 + 1.06563i
\(227\) 8.01258 0.936536i 0.531813 0.0621601i 0.154052 0.988063i \(-0.450768\pi\)
0.377762 + 0.925903i \(0.376694\pi\)
\(228\) 7.09333 1.37543i 0.469767 0.0910898i
\(229\) −7.42196 + 24.7911i −0.490457 + 1.63824i 0.251547 + 0.967845i \(0.419061\pi\)
−0.742004 + 0.670395i \(0.766125\pi\)
\(230\) 12.6007 2.98643i 0.830869 0.196920i
\(231\) 1.71963 + 4.48595i 0.113144 + 0.295154i
\(232\) 1.39442 3.23263i 0.0915483 0.212233i
\(233\) 5.02217 4.21410i 0.329013 0.276075i −0.463284 0.886210i \(-0.653329\pi\)
0.792298 + 0.610135i \(0.208885\pi\)
\(234\) −0.340214 3.68084i −0.0222405 0.240624i
\(235\) 6.45729 + 5.41831i 0.421227 + 0.353451i
\(236\) −0.197374 + 0.0991250i −0.0128480 + 0.00645249i
\(237\) −1.67805 + 3.48782i −0.109001 + 0.226558i
\(238\) 5.25439 + 0.614150i 0.340592 + 0.0398094i
\(239\) 0.437409 + 7.51002i 0.0282936 + 0.485783i 0.982456 + 0.186494i \(0.0597124\pi\)
−0.954163 + 0.299289i \(0.903251\pi\)
\(240\) 3.27556 1.04161i 0.211437 0.0672357i
\(241\) 19.2683 20.4232i 1.24118 1.31557i 0.310126 0.950696i \(-0.399629\pi\)
0.931055 0.364879i \(-0.118890\pi\)
\(242\) 2.86146 0.183942
\(243\) 0.489137 15.5808i 0.0313781 0.999508i
\(244\) −4.45306 −0.285078
\(245\) 8.24537 8.73958i 0.526777 0.558351i
\(246\) −15.6996 + 4.99239i −1.00097 + 0.318303i
\(247\) 0.298874 + 5.13147i 0.0190169 + 0.326507i
\(248\) −8.42680 0.984952i −0.535102 0.0625445i
\(249\) 8.79748 18.2856i 0.557518 1.15880i
\(250\) 10.7501 5.39889i 0.679894 0.341456i
\(251\) −6.61197 5.54810i −0.417344 0.350193i 0.409808 0.912172i \(-0.365596\pi\)
−0.827152 + 0.561979i \(0.810040\pi\)
\(252\) −2.64957 1.21975i −0.166907 0.0768367i
\(253\) 14.2609 11.9663i 0.896577 0.752318i
\(254\) −2.61729 + 6.06756i −0.164223 + 0.380712i
\(255\) −6.69405 17.4626i −0.419198 1.09355i
\(256\) 0.973045 0.230616i 0.0608153 0.0144135i
\(257\) −1.84364 + 6.15819i −0.115003 + 0.384138i −0.996040 0.0889110i \(-0.971661\pi\)
0.881036 + 0.473049i \(0.156846\pi\)
\(258\) 17.8096 3.45336i 1.10878 0.214997i
\(259\) −3.84623 + 0.449559i −0.238993 + 0.0279343i
\(260\) 0.424606 + 2.40806i 0.0263329 + 0.149341i
\(261\) 8.31674 + 6.51005i 0.514793 + 0.402962i
\(262\) 3.73609 21.1884i 0.230817 1.30903i
\(263\) 0.326352 5.60324i 0.0201237 0.345511i −0.973185 0.230023i \(-0.926120\pi\)
0.993309 0.115488i \(-0.0368431\pi\)
\(264\) 3.53597 3.45146i 0.217624 0.212422i
\(265\) −0.598872 1.38834i −0.0367884 0.0852852i
\(266\) 3.62456 + 1.82032i 0.222236 + 0.111611i
\(267\) 0.226832 + 0.0933065i 0.0138819 + 0.00571027i
\(268\) −7.05978 1.67320i −0.431244 0.102207i
\(269\) −13.8587 + 24.0039i −0.844978 + 1.46354i 0.0406627 + 0.999173i \(0.487053\pi\)
−0.885641 + 0.464372i \(0.846280\pi\)
\(270\) 0.525489 + 10.2982i 0.0319802 + 0.626726i
\(271\) 0.898149 + 1.55564i 0.0545587 + 0.0944984i 0.892015 0.452006i \(-0.149291\pi\)
−0.837456 + 0.546504i \(0.815958\pi\)
\(272\) −1.56049 5.21239i −0.0946185 0.316048i
\(273\) 1.11063 1.75280i 0.0672181 0.106084i
\(274\) 16.9204 11.1287i 1.02220 0.672311i
\(275\) 1.80906 2.42998i 0.109090 0.146533i
\(276\) −1.12120 + 11.2469i −0.0674881 + 0.676986i
\(277\) 6.99361 + 4.59977i 0.420205 + 0.276373i 0.741953 0.670452i \(-0.233900\pi\)
−0.321747 + 0.946826i \(0.604270\pi\)
\(278\) 0.888438 0.323365i 0.0532850 0.0193941i
\(279\) 9.28120 23.7000i 0.555651 1.41888i
\(280\) 1.81310 + 0.659913i 0.108353 + 0.0394374i
\(281\) −8.75814 11.7642i −0.522467 0.701795i 0.460066 0.887885i \(-0.347826\pi\)
−0.982533 + 0.186090i \(0.940418\pi\)
\(282\) −6.30811 + 3.78636i −0.375643 + 0.225474i
\(283\) 14.6425 + 15.5202i 0.870407 + 0.922578i 0.997596 0.0693007i \(-0.0220768\pi\)
−0.127188 + 0.991879i \(0.540595\pi\)
\(284\) −10.2072 10.8190i −0.605685 0.641988i
\(285\) −0.243665 14.3365i −0.0144334 0.849224i
\(286\) 2.09911 + 2.81960i 0.124123 + 0.166726i
\(287\) −8.69009 3.16293i −0.512960 0.186702i
\(288\) −0.0725594 + 2.99912i −0.00427561 + 0.176725i
\(289\) −11.8440 + 4.31087i −0.696707 + 0.253581i
\(290\) −5.83706 3.83909i −0.342764 0.225439i
\(291\) −16.7772 + 7.57766i −0.983494 + 0.444210i
\(292\) −4.30219 + 5.77885i −0.251767 + 0.338182i
\(293\) 12.9636 8.52628i 0.757341 0.498111i −0.111158 0.993803i \(-0.535456\pi\)
0.868498 + 0.495692i \(0.165085\pi\)
\(294\) 4.86513 + 9.29018i 0.283740 + 0.541814i
\(295\) 0.125707 + 0.419889i 0.00731892 + 0.0244469i
\(296\) 1.99140 + 3.44921i 0.115748 + 0.200481i
\(297\) 7.31927 + 12.8906i 0.424707 + 0.747991i
\(298\) −6.93940 + 12.0194i −0.401989 + 0.696265i
\(299\) −7.82396 1.85431i −0.452471 0.107238i
\(300\) 0.244542 + 1.82296i 0.0141186 + 0.105249i
\(301\) 9.10040 + 4.57039i 0.524538 + 0.263433i
\(302\) 8.89594 + 20.6231i 0.511904 + 1.18673i
\(303\) 2.17897 + 8.54405i 0.125179 + 0.490843i
\(304\) 0.242558 4.16456i 0.0139116 0.238854i
\(305\) −1.53452 + 8.70268i −0.0878662 + 0.498314i
\(306\) 16.3135 0.554689i 0.932580 0.0317095i
\(307\) −0.146163 0.828930i −0.00834195 0.0473096i 0.980353 0.197253i \(-0.0632020\pi\)
−0.988695 + 0.149943i \(0.952091\pi\)
\(308\) 2.75499 0.322012i 0.156980 0.0183483i
\(309\) −17.7766 20.4686i −1.01128 1.16442i
\(310\) −4.82876 + 16.1292i −0.274255 + 0.916077i
\(311\) −7.29384 + 1.72867i −0.413596 + 0.0980239i −0.432145 0.901804i \(-0.642243\pi\)
0.0185498 + 0.999828i \(0.494095\pi\)
\(312\) −2.10776 0.334828i −0.119329 0.0189559i
\(313\) 11.2311 26.0367i 0.634821 1.47168i −0.231826 0.972757i \(-0.574470\pi\)
0.866646 0.498923i \(-0.166271\pi\)
\(314\) −10.7338 + 9.00674i −0.605745 + 0.508280i
\(315\) −3.29680 + 4.75777i −0.185754 + 0.268070i
\(316\) 1.71183 + 1.43639i 0.0962978 + 0.0808034i
\(317\) −0.263419 + 0.132294i −0.0147951 + 0.00743037i −0.456181 0.889887i \(-0.650783\pi\)
0.441386 + 0.897317i \(0.354487\pi\)
\(318\) 1.31596 0.0991099i 0.0737952 0.00555781i
\(319\) −9.97558 1.16598i −0.558525 0.0652822i
\(320\) −0.115386 1.98110i −0.00645028 0.110747i
\(321\) −2.21561 + 10.1111i −0.123663 + 0.564348i
\(322\) −4.35402 + 4.61499i −0.242640 + 0.257183i
\(323\) −22.6976 −1.26293
\(324\) −8.64679 2.49661i −0.480377 0.138701i
\(325\) −1.30846 −0.0725805
\(326\) 9.28611 9.84271i 0.514310 0.545137i
\(327\) −3.80403 3.46865i −0.210364 0.191817i
\(328\) 0.553040 + 9.49533i 0.0305365 + 0.524292i
\(329\) −4.10204 0.479459i −0.226153 0.0264334i
\(330\) −5.52674 8.09975i −0.304237 0.445877i
\(331\) −23.2599 + 11.6816i −1.27848 + 0.642076i −0.952856 0.303423i \(-0.901870\pi\)
−0.325623 + 0.945500i \(0.605574\pi\)
\(332\) −8.97458 7.53057i −0.492544 0.413294i
\(333\) −11.5260 + 3.14899i −0.631620 + 0.172564i
\(334\) −4.77716 + 4.00851i −0.261394 + 0.219336i
\(335\) −5.70274 + 13.2204i −0.311574 + 0.722309i
\(336\) −1.06040 + 1.30826i −0.0578497 + 0.0713715i
\(337\) 5.69426 1.34956i 0.310186 0.0735154i −0.0725746 0.997363i \(-0.523122\pi\)
0.382761 + 0.923848i \(0.374973\pi\)
\(338\) −3.29300 + 10.9994i −0.179116 + 0.598288i
\(339\) −9.18521 + 26.6361i −0.498872 + 1.44667i
\(340\) −10.7244 + 1.25350i −0.581611 + 0.0679806i
\(341\) 4.20294 + 23.8360i 0.227602 + 1.29079i
\(342\) 11.8988 + 3.87822i 0.643412 + 0.209710i
\(343\) −2.20409 + 12.5000i −0.119009 + 0.674936i
\(344\) 0.609004 10.4562i 0.0328353 0.563760i
\(345\) 21.5937 + 6.06684i 1.16256 + 0.326628i
\(346\) −4.76907 11.0560i −0.256387 0.594372i
\(347\) 20.1631 + 10.1263i 1.08241 + 0.543609i 0.898339 0.439303i \(-0.144775\pi\)
0.184076 + 0.982912i \(0.441071\pi\)
\(348\) 4.82859 3.72394i 0.258839 0.199624i
\(349\) −31.3627 7.43310i −1.67881 0.397885i −0.722760 0.691099i \(-0.757127\pi\)
−0.956047 + 0.293214i \(0.905275\pi\)
\(350\) −0.516240 + 0.894154i −0.0275942 + 0.0477945i
\(351\) 2.57816 5.86055i 0.137612 0.312813i
\(352\) −1.42641 2.47061i −0.0760277 0.131684i
\(353\) −2.61760 8.74338i −0.139321 0.465363i 0.859642 0.510897i \(-0.170686\pi\)
−0.998963 + 0.0455332i \(0.985501\pi\)
\(354\) −0.382229 0.0157503i −0.0203152 0.000837121i
\(355\) −24.6610 + 16.2198i −1.30887 + 0.860859i
\(356\) 0.0845627 0.113587i 0.00448182 0.00602012i
\(357\) 7.44164 + 5.34597i 0.393853 + 0.282939i
\(358\) 8.78117 + 5.77546i 0.464099 + 0.305243i
\(359\) −1.25255 + 0.455890i −0.0661069 + 0.0240609i −0.374862 0.927081i \(-0.622310\pi\)
0.308755 + 0.951142i \(0.400088\pi\)
\(360\) 5.83622 + 1.17530i 0.307596 + 0.0619435i
\(361\) 1.50129 + 0.546425i 0.0790153 + 0.0287592i
\(362\) 12.7035 + 17.0637i 0.667680 + 0.896849i
\(363\) 4.33368 + 2.40480i 0.227459 + 0.126219i
\(364\) −0.822134 0.871411i −0.0430915 0.0456743i
\(365\) 9.81115 + 10.3992i 0.513539 + 0.544320i
\(366\) −6.74417 3.74240i −0.352523 0.195618i
\(367\) −6.53198 8.77397i −0.340966 0.457997i 0.598257 0.801304i \(-0.295860\pi\)
−0.939223 + 0.343307i \(0.888453\pi\)
\(368\) 6.13206 + 2.23189i 0.319656 + 0.116345i
\(369\) −27.9727 5.63313i −1.45620 0.293249i
\(370\) 7.42706 2.70323i 0.386115 0.140534i
\(371\) 0.618930 + 0.407077i 0.0321333 + 0.0211344i
\(372\) −11.9346 8.57368i −0.618782 0.444525i
\(373\) −5.02841 + 6.75432i −0.260361 + 0.349726i −0.913012 0.407933i \(-0.866250\pi\)
0.652651 + 0.757659i \(0.273657\pi\)
\(374\) −12.9685 + 8.52951i −0.670585 + 0.441051i
\(375\) 20.8183 + 0.857849i 1.07505 + 0.0442991i
\(376\) 1.21825 + 4.06925i 0.0628266 + 0.209855i
\(377\) 2.16897 + 3.75677i 0.111708 + 0.193484i
\(378\) −2.98769 4.07403i −0.153670 0.209546i
\(379\) 5.48813 9.50572i 0.281906 0.488276i −0.689948 0.723859i \(-0.742367\pi\)
0.971854 + 0.235583i \(0.0756999\pi\)
\(380\) −8.05526 1.90913i −0.413226 0.0979364i
\(381\) −9.06312 + 6.98972i −0.464318 + 0.358094i
\(382\) −4.80520 2.41326i −0.245855 0.123473i
\(383\) −6.04204 14.0070i −0.308734 0.715725i 0.691242 0.722623i \(-0.257064\pi\)
−0.999976 + 0.00689765i \(0.997804\pi\)
\(384\) 1.66749 + 0.468489i 0.0850937 + 0.0239075i
\(385\) 0.320051 5.49507i 0.0163113 0.280055i
\(386\) 0.309052 1.75272i 0.0157304 0.0892113i
\(387\) 29.8749 + 9.73727i 1.51863 + 0.494973i
\(388\) 1.84562 + 10.4670i 0.0936970 + 0.531382i
\(389\) 25.7573 3.01059i 1.30595 0.152643i 0.565494 0.824752i \(-0.308686\pi\)
0.740452 + 0.672109i \(0.234611\pi\)
\(390\) −1.38069 + 4.00385i −0.0699140 + 0.202743i
\(391\) 10.1831 34.0140i 0.514983 1.72016i
\(392\) 5.89146 1.39630i 0.297564 0.0705239i
\(393\) 23.4653 28.9500i 1.18367 1.46034i
\(394\) 5.58681 12.9517i 0.281459 0.652496i
\(395\) 3.39705 2.85047i 0.170924 0.143423i
\(396\) 8.25586 2.25557i 0.414873 0.113347i
\(397\) −10.2452 8.59675i −0.514192 0.431458i 0.348409 0.937342i \(-0.386722\pi\)
−0.862601 + 0.505884i \(0.831166\pi\)
\(398\) 25.1183 12.6149i 1.25906 0.632326i
\(399\) 3.95958 + 5.80300i 0.198227 + 0.290513i
\(400\) 1.05473 + 0.123281i 0.0527366 + 0.00616403i
\(401\) 0.216108 + 3.71042i 0.0107919 + 0.185290i 0.999396 + 0.0347509i \(0.0110638\pi\)
−0.988604 + 0.150539i \(0.951899\pi\)
\(402\) −9.28586 8.46717i −0.463137 0.422304i
\(403\) 7.17396 7.60396i 0.357361 0.378780i
\(404\) 5.09080 0.253277
\(405\) −7.85883 + 16.0382i −0.390508 + 0.796945i
\(406\) 3.42298 0.169879
\(407\) 7.79720 8.26455i 0.386493 0.409659i
\(408\) 2.01719 9.20562i 0.0998656 0.455746i
\(409\) 0.553163 + 9.49745i 0.0273522 + 0.469618i 0.983977 + 0.178296i \(0.0570583\pi\)
−0.956625 + 0.291323i \(0.905905\pi\)
\(410\) 18.7474 + 2.19126i 0.925870 + 0.108219i
\(411\) 34.9786 2.63438i 1.72537 0.129944i
\(412\) −13.9873 + 7.02468i −0.689104 + 0.346081i
\(413\) −0.164505 0.138036i −0.00809474 0.00679229i
\(414\) −11.1501 + 16.0912i −0.547997 + 0.790840i
\(415\) −17.8097 + 14.9441i −0.874244 + 0.733578i
\(416\) −0.488040 + 1.13140i −0.0239281 + 0.0554716i
\(417\) 1.61730 + 0.256916i 0.0791994 + 0.0125812i
\(418\) −11.5800 + 2.74452i −0.566398 + 0.134239i
\(419\) 2.87324 9.59729i 0.140367 0.468859i −0.858680 0.512513i \(-0.828715\pi\)
0.999047 + 0.0436541i \(0.0139000\pi\)
\(420\) 2.19134 + 2.52318i 0.106926 + 0.123119i
\(421\) 13.8333 1.61688i 0.674195 0.0788021i 0.227895 0.973686i \(-0.426816\pi\)
0.446300 + 0.894884i \(0.352742\pi\)
\(422\) 1.35095 + 7.66164i 0.0657634 + 0.372963i
\(423\) −12.7357 + 0.433039i −0.619232 + 0.0210551i
\(424\) 0.132306 0.750344i 0.00642534 0.0364399i
\(425\) 0.335951 5.76806i 0.0162960 0.279792i
\(426\) −6.36640 24.9636i −0.308453 1.20949i
\(427\) −1.71488 3.97554i −0.0829890 0.192390i
\(428\) 5.34050 + 2.68210i 0.258143 + 0.129644i
\(429\) 0.809489 + 6.03440i 0.0390825 + 0.291343i
\(430\) −20.2248 4.79337i −0.975327 0.231157i
\(431\) −2.88041 + 4.98901i −0.138744 + 0.240312i −0.927022 0.375008i \(-0.877640\pi\)
0.788277 + 0.615320i \(0.210973\pi\)
\(432\) −2.63038 + 4.48119i −0.126554 + 0.215601i
\(433\) −8.41428 14.5740i −0.404364 0.700380i 0.589883 0.807489i \(-0.299174\pi\)
−0.994247 + 0.107109i \(0.965841\pi\)
\(434\) −2.36584 7.90247i −0.113564 0.379331i
\(435\) −5.61382 10.7198i −0.269162 0.513977i
\(436\) −2.48325 + 1.63326i −0.118926 + 0.0782189i
\(437\) 16.2560 21.8356i 0.777631 1.04454i
\(438\) −11.3723 + 5.13646i −0.543388 + 0.245430i
\(439\) 14.5175 + 9.54834i 0.692884 + 0.455717i 0.846483 0.532416i \(-0.178716\pi\)
−0.153598 + 0.988133i \(0.549086\pi\)
\(440\) −5.31988 + 1.93628i −0.253615 + 0.0923084i
\(441\) −0.439323 + 18.1587i −0.0209202 + 0.864699i
\(442\) 6.29992 + 2.29298i 0.299657 + 0.109066i
\(443\) 9.72557 + 13.0637i 0.462076 + 0.620675i 0.970695 0.240316i \(-0.0772512\pi\)
−0.508619 + 0.860992i \(0.669844\pi\)
\(444\) 0.117229 + 6.89742i 0.00556343 + 0.327337i
\(445\) −0.192845 0.204404i −0.00914175 0.00968968i
\(446\) −15.7407 16.6841i −0.745343 0.790017i
\(447\) −20.6109 + 12.3714i −0.974864 + 0.585149i
\(448\) 0.580607 + 0.779891i 0.0274311 + 0.0368464i
\(449\) −25.5331 9.29330i −1.20498 0.438578i −0.340022 0.940417i \(-0.610435\pi\)
−0.864961 + 0.501840i \(0.832657\pi\)
\(450\) −1.16167 + 2.96639i −0.0547618 + 0.139837i
\(451\) 25.4979 9.28048i 1.20065 0.437001i
\(452\) 13.5909 + 8.93888i 0.639263 + 0.420450i
\(453\) −3.85896 + 38.7100i −0.181310 + 1.81875i
\(454\) 4.81735 6.47083i 0.226090 0.303691i
\(455\) −1.98632 + 1.30642i −0.0931199 + 0.0612459i
\(456\) 3.86729 6.10337i 0.181102 0.285817i
\(457\) −9.69386 32.3798i −0.453460 1.51466i −0.813411 0.581690i \(-0.802392\pi\)
0.359951 0.932971i \(-0.382794\pi\)
\(458\) 12.9391 + 22.4112i 0.604605 + 1.04721i
\(459\) 25.1729 + 12.8699i 1.17497 + 0.600717i
\(460\) 6.47491 11.2149i 0.301894 0.522896i
\(461\) −7.38299 1.74980i −0.343860 0.0814963i 0.0550573 0.998483i \(-0.482466\pi\)
−0.398917 + 0.916987i \(0.630614\pi\)
\(462\) 4.44305 + 1.82763i 0.206709 + 0.0850291i
\(463\) 3.86605 + 1.94161i 0.179671 + 0.0902341i 0.536361 0.843989i \(-0.319799\pi\)
−0.356690 + 0.934223i \(0.616095\pi\)
\(464\) −1.39442 3.23263i −0.0647344 0.150071i
\(465\) −20.8683 + 20.3695i −0.967744 + 0.944614i
\(466\) 0.381196 6.54489i 0.0176586 0.303186i
\(467\) 0.567766 3.21996i 0.0262731 0.149002i −0.968849 0.247652i \(-0.920341\pi\)
0.995122 + 0.0986496i \(0.0314523\pi\)
\(468\) −2.91081 2.27848i −0.134552 0.105323i
\(469\) −1.22496 6.94708i −0.0565633 0.320786i
\(470\) 8.37239 0.978592i 0.386190 0.0451391i
\(471\) −23.8257 + 4.61991i −1.09783 + 0.212874i
\(472\) −0.0633454 + 0.211588i −0.00291571 + 0.00973915i
\(473\) −29.0747 + 6.89082i −1.33685 + 0.316840i
\(474\) 1.38540 + 3.61405i 0.0636337 + 0.165999i
\(475\) 1.75459 4.06760i 0.0805061 0.186634i
\(476\) 4.05250 3.40045i 0.185746 0.155859i
\(477\) 2.07631 + 0.955841i 0.0950677 + 0.0437649i
\(478\) 5.76276 + 4.83553i 0.263582 + 0.221172i
\(479\) 6.32528 3.17667i 0.289009 0.145146i −0.298388 0.954445i \(-0.596449\pi\)
0.587397 + 0.809299i \(0.300153\pi\)
\(480\) 1.49019 3.09735i 0.0680174 0.141374i
\(481\) −4.87433 0.569727i −0.222250 0.0259773i
\(482\) −1.63259 28.0305i −0.0743625 1.27675i
\(483\) −10.4727 + 3.33024i −0.476522 + 0.151531i
\(484\) 1.96365 2.08135i 0.0892570 0.0946069i
\(485\) 21.0918 0.957730
\(486\) −10.9974 11.0480i −0.498851 0.501146i
\(487\) 4.59607 0.208268 0.104134 0.994563i \(-0.466793\pi\)
0.104134 + 0.994563i \(0.466793\pi\)
\(488\) −3.05588 + 3.23904i −0.138333 + 0.146625i
\(489\) 22.3357 7.10264i 1.01006 0.321192i
\(490\) −0.698625 11.9949i −0.0315606 0.541875i
\(491\) −8.61591 1.00706i −0.388831 0.0454478i −0.0805682 0.996749i \(-0.525673\pi\)
−0.308263 + 0.951301i \(0.599748\pi\)
\(492\) −7.14239 + 14.8455i −0.322004 + 0.669285i
\(493\) −17.1178 + 8.59686i −0.770945 + 0.387183i
\(494\) 3.93759 + 3.30403i 0.177161 + 0.148655i
\(495\) −1.56313 16.9118i −0.0702574 0.760129i
\(496\) −6.49925 + 5.45352i −0.291825 + 0.244870i
\(497\) 5.72801 13.2790i 0.256937 0.595646i
\(498\) −7.26324 18.9474i −0.325474 0.849052i
\(499\) 23.1673 5.49075i 1.03711 0.245800i 0.323416 0.946257i \(-0.395169\pi\)
0.713694 + 0.700457i \(0.247021\pi\)
\(500\) 3.45014 11.5243i 0.154295 0.515381i
\(501\) −10.6038 + 2.05612i −0.473743 + 0.0918607i
\(502\) −8.57295 + 1.00203i −0.382629 + 0.0447230i
\(503\) −5.01805 28.4588i −0.223744 1.26891i −0.865072 0.501647i \(-0.832728\pi\)
0.641329 0.767266i \(-0.278384\pi\)
\(504\) −2.70546 + 1.09019i −0.120511 + 0.0485608i
\(505\) 1.75428 9.94902i 0.0780644 0.442725i
\(506\) 1.08244 18.5848i 0.0481205 0.826197i
\(507\) −14.2312 + 13.8911i −0.632032 + 0.616926i
\(508\) 2.61729 + 6.06756i 0.116123 + 0.269204i
\(509\) −3.09062 1.55217i −0.136989 0.0687986i 0.378984 0.925403i \(-0.376273\pi\)
−0.515974 + 0.856604i \(0.672570\pi\)
\(510\) −17.2955 7.11445i −0.765859 0.315033i
\(511\) −6.81594 1.61541i −0.301519 0.0714614i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) 14.7614 + 15.8734i 0.651731 + 0.700828i
\(514\) 3.21412 + 5.56703i 0.141769 + 0.245551i
\(515\) 8.90843 + 29.7562i 0.392552 + 1.31122i
\(516\) 9.70982 15.3241i 0.427451 0.674605i
\(517\) 10.1243 6.65889i 0.445268 0.292857i
\(518\) −2.31244 + 3.10615i −0.101603 + 0.136476i
\(519\) 2.06877 20.7522i 0.0908090 0.910921i
\(520\) 2.04294 + 1.34366i 0.0895888 + 0.0589235i
\(521\) 16.4823 5.99907i 0.722103 0.262824i 0.0452845 0.998974i \(-0.485581\pi\)
0.676818 + 0.736150i \(0.263358\pi\)
\(522\) 10.4425 1.58191i 0.457057 0.0692383i
\(523\) −19.7671 7.19463i −0.864354 0.314599i −0.128476 0.991713i \(-0.541008\pi\)
−0.735879 + 0.677113i \(0.763231\pi\)
\(524\) −12.8481 17.2579i −0.561270 0.753916i
\(525\) −1.53330 + 0.920343i −0.0669187 + 0.0401671i
\(526\) −3.85169 4.08256i −0.167942 0.178008i
\(527\) 31.6784 + 33.5771i 1.37993 + 1.46264i
\(528\) −0.0839690 4.94050i −0.00365428 0.215008i
\(529\) 11.6945 + 15.7084i 0.508455 + 0.682974i
\(530\) −1.42081 0.517134i −0.0617163 0.0224629i
\(531\) −0.565649 0.345083i −0.0245471 0.0149753i
\(532\) 3.81138 1.38723i 0.165244 0.0601440i
\(533\) −9.79171 6.44011i −0.424126 0.278952i
\(534\) 0.223530 0.100961i 0.00967310 0.00436901i
\(535\) 7.08199 9.51276i 0.306181 0.411272i
\(536\) −6.06175 + 3.98688i −0.261828 + 0.172207i
\(537\) 8.44532 + 16.1267i 0.364443 + 0.695919i
\(538\) 7.94942 + 26.5529i 0.342724 + 1.14478i
\(539\) −8.63641 14.9587i −0.371997 0.644317i
\(540\) 7.85123 + 6.68480i 0.337863 + 0.287668i
\(541\) −20.1667 + 34.9297i −0.867033 + 1.50174i −0.00201779 + 0.999998i \(0.500642\pi\)
−0.865015 + 0.501746i \(0.832691\pi\)
\(542\) 1.74788 + 0.414255i 0.0750778 + 0.0177938i
\(543\) 4.89889 + 36.5191i 0.210231 + 1.56719i
\(544\) −4.86223 2.44190i −0.208466 0.104696i
\(545\) 2.33618 + 5.41587i 0.100071 + 0.231990i
\(546\) −0.512779 2.01068i −0.0219449 0.0860492i
\(547\) 1.80071 30.9170i 0.0769927 1.32191i −0.709672 0.704533i \(-0.751157\pi\)
0.786664 0.617381i \(-0.211806\pi\)
\(548\) 3.51674 19.9444i 0.150228 0.851984i
\(549\) −7.06889 11.3357i −0.301693 0.483797i
\(550\) −0.526057 2.98341i −0.0224311 0.127213i
\(551\) −14.5871 + 1.70499i −0.621431 + 0.0726349i
\(552\) 7.41131 + 8.53364i 0.315446 + 0.363216i
\(553\) −0.623135 + 2.08142i −0.0264984 + 0.0885109i
\(554\) 8.14506 1.93041i 0.346050 0.0820154i
\(555\) 13.5201 + 2.14774i 0.573897 + 0.0911663i
\(556\) 0.374476 0.868133i 0.0158813 0.0368170i
\(557\) 10.3130 8.65366i 0.436977 0.366667i −0.397600 0.917559i \(-0.630157\pi\)
0.834577 + 0.550892i \(0.185712\pi\)
\(558\) −10.8696 23.0148i −0.460147 0.974295i
\(559\) 9.88634 + 8.29562i 0.418148 + 0.350867i
\(560\) 1.72423 0.865939i 0.0728619 0.0365926i
\(561\) −26.8091 + 2.01910i −1.13188 + 0.0852464i
\(562\) −14.5672 1.70266i −0.614480 0.0718224i
\(563\) −0.458868 7.87846i −0.0193390 0.332037i −0.994076 0.108684i \(-0.965336\pi\)
0.974737 0.223354i \(-0.0717006\pi\)
\(564\) −1.57479 + 7.18671i −0.0663107 + 0.302615i
\(565\) 22.1528 23.4806i 0.931974 0.987835i
\(566\) 21.3373 0.896872
\(567\) −1.10100 8.68100i −0.0462377 0.364568i
\(568\) −14.8740 −0.624101
\(569\) −25.8894 + 27.4412i −1.08534 + 1.15039i −0.0974514 + 0.995240i \(0.531069\pi\)
−0.987890 + 0.155155i \(0.950412\pi\)
\(570\) −10.5952 9.66110i −0.443786 0.404659i
\(571\) 0.919070 + 15.7798i 0.0384619 + 0.660365i 0.961355 + 0.275310i \(0.0887805\pi\)
−0.922894 + 0.385055i \(0.874182\pi\)
\(572\) 3.49140 + 0.408086i 0.145983 + 0.0170629i
\(573\) −5.24934 7.69322i −0.219294 0.321389i
\(574\) −8.26413 + 4.15040i −0.344938 + 0.173234i
\(575\) 5.30840 + 4.45428i 0.221376 + 0.185756i
\(576\) 2.13169 + 2.11090i 0.0888204 + 0.0879542i
\(577\) 5.24576 4.40171i 0.218384 0.183246i −0.527032 0.849845i \(-0.676695\pi\)
0.745416 + 0.666600i \(0.232251\pi\)
\(578\) −4.99225 + 11.5733i −0.207650 + 0.481387i
\(579\) 1.94107 2.39477i 0.0806680 0.0995232i
\(580\) −6.79809 + 1.61118i −0.282275 + 0.0669005i
\(581\) 3.26691 10.9122i 0.135534 0.452716i
\(582\) −6.00139 + 17.4034i −0.248766 + 0.721393i
\(583\) −2.15892 + 0.252341i −0.0894132 + 0.0104509i
\(584\) 1.25104 + 7.09499i 0.0517683 + 0.293593i
\(585\) −5.45593 + 4.90348i −0.225575 + 0.202734i
\(586\) 2.69436 15.2805i 0.111303 0.631230i
\(587\) −0.563435 + 9.67381i −0.0232555 + 0.399281i 0.966515 + 0.256611i \(0.0826058\pi\)
−0.989770 + 0.142670i \(0.954431\pi\)
\(588\) 10.0961 + 2.83654i 0.416356 + 0.116977i
\(589\) 14.0183 + 32.4981i 0.577615 + 1.33906i
\(590\) 0.391681 + 0.196710i 0.0161253 + 0.00809841i
\(591\) 19.3459 14.9201i 0.795786 0.613731i
\(592\) 3.87544 + 0.918497i 0.159280 + 0.0377500i
\(593\) 0.957963 1.65924i 0.0393388 0.0681368i −0.845686 0.533681i \(-0.820808\pi\)
0.885024 + 0.465545i \(0.154142\pi\)
\(594\) 14.3991 + 3.52225i 0.590803 + 0.144520i
\(595\) −5.24906 9.09164i −0.215190 0.372721i
\(596\) 3.98049 + 13.2958i 0.163047 + 0.544615i
\(597\) 48.6433 + 2.00442i 1.99084 + 0.0820355i
\(598\) −6.71790 + 4.41843i −0.274715 + 0.180683i
\(599\) −0.862763 + 1.15889i −0.0352515 + 0.0473510i −0.819399 0.573223i \(-0.805693\pi\)
0.784148 + 0.620574i \(0.213100\pi\)
\(600\) 1.49379 + 1.07312i 0.0609836 + 0.0438098i
\(601\) 39.7954 + 26.1738i 1.62329 + 1.06765i 0.941987 + 0.335650i \(0.108956\pi\)
0.681301 + 0.732003i \(0.261414\pi\)
\(602\) 9.56945 3.48300i 0.390022 0.141956i
\(603\) −6.94755 20.6275i −0.282926 0.840015i
\(604\) 21.1055 + 7.68177i 0.858770 + 0.312567i
\(605\) −3.39094 4.55482i −0.137861 0.185180i
\(606\) 7.71002 + 4.27836i 0.313198 + 0.173796i
\(607\) −15.2794 16.1952i −0.620171 0.657343i 0.338796 0.940860i \(-0.389980\pi\)
−0.958967 + 0.283517i \(0.908499\pi\)
\(608\) −2.86273 3.03432i −0.116099 0.123058i
\(609\) 5.18410 + 2.87670i 0.210070 + 0.116570i
\(610\) 5.27705 + 7.08831i 0.213662 + 0.286997i
\(611\) −4.91827 1.79010i −0.198972 0.0724198i
\(612\) 10.7915 12.2466i 0.436221 0.495041i
\(613\) −25.2994 + 9.20823i −1.02183 + 0.371917i −0.797966 0.602703i \(-0.794091\pi\)
−0.223868 + 0.974620i \(0.571868\pi\)
\(614\) −0.703245 0.462532i −0.0283807 0.0186663i
\(615\) 26.5514 + 19.0742i 1.07066 + 0.769146i
\(616\) 1.65636 2.22488i 0.0667368 0.0896430i
\(617\) −29.6392 + 19.4940i −1.19323 + 0.784800i −0.981300 0.192485i \(-0.938345\pi\)
−0.211930 + 0.977285i \(0.567975\pi\)
\(618\) −27.0874 1.11618i −1.08961 0.0448992i
\(619\) 5.62648 + 18.7937i 0.226147 + 0.755384i 0.993467 + 0.114120i \(0.0364047\pi\)
−0.767320 + 0.641265i \(0.778410\pi\)
\(620\) 8.41825 + 14.5808i 0.338085 + 0.585581i
\(621\) −30.4100 + 14.9995i −1.22031 + 0.601910i
\(622\) −3.74794 + 6.49163i −0.150279 + 0.260291i
\(623\) 0.133972 + 0.0317520i 0.00536748 + 0.00127212i
\(624\) −1.68998 + 1.30336i −0.0676533 + 0.0521761i
\(625\) −16.5883 8.33096i −0.663532 0.333238i
\(626\) −11.2311 26.0367i −0.448886 1.04063i
\(627\) −19.8445 5.57541i −0.792513 0.222660i
\(628\) −0.814726 + 13.9883i −0.0325111 + 0.558194i
\(629\) 3.76301 21.3411i 0.150041 0.850925i
\(630\) 1.19827 + 5.66299i 0.0477404 + 0.225619i
\(631\) 0.517896 + 2.93714i 0.0206171 + 0.116926i 0.993379 0.114879i \(-0.0366481\pi\)
−0.972762 + 0.231805i \(0.925537\pi\)
\(632\) 2.21952 0.259425i 0.0882878 0.0103194i
\(633\) −4.39290 + 12.7389i −0.174602 + 0.506326i
\(634\) −0.0845419 + 0.282390i −0.00335759 + 0.0112151i
\(635\) 12.7598 3.02413i 0.506358 0.120009i
\(636\) 0.830974 1.02521i 0.0329503 0.0406520i
\(637\) −2.95492 + 6.85027i −0.117078 + 0.271418i
\(638\) −7.69376 + 6.45583i −0.304599 + 0.255589i
\(639\) 11.3377 43.1577i 0.448513 1.70729i
\(640\) −1.52019 1.27559i −0.0600906 0.0504220i
\(641\) −28.3678 + 14.2469i −1.12046 + 0.562717i −0.909885 0.414860i \(-0.863830\pi\)
−0.210577 + 0.977577i \(0.567534\pi\)
\(642\) 5.83412 + 8.55025i 0.230254 + 0.337451i
\(643\) −0.206843 0.0241765i −0.00815709 0.000953427i 0.112013 0.993707i \(-0.464270\pi\)
−0.120170 + 0.992753i \(0.538344\pi\)
\(644\) 0.368913 + 6.33400i 0.0145372 + 0.249595i
\(645\) −26.6021 24.2567i −1.04746 0.955106i
\(646\) −15.5761 + 16.5097i −0.612832 + 0.649564i
\(647\) 6.27460 0.246680 0.123340 0.992364i \(-0.460639\pi\)
0.123340 + 0.992364i \(0.460639\pi\)
\(648\) −7.74976 + 4.57617i −0.304439 + 0.179769i
\(649\) 0.630093 0.0247333
\(650\) −0.897922 + 0.951742i −0.0352194 + 0.0373304i
\(651\) 3.05824 13.9566i 0.119862 0.547001i
\(652\) −0.786807 13.5090i −0.0308137 0.529051i
\(653\) −13.8519 1.61905i −0.542066 0.0633584i −0.159346 0.987223i \(-0.550939\pi\)
−0.382720 + 0.923864i \(0.625013\pi\)
\(654\) −5.13349 + 0.386623i −0.200735 + 0.0151182i
\(655\) −38.1548 + 19.1621i −1.49083 + 0.748724i
\(656\) 7.28618 + 6.11383i 0.284477 + 0.238705i
\(657\) −21.5400 1.77820i −0.840357 0.0693742i
\(658\) −3.16373 + 2.65469i −0.123335 + 0.103491i
\(659\) −6.52478 + 15.1261i −0.254169 + 0.589231i −0.996753 0.0805227i \(-0.974341\pi\)
0.742583 + 0.669754i \(0.233600\pi\)
\(660\) −9.68422 1.53839i −0.376958 0.0598816i
\(661\) 7.39619 1.75293i 0.287679 0.0681811i −0.0842429 0.996445i \(-0.526847\pi\)
0.371922 + 0.928264i \(0.378699\pi\)
\(662\) −7.46505 + 24.9350i −0.290137 + 0.969126i
\(663\) 7.61418 + 8.76724i 0.295710 + 0.340491i
\(664\) −11.6363 + 1.36008i −0.451575 + 0.0527815i
\(665\) −1.39769 7.92667i −0.0541999 0.307383i
\(666\) −5.61912 + 10.5447i −0.217736 + 0.408597i
\(667\) 3.98935 22.6247i 0.154468 0.876034i
\(668\) −0.362599 + 6.22559i −0.0140294 + 0.240875i
\(669\) −9.81774 38.4968i −0.379576 1.48837i
\(670\) 5.70274 + 13.2204i 0.220316 + 0.510750i
\(671\) 11.3525 + 5.70144i 0.438258 + 0.220102i
\(672\) 0.223902 + 1.66909i 0.00863719 + 0.0643866i
\(673\) 35.8100 + 8.48713i 1.38037 + 0.327155i 0.852749 0.522322i \(-0.174934\pi\)
0.527626 + 0.849477i \(0.323082\pi\)
\(674\) 2.92600 5.06798i 0.112705 0.195211i
\(675\) −4.25234 + 3.51631i −0.163672 + 0.135343i
\(676\) 5.74087 + 9.94348i 0.220803 + 0.382442i
\(677\) −3.60674 12.0473i −0.138618 0.463017i 0.860286 0.509811i \(-0.170285\pi\)
−0.998905 + 0.0467941i \(0.985100\pi\)
\(678\) 13.0711 + 24.9599i 0.501993 + 0.958578i
\(679\) −8.63384 + 5.67857i −0.331336 + 0.217923i
\(680\) −6.44776 + 8.66084i −0.247260 + 0.332128i
\(681\) 12.7340 5.75152i 0.487969 0.220399i
\(682\) 20.2219 + 13.3002i 0.774338 + 0.509290i
\(683\) −39.4063 + 14.3427i −1.50784 + 0.548809i −0.958077 0.286510i \(-0.907505\pi\)
−0.549765 + 0.835320i \(0.685283\pi\)
\(684\) 10.9863 5.99345i 0.420073 0.229165i
\(685\) −37.7658 13.7456i −1.44296 0.525194i
\(686\) 7.57963 + 10.1812i 0.289392 + 0.388720i
\(687\) 0.761693 + 44.8159i 0.0290604 + 1.70983i
\(688\) −7.18763 7.61844i −0.274026 0.290450i
\(689\) 0.644257 + 0.682872i 0.0245442 + 0.0260154i
\(690\) 19.2313 11.5433i 0.732124 0.439448i
\(691\) 8.96528 + 12.0425i 0.341055 + 0.458117i 0.939250 0.343234i \(-0.111522\pi\)
−0.598194 + 0.801351i \(0.704115\pi\)
\(692\) −11.3145 4.11816i −0.430114 0.156549i
\(693\) 5.19304 + 6.50193i 0.197267 + 0.246988i
\(694\) 21.2024 7.71704i 0.804832 0.292935i
\(695\) −1.56756 1.03100i −0.0594609 0.0391081i
\(696\) 0.604885 6.06771i 0.0229281 0.229996i
\(697\) 30.9038 41.5110i 1.17056 1.57234i
\(698\) −26.9290 + 17.7115i −1.01928 + 0.670390i
\(699\) 6.07771 9.59187i 0.229880 0.362798i
\(700\) 0.296119 + 0.989105i 0.0111922 + 0.0373846i
\(701\) −0.796766 1.38004i −0.0300934 0.0521234i 0.850586 0.525835i \(-0.176247\pi\)
−0.880680 + 0.473712i \(0.842914\pi\)
\(702\) −2.49357 5.89704i −0.0941137 0.222569i
\(703\) 8.30735 14.3888i 0.313318 0.542682i
\(704\) −2.77591 0.657904i −0.104621 0.0247957i
\(705\) 13.5024 + 5.55416i 0.508530 + 0.209182i
\(706\) −8.15601 4.09610i −0.306956 0.154159i
\(707\) 1.96048 + 4.54489i 0.0737313 + 0.170928i
\(708\) −0.273758 + 0.267215i −0.0102884 + 0.0100425i
\(709\) 0.669472 11.4944i 0.0251426 0.431681i −0.962125 0.272610i \(-0.912113\pi\)
0.987267 0.159071i \(-0.0508499\pi\)
\(710\) −5.12556 + 29.0685i −0.192359 + 1.09092i
\(711\) −0.939094 + 6.63779i −0.0352188 + 0.248937i
\(712\) −0.0245901 0.139457i −0.000921552 0.00522638i
\(713\) −54.9900 + 6.42741i −2.05939 + 0.240708i
\(714\) 8.99528 1.74422i 0.336640 0.0652759i
\(715\) 2.00066 6.68266i 0.0748203 0.249917i
\(716\) 10.2269 2.42383i 0.382198 0.0905826i
\(717\) 4.66387 + 12.1665i 0.174175 + 0.454366i
\(718\) −0.527948 + 1.22392i −0.0197028 + 0.0456763i
\(719\) 28.3871 23.8196i 1.05866 0.888321i 0.0646828 0.997906i \(-0.479396\pi\)
0.993977 + 0.109584i \(0.0349520\pi\)
\(720\) 4.85994 3.43858i 0.181119 0.128148i
\(721\) −11.6579 9.78216i −0.434164 0.364307i
\(722\) 1.42770 0.717020i 0.0531336 0.0266847i
\(723\) 21.0846 43.8243i 0.784143 1.62984i
\(724\) 21.1293 + 2.46967i 0.785266 + 0.0917844i
\(725\) −0.217376 3.73220i −0.00807314 0.138610i
\(726\) 4.72314 1.50193i 0.175292 0.0557419i
\(727\) −11.2689 + 11.9444i −0.417941 + 0.442992i −0.901800 0.432154i \(-0.857754\pi\)
0.483858 + 0.875146i \(0.339235\pi\)
\(728\) −1.19802 −0.0444017
\(729\) −7.37072 25.9745i −0.272990 0.962017i
\(730\) 14.2969 0.529153
\(731\) −39.1077 + 41.4517i −1.44645 + 1.53315i
\(732\) −7.35025 + 2.33734i −0.271673 + 0.0863905i
\(733\) 2.18643 + 37.5395i 0.0807575 + 1.38655i 0.758701 + 0.651439i \(0.225834\pi\)
−0.677944 + 0.735114i \(0.737129\pi\)
\(734\) −10.8645 1.26987i −0.401015 0.0468719i
\(735\) 9.02259 18.7534i 0.332803 0.691731i
\(736\) 5.83149 2.92869i 0.214952 0.107953i
\(737\) 15.8557 + 13.3045i 0.584052 + 0.490078i
\(738\) −23.2934 + 16.4809i −0.857443 + 0.606671i
\(739\) −5.93639 + 4.98123i −0.218374 + 0.183237i −0.745412 0.666604i \(-0.767747\pi\)
0.527038 + 0.849842i \(0.323303\pi\)
\(740\) 3.13050 7.25732i 0.115080 0.266784i
\(741\) 3.18674 + 8.31315i 0.117068 + 0.305391i
\(742\) 0.720833 0.170840i 0.0264626 0.00627175i
\(743\) −7.94369 + 26.5338i −0.291426 + 0.973430i 0.679425 + 0.733745i \(0.262229\pi\)
−0.970851 + 0.239685i \(0.922956\pi\)
\(744\) −14.4263 + 2.79732i −0.528894 + 0.102555i
\(745\) 27.3557 3.19743i 1.00224 0.117145i
\(746\) 1.46221 + 8.29263i 0.0535355 + 0.303615i
\(747\) 4.92338 34.7999i 0.180137 1.27326i
\(748\) −2.69538 + 15.2863i −0.0985528 + 0.558921i
\(749\) −0.337852 + 5.80069i −0.0123448 + 0.211953i
\(750\) 14.9103 14.5540i 0.544449 0.531436i
\(751\) −16.7919 38.9280i −0.612745 1.42050i −0.888321 0.459223i \(-0.848128\pi\)
0.275576 0.961279i \(-0.411131\pi\)
\(752\) 3.79588 + 1.90636i 0.138422 + 0.0695179i
\(753\) −13.8259 5.68721i −0.503842 0.207254i
\(754\) 4.22102 + 1.00040i 0.153720 + 0.0364324i
\(755\) 22.2855 38.5996i 0.811052 1.40478i
\(756\) −5.01362 0.622602i −0.182344 0.0226438i
\(757\) 18.8633 + 32.6722i 0.685598 + 1.18749i 0.973249 + 0.229755i \(0.0737924\pi\)
−0.287651 + 0.957735i \(0.592874\pi\)
\(758\) −3.14803 10.5151i −0.114341 0.381927i
\(759\) 17.2582 27.2370i 0.626434 0.988642i
\(760\) −6.91651 + 4.54906i −0.250888 + 0.165012i
\(761\) 29.8042 40.0340i 1.08040 1.45123i 0.198316 0.980138i \(-0.436453\pi\)
0.882084 0.471092i \(-0.156140\pi\)
\(762\) −1.13535 + 11.3889i −0.0411294 + 0.412577i
\(763\) −2.41442 1.58799i −0.0874079 0.0574891i
\(764\) −5.05287 + 1.83909i −0.182806 + 0.0665361i
\(765\) −20.2150 25.3102i −0.730876 0.915092i
\(766\) −14.3346 5.21738i −0.517931 0.188512i
\(767\) −0.162515 0.218296i −0.00586808 0.00788220i
\(768\) 1.48507 0.891391i 0.0535877 0.0321653i