# Properties

 Label 162.2.g.a.151.2 Level $162$ Weight $2$ Character 162.151 Analytic conductor $1.294$ Analytic rank $0$ Dimension $72$ CM no Inner twists $2$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [162,2,Mod(7,162)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(162, base_ring=CyclotomicField(54))

chi = DirichletCharacter(H, H._module([16]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("162.7");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$162 = 2 \cdot 3^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 162.g (of order $$27$$, degree $$18$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.29357651274$$ Analytic rank: $$0$$ Dimension: $$72$$ Relative dimension: $$4$$ over $$\Q(\zeta_{27})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

## Embedding invariants

 Embedding label 151.2 Character $$\chi$$ $$=$$ 162.151 Dual form 162.2.g.a.103.2

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.686242 - 0.727374i) q^{2} +(-0.301962 - 1.70553i) q^{3} +(-0.0581448 - 0.998308i) q^{4} +(1.83788 + 0.214818i) q^{5} +(-1.44777 - 0.950764i) q^{6} +(-0.0854199 + 0.0428995i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(-2.81764 + 1.03001i) q^{9} +O(q^{10})$$ $$q+(0.686242 - 0.727374i) q^{2} +(-0.301962 - 1.70553i) q^{3} +(-0.0581448 - 0.998308i) q^{4} +(1.83788 + 0.214818i) q^{5} +(-1.44777 - 0.950764i) q^{6} +(-0.0854199 + 0.0428995i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(-2.81764 + 1.03001i) q^{9} +(1.41748 - 1.18941i) q^{10} +(0.254448 - 0.589876i) q^{11} +(-1.68508 + 0.400618i) q^{12} +(-1.34720 + 0.319292i) q^{13} +(-0.0274147 + 0.0915716i) q^{14} +(-0.188593 - 3.19942i) q^{15} +(-0.993238 + 0.116093i) q^{16} +(0.845419 + 4.79461i) q^{17} +(-1.18438 + 2.75631i) q^{18} +(0.680482 - 3.85921i) q^{19} +(0.107591 - 1.84726i) q^{20} +(0.0989597 + 0.132732i) q^{21} +(-0.254448 - 0.589876i) q^{22} +(6.15084 + 3.08907i) q^{23} +(-0.864975 + 1.50061i) q^{24} +(-1.53356 - 0.363461i) q^{25} +(-0.692260 + 1.19903i) q^{26} +(2.60752 + 4.49453i) q^{27} +(0.0477936 + 0.0827810i) q^{28} +(1.82044 + 6.08068i) q^{29} +(-2.45660 - 2.05840i) q^{30} +(0.00237360 - 0.00156114i) q^{31} +(-0.597159 + 0.802123i) q^{32} +(-1.08288 - 0.255847i) q^{33} +(4.06763 + 2.67532i) q^{34} +(-0.166207 + 0.0604945i) q^{35} +(1.19210 + 2.75298i) q^{36} +(4.08936 + 1.48841i) q^{37} +(-2.34011 - 3.14331i) q^{38} +(0.951365 + 2.20127i) q^{39} +(-1.26982 - 1.34593i) q^{40} +(5.48346 + 5.81212i) q^{41} +(0.164456 + 0.0191054i) q^{42} +(-6.66233 - 8.94907i) q^{43} +(-0.603673 - 0.219719i) q^{44} +(-5.39975 + 1.28775i) q^{45} +(6.46787 - 2.35411i) q^{46} +(-7.83630 - 5.15401i) q^{47} +(0.497919 + 1.65894i) q^{48} +(-4.17465 + 5.60753i) q^{49} +(-1.31677 + 0.866050i) q^{50} +(7.92205 - 2.88967i) q^{51} +(0.397085 + 1.32636i) q^{52} +(-5.22121 - 9.04341i) q^{53} +(5.05860 + 1.18769i) q^{54} +(0.594361 - 1.02946i) q^{55} +(0.0930107 + 0.0220439i) q^{56} +(-6.78746 + 0.00475209i) q^{57} +(5.67219 + 2.84868i) q^{58} +(1.22224 + 2.83346i) q^{59} +(-3.18304 + 0.374304i) q^{60} +(0.152155 - 2.61240i) q^{61} +(0.000493330 - 0.00279781i) q^{62} +(0.196496 - 0.208858i) q^{63} +(0.173648 + 0.984808i) q^{64} +(-2.54459 + 0.297419i) q^{65} +(-0.929216 + 0.612088i) q^{66} +(-2.24149 + 7.48709i) q^{67} +(4.73734 - 1.12277i) q^{68} +(3.41117 - 11.4232i) q^{69} +(-0.0700562 + 0.162409i) q^{70} +(-6.01585 + 5.04790i) q^{71} +(2.82051 + 1.02211i) q^{72} +(-5.97101 - 5.01027i) q^{73} +(3.88892 - 1.95309i) q^{74} +(-0.156815 + 2.72528i) q^{75} +(-3.89224 - 0.454938i) q^{76} +(0.00357048 + 0.0613028i) q^{77} +(2.25401 + 0.818607i) q^{78} +(7.38094 - 7.82334i) q^{79} -1.85039 q^{80} +(6.87817 - 5.80437i) q^{81} +7.99056 q^{82} +(-1.46065 + 1.54820i) q^{83} +(0.126753 - 0.106510i) q^{84} +(0.523814 + 8.99354i) q^{85} +(-11.0813 - 1.29522i) q^{86} +(9.82106 - 4.94094i) q^{87} +(-0.574084 + 0.288316i) q^{88} +(-3.99341 - 3.35087i) q^{89} +(-2.76886 + 4.81135i) q^{90} +(0.101380 - 0.0850681i) q^{91} +(2.72620 - 6.32005i) q^{92} +(-0.00337930 - 0.00357683i) q^{93} +(-9.12649 + 2.16302i) q^{94} +(2.07967 - 6.94659i) q^{95} +(1.54836 + 0.776259i) q^{96} +(-16.4189 + 1.91909i) q^{97} +(1.21395 + 6.88466i) q^{98} +(-0.109365 + 1.92414i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$72 q + 9 q^{6}+O(q^{10})$$ 72 * q + 9 * q^6 $$72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100})$$ 72 * q + 9 * q^6 + 18 * q^13 - 9 * q^20 - 81 * q^23 + 18 * q^25 - 27 * q^26 - 27 * q^27 + 18 * q^28 - 27 * q^29 - 63 * q^30 - 54 * q^31 + 9 * q^33 - 27 * q^35 - 9 * q^36 + 9 * q^38 - 9 * q^41 + 9 * q^42 + 36 * q^43 - 117 * q^45 - 18 * q^46 - 27 * q^47 + 9 * q^48 - 27 * q^51 - 36 * q^52 - 27 * q^53 + 54 * q^55 + 27 * q^57 + 9 * q^58 - 18 * q^59 + 9 * q^63 + 9 * q^65 + 36 * q^66 - 135 * q^67 - 18 * q^68 + 108 * q^69 + 18 * q^70 + 72 * q^71 + 54 * q^72 + 36 * q^73 + 99 * q^74 - 36 * q^75 - 9 * q^76 + 144 * q^77 + 90 * q^78 - 9 * q^79 + 18 * q^80 - 72 * q^82 + 99 * q^83 + 18 * q^84 + 9 * q^85 + 72 * q^86 + 207 * q^87 - 9 * q^88 + 126 * q^89 - 18 * q^90 + 63 * q^91 + 36 * q^92 + 81 * q^93 + 18 * q^94 + 45 * q^95 - 171 * q^97 + 36 * q^98 + 99 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/162\mathbb{Z}\right)^\times$$.

 $$n$$ $$83$$ $$\chi(n)$$ $$e\left(\frac{20}{27}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.686242 0.727374i 0.485246 0.514331i
$$3$$ −0.301962 1.70553i −0.174338 0.984686i
$$4$$ −0.0581448 0.998308i −0.0290724 0.499154i
$$5$$ 1.83788 + 0.214818i 0.821926 + 0.0960693i 0.516652 0.856195i $$-0.327178\pi$$
0.305274 + 0.952265i $$0.401252\pi$$
$$6$$ −1.44777 0.950764i −0.591051 0.388148i
$$7$$ −0.0854199 + 0.0428995i −0.0322857 + 0.0162145i −0.464869 0.885380i $$-0.653899\pi$$
0.432583 + 0.901594i $$0.357602\pi$$
$$8$$ −0.766044 0.642788i −0.270838 0.227260i
$$9$$ −2.81764 + 1.03001i −0.939213 + 0.343336i
$$10$$ 1.41748 1.18941i 0.448248 0.376124i
$$11$$ 0.254448 0.589876i 0.0767189 0.177854i −0.875540 0.483145i $$-0.839494\pi$$
0.952259 + 0.305291i $$0.0987536\pi$$
$$12$$ −1.68508 + 0.400618i −0.486442 + 0.115649i
$$13$$ −1.34720 + 0.319292i −0.373646 + 0.0885558i −0.413148 0.910664i $$-0.635571\pi$$
0.0395022 + 0.999219i $$0.487423\pi$$
$$14$$ −0.0274147 + 0.0915716i −0.00732689 + 0.0244735i
$$15$$ −0.188593 3.19942i −0.0486945 0.826087i
$$16$$ −0.993238 + 0.116093i −0.248310 + 0.0290232i
$$17$$ 0.845419 + 4.79461i 0.205044 + 1.16286i 0.897370 + 0.441279i $$0.145475\pi$$
−0.692326 + 0.721585i $$0.743414\pi$$
$$18$$ −1.18438 + 2.75631i −0.279161 + 0.649668i
$$19$$ 0.680482 3.85921i 0.156113 0.885363i −0.801648 0.597797i $$-0.796043\pi$$
0.957761 0.287566i $$-0.0928460\pi$$
$$20$$ 0.107591 1.84726i 0.0240580 0.413061i
$$21$$ 0.0989597 + 0.132732i 0.0215948 + 0.0289645i
$$22$$ −0.254448 0.589876i −0.0542485 0.125762i
$$23$$ 6.15084 + 3.08907i 1.28254 + 0.644116i 0.953839 0.300319i $$-0.0970930\pi$$
0.328701 + 0.944434i $$0.393389\pi$$
$$24$$ −0.864975 + 1.50061i −0.176562 + 0.306310i
$$25$$ −1.53356 0.363461i −0.306712 0.0726921i
$$26$$ −0.692260 + 1.19903i −0.135763 + 0.235149i
$$27$$ 2.60752 + 4.49453i 0.501818 + 0.864973i
$$28$$ 0.0477936 + 0.0827810i 0.00903214 + 0.0156441i
$$29$$ 1.82044 + 6.08068i 0.338047 + 1.12915i 0.942972 + 0.332872i $$0.108018\pi$$
−0.604925 + 0.796282i $$0.706797\pi$$
$$30$$ −2.45660 2.05840i −0.448511 0.375811i
$$31$$ 0.00237360 0.00156114i 0.000426311 0.000280389i −0.549296 0.835628i $$-0.685104\pi$$
0.549722 + 0.835348i $$0.314734\pi$$
$$32$$ −0.597159 + 0.802123i −0.105564 + 0.141797i
$$33$$ −1.08288 0.255847i −0.188506 0.0445373i
$$34$$ 4.06763 + 2.67532i 0.697593 + 0.458814i
$$35$$ −0.166207 + 0.0604945i −0.0280941 + 0.0102254i
$$36$$ 1.19210 + 2.75298i 0.198683 + 0.458830i
$$37$$ 4.08936 + 1.48841i 0.672287 + 0.244693i 0.655532 0.755167i $$-0.272444\pi$$
0.0167549 + 0.999860i $$0.494667\pi$$
$$38$$ −2.34011 3.14331i −0.379616 0.509913i
$$39$$ 0.951365 + 2.20127i 0.152340 + 0.352486i
$$40$$ −1.26982 1.34593i −0.200776 0.212810i
$$41$$ 5.48346 + 5.81212i 0.856372 + 0.907701i 0.996598 0.0824182i $$-0.0262643\pi$$
−0.140226 + 0.990120i $$0.544783\pi$$
$$42$$ 0.164456 + 0.0191054i 0.0253761 + 0.00294803i
$$43$$ −6.66233 8.94907i −1.01600 1.36472i −0.929646 0.368455i $$-0.879887\pi$$
−0.0863506 0.996265i $$-0.527521\pi$$
$$44$$ −0.603673 0.219719i −0.0910072 0.0331239i
$$45$$ −5.39975 + 1.28775i −0.804947 + 0.191967i
$$46$$ 6.46787 2.35411i 0.953636 0.347095i
$$47$$ −7.83630 5.15401i −1.14304 0.751790i −0.170693 0.985324i $$-0.554601\pi$$
−0.972349 + 0.233534i $$0.924971\pi$$
$$48$$ 0.497919 + 1.65894i 0.0718685 + 0.239447i
$$49$$ −4.17465 + 5.60753i −0.596379 + 0.801076i
$$50$$ −1.31677 + 0.866050i −0.186219 + 0.122478i
$$51$$ 7.92205 2.88967i 1.10931 0.404635i
$$52$$ 0.397085 + 1.32636i 0.0550658 + 0.183933i
$$53$$ −5.22121 9.04341i −0.717189 1.24221i −0.962109 0.272664i $$-0.912095\pi$$
0.244920 0.969543i $$-0.421238\pi$$
$$54$$ 5.05860 + 1.18769i 0.688388 + 0.161625i
$$55$$ 0.594361 1.02946i 0.0801436 0.138813i
$$56$$ 0.0930107 + 0.0220439i 0.0124291 + 0.00294574i
$$57$$ −6.78746 + 0.00475209i −0.899021 + 0.000629430i
$$58$$ 5.67219 + 2.84868i 0.744795 + 0.374050i
$$59$$ 1.22224 + 2.83346i 0.159121 + 0.368885i 0.979062 0.203564i $$-0.0652526\pi$$
−0.819940 + 0.572449i $$0.805993\pi$$
$$60$$ −3.18304 + 0.374304i −0.410929 + 0.0483224i
$$61$$ 0.152155 2.61240i 0.0194815 0.334484i −0.974459 0.224565i $$-0.927904\pi$$
0.993941 0.109919i $$-0.0350591\pi$$
$$62$$ 0.000493330 0.00279781i 6.26529e−5 0.000355323i
$$63$$ 0.196496 0.208858i 0.0247561 0.0263137i
$$64$$ 0.173648 + 0.984808i 0.0217060 + 0.123101i
$$65$$ −2.54459 + 0.297419i −0.315617 + 0.0368903i
$$66$$ −0.929216 + 0.612088i −0.114379 + 0.0753428i
$$67$$ −2.24149 + 7.48709i −0.273841 + 0.914693i 0.704850 + 0.709356i $$0.251014\pi$$
−0.978691 + 0.205337i $$0.934171\pi$$
$$68$$ 4.73734 1.12277i 0.574487 0.136156i
$$69$$ 3.41117 11.4232i 0.410657 1.37519i
$$70$$ −0.0700562 + 0.162409i −0.00837332 + 0.0194115i
$$71$$ −6.01585 + 5.04790i −0.713951 + 0.599076i −0.925705 0.378247i $$-0.876527\pi$$
0.211754 + 0.977323i $$0.432082\pi$$
$$72$$ 2.82051 + 1.02211i 0.332401 + 0.120457i
$$73$$ −5.97101 5.01027i −0.698854 0.586408i 0.222594 0.974911i $$-0.428548\pi$$
−0.921447 + 0.388504i $$0.872992\pi$$
$$74$$ 3.88892 1.95309i 0.452078 0.227042i
$$75$$ −0.156815 + 2.72528i −0.0181074 + 0.314688i
$$76$$ −3.89224 0.454938i −0.446471 0.0521850i
$$77$$ 0.00357048 + 0.0613028i 0.000406894 + 0.00698611i
$$78$$ 2.25401 + 0.818607i 0.255217 + 0.0926890i
$$79$$ 7.38094 7.82334i 0.830421 0.880195i −0.163915 0.986474i $$-0.552412\pi$$
0.994336 + 0.106280i $$0.0338938\pi$$
$$80$$ −1.85039 −0.206880
$$81$$ 6.87817 5.80437i 0.764241 0.644930i
$$82$$ 7.99056 0.882410
$$83$$ −1.46065 + 1.54820i −0.160327 + 0.169937i −0.802557 0.596575i $$-0.796528\pi$$
0.642230 + 0.766512i $$0.278009\pi$$
$$84$$ 0.126753 0.106510i 0.0138299 0.0116212i
$$85$$ 0.523814 + 8.99354i 0.0568156 + 0.975486i
$$86$$ −11.0813 1.29522i −1.19493 0.139667i
$$87$$ 9.82106 4.94094i 1.05293 0.529724i
$$88$$ −0.574084 + 0.288316i −0.0611975 + 0.0307346i
$$89$$ −3.99341 3.35087i −0.423300 0.355191i 0.406117 0.913821i $$-0.366883\pi$$
−0.829417 + 0.558630i $$0.811327\pi$$
$$90$$ −2.76886 + 4.81135i −0.291863 + 0.507160i
$$91$$ 0.101380 0.0850681i 0.0106275 0.00891756i
$$92$$ 2.72620 6.32005i 0.284226 0.658911i
$$93$$ −0.00337930 0.00357683i −0.000350417 0.000370900i
$$94$$ −9.12649 + 2.16302i −0.941325 + 0.223098i
$$95$$ 2.07967 6.94659i 0.213370 0.712705i
$$96$$ 1.54836 + 0.776259i 0.158029 + 0.0792266i
$$97$$ −16.4189 + 1.91909i −1.66709 + 0.194855i −0.896674 0.442691i $$-0.854024\pi$$
−0.770413 + 0.637546i $$0.779950\pi$$
$$98$$ 1.21395 + 6.88466i 0.122628 + 0.695455i
$$99$$ −0.109365 + 1.92414i −0.0109916 + 0.193384i
$$100$$ −0.273677 + 1.55210i −0.0273677 + 0.155210i
$$101$$ 0.753338 12.9343i 0.0749600 1.28701i −0.725749 0.687959i $$-0.758507\pi$$
0.800709 0.599053i $$-0.204456\pi$$
$$102$$ 3.33457 7.74530i 0.330171 0.766899i
$$103$$ −3.93939 9.13253i −0.388159 0.899855i −0.994508 0.104656i $$-0.966626\pi$$
0.606349 0.795199i $$-0.292633\pi$$
$$104$$ 1.23725 + 0.621372i 0.121323 + 0.0609305i
$$105$$ 0.153363 + 0.265204i 0.0149667 + 0.0258812i
$$106$$ −10.1610 2.40819i −0.986919 0.233904i
$$107$$ 2.34543 4.06240i 0.226741 0.392727i −0.730099 0.683341i $$-0.760526\pi$$
0.956840 + 0.290614i $$0.0938595\pi$$
$$108$$ 4.33532 2.86444i 0.417166 0.275631i
$$109$$ 6.87792 + 11.9129i 0.658785 + 1.14105i 0.980930 + 0.194360i $$0.0622629\pi$$
−0.322145 + 0.946690i $$0.604404\pi$$
$$110$$ −0.340929 1.13878i −0.0325063 0.108579i
$$111$$ 1.30369 7.42396i 0.123740 0.704651i
$$112$$ 0.0798620 0.0525260i 0.00754625 0.00496324i
$$113$$ 3.48372 4.67944i 0.327721 0.440205i −0.607474 0.794340i $$-0.707817\pi$$
0.935194 + 0.354135i $$0.115225\pi$$
$$114$$ −4.65438 + 4.94028i −0.435923 + 0.462699i
$$115$$ 10.6409 + 6.99865i 0.992273 + 0.652628i
$$116$$ 5.96455 2.17092i 0.553794 0.201565i
$$117$$ 3.46705 2.28728i 0.320529 0.211459i
$$118$$ 2.89973 + 1.05542i 0.266942 + 0.0971589i
$$119$$ −0.277902 0.373287i −0.0254752 0.0342191i
$$120$$ −1.91208 + 2.57212i −0.174548 + 0.234802i
$$121$$ 7.26545 + 7.70092i 0.660495 + 0.700084i
$$122$$ −1.79578 1.90341i −0.162582 0.172327i
$$123$$ 8.25694 11.1072i 0.744503 1.00150i
$$124$$ −0.00169651 0.00227881i −0.000152351 0.000204643i
$$125$$ −11.4344 4.16179i −1.02273 0.372242i
$$126$$ −0.0170746 0.286253i −0.00152112 0.0255014i
$$127$$ −20.5123 + 7.46588i −1.82018 + 0.662490i −0.824915 + 0.565257i $$0.808777\pi$$
−0.995262 + 0.0972332i $$0.969001\pi$$
$$128$$ 0.835488 + 0.549509i 0.0738474 + 0.0485702i
$$129$$ −13.2511 + 14.0651i −1.16669 + 1.23836i
$$130$$ −1.52987 + 2.05497i −0.134178 + 0.180232i
$$131$$ −3.99260 + 2.62598i −0.348835 + 0.229433i −0.711819 0.702363i $$-0.752128\pi$$
0.362984 + 0.931795i $$0.381758\pi$$
$$132$$ −0.192451 + 1.09593i −0.0167507 + 0.0953882i
$$133$$ 0.107431 + 0.358845i 0.00931547 + 0.0311158i
$$134$$ 3.90771 + 6.76835i 0.337575 + 0.584696i
$$135$$ 3.82681 + 8.82056i 0.329360 + 0.759153i
$$136$$ 2.43429 4.21631i 0.208738 0.361545i
$$137$$ 14.3557 + 3.40236i 1.22649 + 0.290683i 0.792296 0.610137i $$-0.208886\pi$$
0.434192 + 0.900820i $$0.357034\pi$$
$$138$$ −5.96805 10.3203i −0.508034 0.878520i
$$139$$ 14.8523 + 7.45913i 1.25976 + 0.632675i 0.948237 0.317564i $$-0.102865\pi$$
0.311522 + 0.950239i $$0.399161\pi$$
$$140$$ 0.0700562 + 0.162409i 0.00592083 + 0.0137260i
$$141$$ −6.42404 + 14.9213i −0.541002 + 1.25660i
$$142$$ −0.456620 + 7.83985i −0.0383187 + 0.657906i
$$143$$ −0.154449 + 0.875925i −0.0129157 + 0.0732486i
$$144$$ 2.67901 1.35015i 0.223251 0.112513i
$$145$$ 2.03951 + 11.5666i 0.169372 + 0.960557i
$$146$$ −7.74189 + 0.904897i −0.640724 + 0.0748898i
$$147$$ 10.8244 + 5.42672i 0.892780 + 0.447588i
$$148$$ 1.24811 4.16899i 0.102594 0.342689i
$$149$$ 9.15970 2.17089i 0.750392 0.177846i 0.162413 0.986723i $$-0.448072\pi$$
0.587978 + 0.808877i $$0.299924\pi$$
$$150$$ 1.87468 + 1.98426i 0.153067 + 0.162014i
$$151$$ 3.34444 7.75329i 0.272167 0.630954i −0.726236 0.687445i $$-0.758732\pi$$
0.998403 + 0.0564913i $$0.0179913\pi$$
$$152$$ −3.00193 + 2.51892i −0.243489 + 0.204311i
$$153$$ −7.32056 12.6387i −0.591833 1.02178i
$$154$$ 0.0470403 + 0.0394715i 0.00379061 + 0.00318070i
$$155$$ 0.00469775 0.00235930i 0.000377333 0.000189504i
$$156$$ 2.14223 1.07775i 0.171516 0.0862889i
$$157$$ 4.74920 + 0.555101i 0.379027 + 0.0443019i 0.303474 0.952840i $$-0.401854\pi$$
0.0755535 + 0.997142i $$0.475928\pi$$
$$158$$ −0.625383 10.7374i −0.0497528 0.854222i
$$159$$ −13.8472 + 11.6357i −1.09815 + 0.922769i
$$160$$ −1.26982 + 1.34593i −0.100388 + 0.106405i
$$161$$ −0.657924 −0.0518516
$$162$$ 0.498139 8.98620i 0.0391375 0.706023i
$$163$$ 8.48436 0.664547 0.332273 0.943183i $$-0.392184\pi$$
0.332273 + 0.943183i $$0.392184\pi$$
$$164$$ 5.48346 5.81212i 0.428186 0.453851i
$$165$$ −1.93525 0.702840i −0.150659 0.0547160i
$$166$$ 0.123760 + 2.12488i 0.00960564 + 0.164922i
$$167$$ −19.0481 2.22641i −1.47399 0.172285i −0.659168 0.751996i $$-0.729091\pi$$
−0.814822 + 0.579711i $$0.803165\pi$$
$$168$$ 0.00951085 0.165289i 0.000733778 0.0127523i
$$169$$ −9.90422 + 4.97409i −0.761863 + 0.382622i
$$170$$ 6.90112 + 5.79073i 0.529292 + 0.444129i
$$171$$ 2.05766 + 11.5747i 0.157353 + 0.885143i
$$172$$ −8.54655 + 7.17140i −0.651668 + 0.546814i
$$173$$ −1.82326 + 4.22678i −0.138620 + 0.321356i −0.973358 0.229290i $$-0.926360\pi$$
0.834738 + 0.550647i $$0.185619\pi$$
$$174$$ 3.14572 10.5343i 0.238476 0.798600i
$$175$$ 0.146589 0.0347422i 0.0110811 0.00262626i
$$176$$ −0.184247 + 0.615428i −0.0138881 + 0.0463896i
$$177$$ 4.46347 2.94015i 0.335495 0.220995i
$$178$$ −5.17777 + 0.605195i −0.388091 + 0.0453613i
$$179$$ 4.23157 + 23.9984i 0.316282 + 1.79373i 0.564937 + 0.825134i $$0.308901\pi$$
−0.248654 + 0.968592i $$0.579988\pi$$
$$180$$ 1.59954 + 5.31574i 0.119223 + 0.396212i
$$181$$ 1.52052 8.62329i 0.113019 0.640964i −0.874693 0.484678i $$-0.838937\pi$$
0.987712 0.156286i $$-0.0499522\pi$$
$$182$$ 0.00769503 0.132119i 0.000570394 0.00979328i
$$183$$ −4.50147 + 0.529341i −0.332758 + 0.0391300i
$$184$$ −2.72620 6.32005i −0.200978 0.465920i
$$185$$ 7.19603 + 3.61398i 0.529063 + 0.265705i
$$186$$ −0.00492071 3.44513e-6i −0.000360804 2.52609e-7i
$$187$$ 3.04334 + 0.721285i 0.222551 + 0.0527456i
$$188$$ −4.68965 + 8.12272i −0.342028 + 0.592410i
$$189$$ −0.415547 0.272061i −0.0302266 0.0197895i
$$190$$ −3.62561 6.27973i −0.263029 0.455580i
$$191$$ 1.28389 + 4.28848i 0.0928988 + 0.310304i 0.991792 0.127865i $$-0.0408125\pi$$
−0.898893 + 0.438169i $$0.855627\pi$$
$$192$$ 1.62718 0.593536i 0.117432 0.0428347i
$$193$$ 3.74426 2.46264i 0.269518 0.177264i −0.407555 0.913181i $$-0.633619\pi$$
0.677073 + 0.735916i $$0.263248\pi$$
$$194$$ −9.87143 + 13.2596i −0.708728 + 0.951987i
$$195$$ 1.27562 + 4.25005i 0.0913493 + 0.304352i
$$196$$ 5.84078 + 3.84154i 0.417199 + 0.274396i
$$197$$ 9.23931 3.36283i 0.658274 0.239592i 0.00878277 0.999961i $$-0.497204\pi$$
0.649491 + 0.760369i $$0.274982\pi$$
$$198$$ 1.32452 + 1.39998i 0.0941295 + 0.0994919i
$$199$$ −7.93930 2.88967i −0.562802 0.204843i 0.0449233 0.998990i $$-0.485696\pi$$
−0.607725 + 0.794147i $$0.707918\pi$$
$$200$$ 0.941148 + 1.26418i 0.0665492 + 0.0893911i
$$201$$ 13.4463 + 1.56210i 0.948427 + 0.110182i
$$202$$ −8.89111 9.42403i −0.625576 0.663072i
$$203$$ −0.416360 0.441315i −0.0292227 0.0309743i
$$204$$ −3.34541 7.74062i −0.234225 0.541952i
$$205$$ 8.82940 + 11.8599i 0.616672 + 0.828334i
$$206$$ −9.34613 3.40171i −0.651176 0.237009i
$$207$$ −20.5126 2.36847i −1.42573 0.164620i
$$208$$ 1.30102 0.473534i 0.0902098 0.0328337i
$$209$$ −2.10331 1.38337i −0.145489 0.0956895i
$$210$$ 0.298146 + 0.0704415i 0.0205740 + 0.00486093i
$$211$$ 12.6849 17.0387i 0.873262 1.17300i −0.110564 0.993869i $$-0.535266\pi$$
0.983826 0.179126i $$-0.0573270\pi$$
$$212$$ −8.72452 + 5.73821i −0.599203 + 0.394102i
$$213$$ 10.4259 + 8.73592i 0.714370 + 0.598576i
$$214$$ −1.34535 4.49379i −0.0919665 0.307189i
$$215$$ −10.3222 17.8785i −0.703966 1.21930i
$$216$$ 0.891552 5.11910i 0.0606625 0.348310i
$$217$$ −0.000135780 0 0.000235179i −9.21737e−6 0 1.59650e-5i
$$218$$ 13.3851 + 3.17232i 0.906550 + 0.214856i
$$219$$ −6.74213 + 11.6966i −0.455591 + 0.790384i
$$220$$ −1.06228 0.533497i −0.0716190 0.0359684i
$$221$$ −2.66983 6.18937i −0.179592 0.416342i
$$222$$ −4.50535 6.04290i −0.302379 0.405573i
$$223$$ 1.64105 28.1757i 0.109893 1.88679i −0.271592 0.962412i $$-0.587550\pi$$
0.381485 0.924375i $$-0.375413\pi$$
$$224$$ 0.0165985 0.0941350i 0.00110904 0.00628966i
$$225$$ 4.69539 0.555478i 0.313026 0.0370318i
$$226$$ −1.01303 5.74519i −0.0673859 0.382165i
$$227$$ −6.40577 + 0.748727i −0.425166 + 0.0496948i −0.325986 0.945375i $$-0.605696\pi$$
−0.0991802 + 0.995069i $$0.531622\pi$$
$$228$$ 0.399400 + 6.77570i 0.0264509 + 0.448732i
$$229$$ 3.59448 12.0064i 0.237530 0.793405i −0.753228 0.657760i $$-0.771504\pi$$
0.990758 0.135645i $$-0.0433106\pi$$
$$230$$ 12.3929 2.93717i 0.817163 0.193671i
$$231$$ 0.103475 0.0246007i 0.00680818 0.00161860i
$$232$$ 2.51405 5.82823i 0.165056 0.382642i
$$233$$ 12.4844 10.4756i 0.817878 0.686281i −0.134596 0.990901i $$-0.542974\pi$$
0.952474 + 0.304620i $$0.0985293\pi$$
$$234$$ 0.715530 4.09147i 0.0467757 0.267468i
$$235$$ −13.2950 11.1558i −0.867271 0.727727i
$$236$$ 2.75760 1.38492i 0.179504 0.0901505i
$$237$$ −15.5717 10.2260i −1.01149 0.664253i
$$238$$ −0.462227 0.0540266i −0.0299617 0.00350202i
$$239$$ 0.995746 + 17.0963i 0.0644095 + 1.10587i 0.863399 + 0.504522i $$0.168331\pi$$
−0.798989 + 0.601345i $$0.794632\pi$$
$$240$$ 0.558748 + 3.15589i 0.0360670 + 0.203712i
$$241$$ 18.0715 19.1546i 1.16409 1.23386i 0.196725 0.980459i $$-0.436969\pi$$
0.967361 0.253401i $$-0.0815491\pi$$
$$242$$ 10.5873 0.680578
$$243$$ −11.9765 9.97820i −0.768290 0.640102i
$$244$$ −2.61683 −0.167525
$$245$$ −8.87712 + 9.40920i −0.567138 + 0.601131i
$$246$$ −2.41284 13.6281i −0.153837 0.868897i
$$247$$ 0.315469 + 5.41640i 0.0200728 + 0.344637i
$$248$$ −0.00282176 0.000329817i −0.000179182 2.09434e-5i
$$249$$ 3.08155 + 2.02368i 0.195286 + 0.128246i
$$250$$ −10.8740 + 5.46111i −0.687730 + 0.345391i
$$251$$ 3.95236 + 3.31643i 0.249471 + 0.209331i 0.758944 0.651155i $$-0.225715\pi$$
−0.509474 + 0.860486i $$0.670160\pi$$
$$252$$ −0.219930 0.184019i −0.0138543 0.0115921i
$$253$$ 3.38724 2.84223i 0.212954 0.178690i
$$254$$ −8.64594 + 20.0435i −0.542495 + 1.25764i
$$255$$ 15.1805 3.60908i 0.950642 0.226009i
$$256$$ 0.973045 0.230616i 0.0608153 0.0144135i
$$257$$ 8.49061 28.3606i 0.529630 1.76909i −0.103055 0.994676i $$-0.532862\pi$$
0.632684 0.774410i $$-0.281953\pi$$
$$258$$ 1.13710 + 19.2905i 0.0707926 + 1.20098i
$$259$$ −0.413165 + 0.0482920i −0.0256728 + 0.00300072i
$$260$$ 0.444871 + 2.52299i 0.0275897 + 0.156469i
$$261$$ −11.3925 15.2581i −0.705177 0.944453i
$$262$$ −0.829824 + 4.70617i −0.0512667 + 0.290748i
$$263$$ −0.0529456 + 0.909040i −0.00326476 + 0.0560538i −0.999547 0.0300950i $$-0.990419\pi$$
0.996282 + 0.0861488i $$0.0274561\pi$$
$$264$$ 0.665081 + 0.892054i 0.0409329 + 0.0549022i
$$265$$ −7.65329 17.7423i −0.470138 1.08990i
$$266$$ 0.334738 + 0.168112i 0.0205241 + 0.0103076i
$$267$$ −4.50914 + 7.82269i −0.275955 + 0.478741i
$$268$$ 7.60475 + 1.80236i 0.464534 + 0.110097i
$$269$$ 3.31673 5.74474i 0.202224 0.350263i −0.747020 0.664801i $$-0.768516\pi$$
0.949245 + 0.314538i $$0.101850\pi$$
$$270$$ 9.04196 + 3.26951i 0.550276 + 0.198976i
$$271$$ −4.24842 7.35848i −0.258073 0.446996i 0.707653 0.706561i $$-0.249754\pi$$
−0.965726 + 0.259565i $$0.916421\pi$$
$$272$$ −1.39632 4.66404i −0.0846645 0.282799i
$$273$$ −0.175699 0.147219i −0.0106338 0.00891012i
$$274$$ 12.3262 8.10710i 0.744656 0.489768i
$$275$$ −0.604608 + 0.812130i −0.0364592 + 0.0489733i
$$276$$ −11.6022 2.74120i −0.698372 0.165001i
$$277$$ 20.7636 + 13.6564i 1.24756 + 0.820535i 0.989351 0.145553i $$-0.0464960\pi$$
0.258213 + 0.966088i $$0.416866\pi$$
$$278$$ 15.6179 5.68444i 0.936697 0.340930i
$$279$$ −0.00507996 + 0.00684355i −0.000304129 + 0.000409713i
$$280$$ 0.166207 + 0.0604945i 0.00993278 + 0.00361524i
$$281$$ 8.51787 + 11.4415i 0.508134 + 0.682542i 0.979970 0.199144i $$-0.0638161\pi$$
−0.471836 + 0.881686i $$0.656409\pi$$
$$282$$ 6.44493 + 14.9123i 0.383790 + 0.888015i
$$283$$ 2.78315 + 2.94997i 0.165441 + 0.175357i 0.804790 0.593559i $$-0.202278\pi$$
−0.639349 + 0.768917i $$0.720796\pi$$
$$284$$ 5.38915 + 5.71217i 0.319787 + 0.338955i
$$285$$ −12.4756 1.44933i −0.738989 0.0858510i
$$286$$ 0.531136 + 0.713439i 0.0314067 + 0.0421865i
$$287$$ −0.717733 0.261234i −0.0423665 0.0154201i
$$288$$ 0.856385 2.87517i 0.0504629 0.169421i
$$289$$ −6.29876 + 2.29256i −0.370516 + 0.134857i
$$290$$ 9.81287 + 6.45402i 0.576231 + 0.378993i
$$291$$ 8.23094 + 27.4234i 0.482506 + 1.60759i
$$292$$ −4.65461 + 6.25223i −0.272390 + 0.365884i
$$293$$ 0.871473 0.573177i 0.0509120 0.0334853i −0.523798 0.851843i $$-0.675485\pi$$
0.574710 + 0.818357i $$0.305115\pi$$
$$294$$ 11.3754 4.14933i 0.663426 0.241994i
$$295$$ 1.63765 + 5.47012i 0.0953475 + 0.318483i
$$296$$ −2.17591 3.76878i −0.126472 0.219056i
$$297$$ 3.31470 0.394492i 0.192338 0.0228907i
$$298$$ 4.70672 8.15228i 0.272653 0.472249i
$$299$$ −9.27274 2.19768i −0.536256 0.127095i
$$300$$ 2.72979 0.00191120i 0.157604 0.000110343i
$$301$$ 0.953006 + 0.478617i 0.0549303 + 0.0275871i
$$302$$ −3.34444 7.75329i −0.192451 0.446152i
$$303$$ −22.2873 + 2.62083i −1.28037 + 0.150563i
$$304$$ −0.227855 + 3.91211i −0.0130684 + 0.224375i
$$305$$ 0.840834 4.76860i 0.0481460 0.273049i
$$306$$ −14.2167 3.34841i −0.812716 0.191416i
$$307$$ 1.21262 + 6.87713i 0.0692081 + 0.392499i 0.999660 + 0.0260839i $$0.00830371\pi$$
−0.930452 + 0.366415i $$0.880585\pi$$
$$308$$ 0.0609915 0.00712889i 0.00347531 0.000406206i
$$309$$ −14.3862 + 9.47640i −0.818403 + 0.539094i
$$310$$ 0.00150770 0.00503607i 8.56317e−5 0.000286030i
$$311$$ −26.8911 + 6.37331i −1.52486 + 0.361397i −0.905716 0.423884i $$-0.860666\pi$$
−0.619139 + 0.785282i $$0.712518\pi$$
$$312$$ 0.686163 2.29780i 0.0388463 0.130087i
$$313$$ −8.14092 + 18.8728i −0.460152 + 1.06675i 0.517340 + 0.855780i $$0.326922\pi$$
−0.977492 + 0.210972i $$0.932337\pi$$
$$314$$ 3.66286 3.07351i 0.206707 0.173448i
$$315$$ 0.406002 0.341646i 0.0228756 0.0192496i
$$316$$ −8.23927 6.91357i −0.463495 0.388919i
$$317$$ −6.91037 + 3.47052i −0.388125 + 0.194924i −0.632151 0.774845i $$-0.717828\pi$$
0.244026 + 0.969769i $$0.421532\pi$$
$$318$$ −1.03901 + 18.0569i −0.0582650 + 1.01258i
$$319$$ 4.05006 + 0.473384i 0.226760 + 0.0265044i
$$320$$ 0.107591 + 1.84726i 0.00601451 + 0.103265i
$$321$$ −7.63676 2.77350i −0.426243 0.154802i
$$322$$ −0.451495 + 0.478556i −0.0251608 + 0.0266689i
$$323$$ 19.0787 1.06157
$$324$$ −6.19448 6.52904i −0.344138 0.362724i
$$325$$ 2.18206 0.121039
$$326$$ 5.82232 6.17130i 0.322469 0.341797i
$$327$$ 18.2409 15.3277i 1.00872 0.847625i
$$328$$ −0.464610 7.97704i −0.0256538 0.440459i
$$329$$ 0.890480 + 0.104082i 0.0490937 + 0.00573824i
$$330$$ −1.83928 + 0.925333i −0.101249 + 0.0509379i
$$331$$ −16.6330 + 8.35342i −0.914234 + 0.459146i −0.842756 0.538296i $$-0.819068\pi$$
−0.0714787 + 0.997442i $$0.522772\pi$$
$$332$$ 1.63051 + 1.36816i 0.0894858 + 0.0750875i
$$333$$ −13.0554 + 0.0182810i −0.715432 + 0.00100179i
$$334$$ −14.6911 + 12.3273i −0.803859 + 0.674518i
$$335$$ −5.72795 + 13.2789i −0.312951 + 0.725502i
$$336$$ −0.113700 0.120346i −0.00620283 0.00656540i
$$337$$ −20.7662 + 4.92168i −1.13121 + 0.268101i −0.753258 0.657726i $$-0.771519\pi$$
−0.377949 + 0.925826i $$0.623370\pi$$
$$338$$ −3.17867 + 10.6175i −0.172897 + 0.577516i
$$339$$ −9.03286 4.52856i −0.490598 0.245957i
$$340$$ 8.94786 1.04586i 0.485266 0.0567195i
$$341$$ −0.000316923 0.00179736i −1.71623e−5 9.73324e-5i
$$342$$ 9.83122 + 6.44639i 0.531611 + 0.348581i
$$343$$ 0.232228 1.31703i 0.0125391 0.0711130i
$$344$$ −0.648706 + 11.1378i −0.0349759 + 0.600512i
$$345$$ 8.72323 20.2617i 0.469643 1.09085i
$$346$$ 1.82326 + 4.22678i 0.0980189 + 0.227233i
$$347$$ 3.44661 + 1.73095i 0.185024 + 0.0929225i 0.538900 0.842370i $$-0.318840\pi$$
−0.353876 + 0.935292i $$0.615136\pi$$
$$348$$ −5.50362 9.51716i −0.295025 0.510173i
$$349$$ 3.81710 + 0.904669i 0.204325 + 0.0484258i 0.331504 0.943454i $$-0.392444\pi$$
−0.127179 + 0.991880i $$0.540592\pi$$
$$350$$ 0.0753248 0.130466i 0.00402628 0.00697372i
$$351$$ −4.94793 5.22248i −0.264101 0.278755i
$$352$$ 0.321208 + 0.556348i 0.0171204 + 0.0296535i
$$353$$ 8.33521 + 27.8415i 0.443638 + 1.48186i 0.829084 + 0.559125i $$0.188863\pi$$
−0.385445 + 0.922731i $$0.625952\pi$$
$$354$$ 0.924432 5.26426i 0.0491330 0.279793i
$$355$$ −12.1408 + 7.98514i −0.644367 + 0.423807i
$$356$$ −3.11300 + 4.18149i −0.164989 + 0.221618i
$$357$$ −0.552735 + 0.586687i −0.0292538 + 0.0310508i
$$358$$ 20.3597 + 13.3908i 1.07604 + 0.707725i
$$359$$ 6.34158 2.30815i 0.334696 0.121819i −0.169205 0.985581i $$-0.554120\pi$$
0.503901 + 0.863762i $$0.331898\pi$$
$$360$$ 4.96420 + 2.48442i 0.261636 + 0.130940i
$$361$$ 3.42374 + 1.24614i 0.180197 + 0.0655863i
$$362$$ −5.22891 7.02365i −0.274826 0.369155i
$$363$$ 10.9402 14.7168i 0.574214 0.772431i
$$364$$ −0.0908189 0.0962625i −0.00476021 0.00504552i
$$365$$ −9.89771 10.4910i −0.518070 0.549122i
$$366$$ −2.70407 + 3.63750i −0.141344 + 0.190135i
$$367$$ 6.81775 + 9.15782i 0.355884 + 0.478035i 0.943626 0.331014i $$-0.107391\pi$$
−0.587742 + 0.809048i $$0.699983\pi$$
$$368$$ −6.46787 2.35411i −0.337161 0.122717i
$$369$$ −21.4369 10.7285i −1.11596 0.558502i
$$370$$ 7.56693 2.75414i 0.393386 0.143181i
$$371$$ 0.833953 + 0.548499i 0.0432967 + 0.0284767i
$$372$$ −0.00337429 + 0.00358156i −0.000174949 + 0.000185695i
$$373$$ 13.0936 17.5877i 0.677960 0.910658i −0.321381 0.946950i $$-0.604147\pi$$
0.999341 + 0.0362917i $$0.0115545\pi$$
$$374$$ 2.61311 1.71867i 0.135121 0.0888703i
$$375$$ −3.64529 + 20.7584i −0.188242 + 1.07196i
$$376$$ 2.69002 + 8.98528i 0.138727 + 0.463380i
$$377$$ −4.39401 7.61065i −0.226303 0.391968i
$$378$$ −0.483056 + 0.115558i −0.0248457 + 0.00594369i
$$379$$ −0.853488 + 1.47829i −0.0438408 + 0.0759344i −0.887113 0.461552i $$-0.847293\pi$$
0.843272 + 0.537486i $$0.180626\pi$$
$$380$$ −7.05576 1.67224i −0.361953 0.0857844i
$$381$$ 18.9272 + 32.7299i 0.969670 + 1.67681i
$$382$$ 4.00038 + 2.00907i 0.204677 + 0.102793i
$$383$$ −7.89013 18.2914i −0.403167 0.934646i −0.991982 0.126378i $$-0.959665\pi$$
0.588815 0.808268i $$-0.299595\pi$$
$$384$$ 0.684917 1.59088i 0.0349520 0.0811841i
$$385$$ −0.00660680 + 0.113434i −0.000336714 + 0.00578115i
$$386$$ 0.778208 4.41344i 0.0396098 0.224638i
$$387$$ 27.9896 + 18.3530i 1.42279 + 0.932935i
$$388$$ 2.87052 + 16.2795i 0.145729 + 0.826468i
$$389$$ 7.38106 0.862722i 0.374235 0.0437418i 0.0731032 0.997324i $$-0.476710\pi$$
0.301131 + 0.953583i $$0.402636\pi$$
$$390$$ 3.96676 + 1.98870i 0.200865 + 0.100702i
$$391$$ −9.61084 + 32.1024i −0.486041 + 1.62349i
$$392$$ 6.80242 1.61220i 0.343574 0.0814286i
$$393$$ 5.68428 + 6.01654i 0.286734 + 0.303494i
$$394$$ 3.89436 9.02815i 0.196195 0.454831i
$$395$$ 15.2459 12.7928i 0.767104 0.643677i
$$396$$ 1.92725 0.00269864i 0.0968477 0.000135612i
$$397$$ 7.09210 + 5.95098i 0.355942 + 0.298671i 0.803171 0.595749i $$-0.203145\pi$$
−0.447229 + 0.894420i $$0.647589\pi$$
$$398$$ −7.55015 + 3.79183i −0.378455 + 0.190067i
$$399$$ 0.579580 0.291584i 0.0290153 0.0145975i
$$400$$ 1.56539 + 0.182967i 0.0782693 + 0.00914837i
$$401$$ 1.79505 + 30.8199i 0.0896407 + 1.53907i 0.680771 + 0.732496i $$0.261645\pi$$
−0.591130 + 0.806576i $$0.701318\pi$$
$$402$$ 10.3636 8.70848i 0.516890 0.434340i
$$403$$ −0.00269925 + 0.00286104i −0.000134459 + 0.000142519i
$$404$$ −12.9562 −0.644597
$$405$$ 13.8881 9.19020i 0.690108 0.456665i
$$406$$ −0.606724 −0.0301112
$$407$$ 1.91851 2.03350i 0.0950968 0.100797i
$$408$$ −7.92608 2.87858i −0.392400 0.142511i
$$409$$ −1.96913 33.8086i −0.0973670 1.67173i −0.594533 0.804071i $$-0.702663\pi$$
0.497166 0.867656i $$-0.334374\pi$$
$$410$$ 14.6857 + 1.71651i 0.725276 + 0.0847726i
$$411$$ 1.46795 25.5114i 0.0724085 1.25838i
$$412$$ −8.88802 + 4.46373i −0.437881 + 0.219912i
$$413$$ −0.225957 0.189600i −0.0111186 0.00932963i
$$414$$ −15.7994 + 13.2950i −0.776497 + 0.653413i
$$415$$ −3.01708 + 2.53163i −0.148103 + 0.124273i
$$416$$ 0.548381 1.27129i 0.0268866 0.0623301i
$$417$$ 8.23690 27.5834i 0.403363 1.35077i
$$418$$ −2.44960 + 0.580566i −0.119814 + 0.0283964i
$$419$$ −2.43636 + 8.13801i −0.119024 + 0.397568i −0.996651 0.0817769i $$-0.973941\pi$$
0.877627 + 0.479345i $$0.159126\pi$$
$$420$$ 0.255838 0.168524i 0.0124836 0.00822312i
$$421$$ −29.0779 + 3.39872i −1.41717 + 0.165644i −0.789937 0.613188i $$-0.789887\pi$$
−0.627234 + 0.778831i $$0.715813\pi$$
$$422$$ −3.68864 20.9193i −0.179560 1.01834i
$$423$$ 27.3885 + 6.45071i 1.33168 + 0.313644i
$$424$$ −1.81331 + 10.2838i −0.0880621 + 0.499425i
$$425$$ 0.446150 7.66010i 0.0216415 0.371569i
$$426$$ 13.5090 1.58856i 0.654511 0.0769659i
$$427$$ 0.0990737 + 0.229679i 0.00479451 + 0.0111149i
$$428$$ −4.19190 2.10525i −0.202623 0.101761i
$$429$$ 1.54055 0.00107858i 0.0743785 5.20745e-5i
$$430$$ −20.0879 4.76091i −0.968722 0.229591i
$$431$$ 5.10804 8.84738i 0.246045 0.426163i −0.716380 0.697711i $$-0.754202\pi$$
0.962425 + 0.271548i $$0.0875354\pi$$
$$432$$ −3.11167 4.16143i −0.149711 0.200217i
$$433$$ 6.10277 + 10.5703i 0.293280 + 0.507976i 0.974583 0.224025i $$-0.0719197\pi$$
−0.681303 + 0.732001i $$0.738586\pi$$
$$434$$ 7.78845e−5 0 0.000260152i 3.73858e−6 0 1.24877e-5i
$$435$$ 19.1114 6.97112i 0.916319 0.334240i
$$436$$ 11.4928 7.55896i 0.550407 0.362009i
$$437$$ 16.1069 21.6353i 0.770497 1.03496i
$$438$$ 3.88108 + 12.9308i 0.185445 + 0.617855i
$$439$$ 18.7061 + 12.3032i 0.892793 + 0.587199i 0.910896 0.412637i $$-0.135392\pi$$
−0.0181027 + 0.999836i $$0.505763\pi$$
$$440$$ −1.11703 + 0.406567i −0.0532525 + 0.0193823i
$$441$$ 5.98687 20.0999i 0.285089 0.957139i
$$442$$ −6.33413 2.30544i −0.301284 0.109658i
$$443$$ −13.1848 17.7103i −0.626431 0.841443i 0.369716 0.929145i $$-0.379455\pi$$
−0.996147 + 0.0877021i $$0.972048\pi$$
$$444$$ −7.48720 0.869815i −0.355327 0.0412796i
$$445$$ −6.61959 7.01635i −0.313799 0.332607i
$$446$$ −19.3681 20.5290i −0.917108 0.972078i
$$447$$ −6.46838 14.9666i −0.305944 0.707895i
$$448$$ −0.0570807 0.0766727i −0.00269681 0.00362245i
$$449$$ 13.6831 + 4.98026i 0.645747 + 0.235033i 0.644071 0.764966i $$-0.277244\pi$$
0.00167637 + 0.999999i $$0.499466\pi$$
$$450$$ 2.81813 3.79649i 0.132848 0.178968i
$$451$$ 4.82369 1.75568i 0.227139 0.0826717i
$$452$$ −4.87409 3.20574i −0.229258 0.150785i
$$453$$ −14.2333 3.36284i −0.668741 0.158000i
$$454$$ −3.85130 + 5.17319i −0.180750 + 0.242790i
$$455$$ 0.204599 0.134567i 0.00959175 0.00630859i
$$456$$ 5.20255 + 4.35925i 0.243632 + 0.204141i
$$457$$ 6.87963 + 22.9796i 0.321815 + 1.07494i 0.953921 + 0.300057i $$0.0970056\pi$$
−0.632106 + 0.774882i $$0.717809\pi$$
$$458$$ −6.26645 10.8538i −0.292812 0.507165i
$$459$$ −19.3451 + 16.3018i −0.902951 + 0.760903i
$$460$$ 6.36810 11.0299i 0.296914 0.514270i
$$461$$ −5.26464 1.24774i −0.245199 0.0581132i 0.106179 0.994347i $$-0.466138\pi$$
−0.351377 + 0.936234i $$0.614287\pi$$
$$462$$ 0.0531153 0.0921473i 0.00247115 0.00428708i
$$463$$ −25.1069 12.6091i −1.16681 0.585996i −0.243447 0.969914i $$-0.578278\pi$$
−0.923367 + 0.383918i $$0.874575\pi$$
$$464$$ −2.51405 5.82823i −0.116712 0.270569i
$$465$$ −0.00544239 0.00729972i −0.000252385 0.000338517i
$$466$$ 0.947597 16.2696i 0.0438966 0.753675i
$$467$$ −4.25830 + 24.1500i −0.197051 + 1.11753i 0.712418 + 0.701756i $$0.247600\pi$$
−0.909468 + 0.415774i $$0.863511\pi$$
$$468$$ −2.48500 3.32819i −0.114869 0.153846i
$$469$$ −0.129725 0.735705i −0.00599013 0.0339717i
$$470$$ −17.2381 + 2.01484i −0.795132 + 0.0929376i
$$471$$ −0.487335 8.26750i −0.0224552 0.380946i
$$472$$ 0.885026 2.95619i 0.0407366 0.136070i
$$473$$ −6.97406 + 1.65288i −0.320668 + 0.0759996i
$$474$$ −18.1241 + 4.30889i −0.832467 + 0.197914i
$$475$$ −2.44623 + 5.67100i −0.112241 + 0.260203i
$$476$$ −0.356497 + 0.299136i −0.0163400 + 0.0137109i
$$477$$ 24.0263 + 20.1032i 1.10009 + 0.920461i
$$478$$ 13.1187 + 11.0079i 0.600036 + 0.503490i
$$479$$ 29.6240 14.8777i 1.35355 0.679780i 0.383698 0.923459i $$-0.374650\pi$$
0.969856 + 0.243678i $$0.0783541\pi$$
$$480$$ 2.67895 + 1.75929i 0.122277 + 0.0803001i
$$481$$ −5.98443 0.699480i −0.272867 0.0318935i
$$482$$ −1.53119 26.2894i −0.0697436 1.19745i
$$483$$ 0.198668 + 1.12211i 0.00903969 + 0.0510576i
$$484$$ 7.26545 7.70092i 0.330248 0.350042i
$$485$$ −30.5883 −1.38894
$$486$$ −15.4766 + 1.86390i −0.702034 + 0.0845482i
$$487$$ −23.7318 −1.07539 −0.537695 0.843140i $$-0.680705\pi$$
−0.537695 + 0.843140i $$0.680705\pi$$
$$488$$ −1.79578 + 1.90341i −0.0812911 + 0.0861635i
$$489$$ −2.56195 14.4703i −0.115855 0.654370i
$$490$$ 0.752153 + 12.9140i 0.0339788 + 0.583393i
$$491$$ −2.11340 0.247021i −0.0953765 0.0111479i 0.0682708 0.997667i $$-0.478252\pi$$
−0.163647 + 0.986519i $$0.552326\pi$$
$$492$$ −11.5685 7.59714i −0.521549 0.342506i
$$493$$ −27.6155 + 13.8690i −1.24374 + 0.624629i
$$494$$ 4.15623 + 3.48749i 0.186998 + 0.156910i
$$495$$ −0.614340 + 3.51285i −0.0276125 + 0.157891i
$$496$$ −0.00217631 + 0.00182614i −9.77193e−5 + 8.19962e-5i
$$497$$ 0.297321 0.689268i 0.0133367 0.0309179i
$$498$$ 3.58666 0.852707i 0.160722 0.0382107i
$$499$$ 14.6923 3.48213i 0.657717 0.155882i 0.111813 0.993729i $$-0.464334\pi$$
0.545904 + 0.837848i $$0.316186\pi$$
$$500$$ −3.48990 + 11.6571i −0.156073 + 0.521320i
$$501$$ 1.95461 + 33.1594i 0.0873256 + 1.48145i
$$502$$ 5.12456 0.598975i 0.228720 0.0267336i
$$503$$ 2.86626 + 16.2554i 0.127800 + 0.724791i 0.979605 + 0.200932i $$0.0643971\pi$$
−0.851805 + 0.523859i $$0.824492\pi$$
$$504$$ −0.284776 + 0.0336898i −0.0126849 + 0.00150066i
$$505$$ 4.16307 23.6099i 0.185254 1.05063i
$$506$$ 0.257100 4.41424i 0.0114295 0.196237i
$$507$$ 11.4741 + 15.3899i 0.509584 + 0.683491i
$$508$$ 8.64594 + 20.0435i 0.383602 + 0.889288i
$$509$$ −29.7920 14.9621i −1.32051 0.663183i −0.357816 0.933792i $$-0.616478\pi$$
−0.962689 + 0.270610i $$0.912775\pi$$
$$510$$ 7.79237 13.5186i 0.345052 0.598615i
$$511$$ 0.724981 + 0.171824i 0.0320713 + 0.00760103i
$$512$$ 0.500000 0.866025i 0.0220971 0.0382733i
$$513$$ 19.1197 7.00452i 0.844156 0.309257i
$$514$$ −14.8021 25.6381i −0.652895 1.13085i
$$515$$ −5.27830 17.6308i −0.232590 0.776904i
$$516$$ 14.8117 + 12.4109i 0.652051 + 0.546358i
$$517$$ −5.03416 + 3.31102i −0.221402 + 0.145618i
$$518$$ −0.248405 + 0.333665i −0.0109143 + 0.0146604i
$$519$$ 7.75944 + 1.83329i 0.340602 + 0.0804723i
$$520$$ 2.14044 + 1.40779i 0.0938647 + 0.0617358i
$$521$$ −14.5717 + 5.30368i −0.638399 + 0.232358i −0.640883 0.767639i $$-0.721432\pi$$
0.00248380 + 0.999997i $$0.499209\pi$$
$$522$$ −18.9163 2.18416i −0.827946 0.0955980i
$$523$$ −3.81870 1.38989i −0.166980 0.0607758i 0.257177 0.966364i $$-0.417208\pi$$
−0.424158 + 0.905588i $$0.639430\pi$$
$$524$$ 2.85368 + 3.83316i 0.124664 + 0.167452i
$$525$$ −0.103518 0.239520i −0.00451789 0.0104535i
$$526$$ 0.624878 + 0.662332i 0.0272460 + 0.0288791i
$$527$$ 0.00949174 + 0.0100607i 0.000413467 + 0.000438249i
$$528$$ 1.10526 + 0.128402i 0.0481004 + 0.00558800i
$$529$$ 14.5559 + 19.5519i 0.632864 + 0.850084i
$$530$$ −18.1573 6.60872i −0.788703 0.287064i
$$531$$ −6.36230 6.72475i −0.276100 0.291829i
$$532$$ 0.351992 0.128114i 0.0152608 0.00555447i
$$533$$ −9.24309 6.07927i −0.400362 0.263323i
$$534$$ 2.59567 + 8.64808i 0.112325 + 0.374239i
$$535$$ 5.18330 6.96238i 0.224093 0.301010i
$$536$$ 6.52969 4.29464i 0.282040 0.185500i
$$537$$ 39.6522 14.4637i 1.71112 0.624153i
$$538$$ −1.90250 6.35478i −0.0820224 0.273974i
$$539$$ 2.24552 + 3.88935i 0.0967214 + 0.167526i
$$540$$ 8.58313 4.33321i 0.369359 0.186472i
$$541$$ −5.89817 + 10.2159i −0.253582 + 0.439217i −0.964509 0.264048i $$-0.914942\pi$$
0.710927 + 0.703265i $$0.248275\pi$$
$$542$$ −8.26781 1.95951i −0.355133 0.0841680i
$$543$$ −15.1664 + 0.0106184i −0.650852 + 0.000455680i
$$544$$ −4.35072 2.18501i −0.186535 0.0936816i
$$545$$ 10.0817 + 23.3720i 0.431853 + 1.00115i
$$546$$ −0.227655 + 0.0267707i −0.00974275 + 0.00114568i
$$547$$ 1.77358 30.4511i 0.0758326 1.30200i −0.718933 0.695079i $$-0.755369\pi$$
0.794766 0.606916i $$-0.207594\pi$$
$$548$$ 2.56189 14.5292i 0.109439 0.620657i
$$549$$ 2.26208 + 7.51753i 0.0965430 + 0.320840i
$$550$$ 0.175814 + 0.997093i 0.00749675 + 0.0425162i
$$551$$ 24.7054 2.88765i 1.05248 0.123018i
$$552$$ −9.95580 + 6.55802i −0.423747 + 0.279128i
$$553$$ −0.294862 + 0.984908i −0.0125388 + 0.0418825i
$$554$$ 24.1822 5.73128i 1.02740 0.243499i
$$555$$ 3.99082 13.3643i 0.169401 0.567283i
$$556$$ 6.58292 15.2609i 0.279178 0.647207i
$$557$$ 8.21928 6.89680i 0.348262 0.292227i −0.451830 0.892104i $$-0.649229\pi$$
0.800092 + 0.599878i $$0.204784\pi$$
$$558$$ 0.00149174 + 0.00839136i 6.31504e−5 + 0.000355234i
$$559$$ 11.8329 + 9.92896i 0.500477 + 0.419950i
$$560$$ 0.158060 0.0793809i 0.00667927 0.00335446i
$$561$$ 0.311198 5.40830i 0.0131388 0.228339i
$$562$$ 14.1676 + 1.65595i 0.597622 + 0.0698520i
$$563$$ 1.78771 + 30.6939i 0.0753432 + 1.29359i 0.798115 + 0.602505i $$0.205831\pi$$
−0.722772 + 0.691087i $$0.757132\pi$$
$$564$$ 15.2696 + 5.54558i 0.642966 + 0.233511i
$$565$$ 7.40789 7.85190i 0.311652 0.330332i
$$566$$ 4.05565 0.170471
$$567$$ −0.338528 + 0.790879i −0.0142168 + 0.0332138i
$$568$$ 7.85314 0.329510
$$569$$ −15.4655 + 16.3925i −0.648347 + 0.687208i −0.965273 0.261242i $$-0.915868\pi$$
0.316926 + 0.948450i $$0.397349\pi$$
$$570$$ −9.61546 + 8.07981i −0.402747 + 0.338426i
$$571$$ 1.00671 + 17.2845i 0.0421294 + 0.723334i 0.951557 + 0.307472i $$0.0994831\pi$$
−0.909428 + 0.415862i $$0.863480\pi$$
$$572$$ 0.883424 + 0.103257i 0.0369378 + 0.00431741i
$$573$$ 6.92643 3.48466i 0.289356 0.145574i
$$574$$ −0.682553 + 0.342791i −0.0284892 + 0.0143078i
$$575$$ −8.30994 6.97287i −0.346548 0.290789i
$$576$$ −1.50364 2.59597i −0.0626515 0.108166i
$$577$$ −5.34742 + 4.48702i −0.222616 + 0.186797i −0.747274 0.664516i $$-0.768638\pi$$
0.524658 + 0.851313i $$0.324193\pi$$
$$578$$ −2.65492 + 6.15481i −0.110430 + 0.256006i
$$579$$ −5.33071 5.64231i −0.221537 0.234486i
$$580$$ 11.4285 2.70860i 0.474542 0.112469i
$$581$$ 0.0583517 0.194908i 0.00242083 0.00808615i
$$582$$ 25.5955 + 12.8321i 1.06097 + 0.531907i
$$583$$ −6.66302 + 0.778795i −0.275954 + 0.0322544i
$$584$$ 1.35352 + 7.67618i 0.0560090 + 0.317643i
$$585$$ 6.86338 3.45896i 0.283766 0.143010i
$$586$$ 0.181127 1.02722i 0.00748230 0.0424342i
$$587$$ 0.582916 10.0083i 0.0240595 0.413086i −0.964679 0.263430i $$-0.915146\pi$$
0.988738 0.149656i $$-0.0478167\pi$$
$$588$$ 4.78816 11.1216i 0.197460 0.458647i
$$589$$ −0.00440957 0.0102225i −0.000181693 0.000421212i
$$590$$ 5.10264 + 2.56264i 0.210073 + 0.105502i
$$591$$ −8.52532 14.7424i −0.350685 0.606423i
$$592$$ −4.23451 1.00360i −0.174037 0.0412476i
$$593$$ −22.8981 + 39.6606i −0.940311 + 1.62867i −0.175434 + 0.984491i $$0.556133\pi$$
−0.764878 + 0.644176i $$0.777201\pi$$
$$594$$ 1.98774 2.68174i 0.0815580 0.110033i
$$595$$ −0.430562 0.745755i −0.0176513 0.0305730i
$$596$$ −2.69980 9.01797i −0.110588 0.369391i
$$597$$ −2.53104 + 14.4133i −0.103589 + 0.589895i
$$598$$ −7.96187 + 5.23661i −0.325585 + 0.214141i
$$599$$ 0.572891 0.769526i 0.0234077 0.0314420i −0.790265 0.612765i $$-0.790057\pi$$
0.813673 + 0.581323i $$0.197465\pi$$
$$600$$ 1.87190 1.98689i 0.0764201 0.0811143i
$$601$$ −15.2900 10.0564i −0.623693 0.410210i 0.197949 0.980212i $$-0.436572\pi$$
−0.821643 + 0.570003i $$0.806942\pi$$
$$602$$ 1.00213 0.364744i 0.0408436 0.0148659i
$$603$$ −1.39605 23.4047i −0.0568516 0.953111i
$$604$$ −7.93464 2.88797i −0.322856 0.117510i
$$605$$ 11.6987 + 15.7141i 0.475621 + 0.638870i
$$606$$ −13.3881 + 18.0097i −0.543856 + 0.731595i
$$607$$ 14.5943 + 15.4691i 0.592366 + 0.627871i 0.952321 0.305098i $$-0.0986894\pi$$
−0.359955 + 0.932970i $$0.617208\pi$$
$$608$$ 2.68920 + 2.85039i 0.109062 + 0.115599i
$$609$$ −0.626950 + 0.843372i −0.0254053 + 0.0341752i
$$610$$ −2.89154 3.88401i −0.117075 0.157259i
$$611$$ 12.2027 + 4.44142i 0.493669 + 0.179681i
$$612$$ −12.1917 + 8.04305i −0.492818 + 0.325121i
$$613$$ 26.0835 9.49362i 1.05350 0.383444i 0.243519 0.969896i $$-0.421698\pi$$
0.809984 + 0.586452i $$0.199476\pi$$
$$614$$ 5.83440 + 3.83734i 0.235457 + 0.154863i
$$615$$ 17.5613 18.6400i 0.708140 0.751638i
$$616$$ 0.0366696 0.0492558i 0.00147746 0.00198457i
$$617$$ 18.7062 12.3033i 0.753085 0.495311i −0.113995 0.993481i $$-0.536365\pi$$
0.867079 + 0.498170i $$0.165994\pi$$
$$618$$ −2.97954 + 16.9673i −0.119855 + 0.682523i
$$619$$ 3.91251 + 13.0687i 0.157257 + 0.525275i 0.999913 0.0131772i $$-0.00419457\pi$$
−0.842656 + 0.538452i $$0.819009\pi$$
$$620$$ −0.00262846 0.00455263i −0.000105561 0.000182838i
$$621$$ 2.15453 + 35.7000i 0.0864585 + 1.43259i
$$622$$ −13.8180 + 23.9335i −0.554052 + 0.959647i
$$623$$ 0.484867 + 0.114916i 0.0194258 + 0.00460399i
$$624$$ −1.20048 2.07594i −0.0480578 0.0831042i
$$625$$ −13.0791 6.56857i −0.523164 0.262743i
$$626$$ 8.14092 + 18.8728i 0.325377 + 0.754308i
$$627$$ −1.72425 + 4.00497i −0.0688599 + 0.159943i
$$628$$ 0.278021 4.77344i 0.0110942 0.190481i
$$629$$ −3.67910 + 20.8652i −0.146695 + 0.831951i
$$630$$ 0.0301111 0.529767i 0.00119966 0.0211064i
$$631$$ −7.39656 41.9480i −0.294453 1.66992i −0.669419 0.742885i $$-0.733457\pi$$
0.374966 0.927038i $$-0.377654\pi$$
$$632$$ −10.6829 + 1.24865i −0.424942 + 0.0496686i
$$633$$ −32.8904 16.4893i −1.30727 0.655392i
$$634$$ −2.21782 + 7.40803i −0.0880809 + 0.294211i
$$635$$ −39.3031 + 9.31500i −1.55970 + 0.369655i
$$636$$ 12.4211 + 13.1472i 0.492530 + 0.521320i
$$637$$ 3.83365 8.88741i 0.151895 0.352132i
$$638$$ 3.12365 2.62105i 0.123666 0.103768i
$$639$$ 11.7511 20.4195i 0.464867 0.807784i
$$640$$ 1.41748 + 1.18941i 0.0560310 + 0.0470156i
$$641$$ −13.9867 + 7.02436i −0.552440 + 0.277446i −0.703042 0.711149i $$-0.748175\pi$$
0.150602 + 0.988595i $$0.451879\pi$$
$$642$$ −7.25804 + 3.65149i −0.286452 + 0.144113i
$$643$$ −6.41606 0.749930i −0.253025 0.0295743i −0.0113650 0.999935i $$-0.503618\pi$$
−0.241660 + 0.970361i $$0.577692\pi$$
$$644$$ 0.0382549 + 0.656811i 0.00150745 + 0.0258820i
$$645$$ −27.3754 + 23.0033i −1.07790 + 0.905756i
$$646$$ 13.0926 13.8773i 0.515121 0.545996i
$$647$$ 12.8813 0.506417 0.253209 0.967412i $$-0.418514\pi$$
0.253209 + 0.967412i $$0.418514\pi$$
$$648$$ −8.99996 + 0.0252046i −0.353552 + 0.000990130i
$$649$$ 1.98239 0.0778155
$$650$$ 1.49742 1.58718i 0.0587338 0.0622542i
$$651$$ 0.000442104 0 0.000160562i 1.73274e−5 0 6.29292e-6i
$$652$$ −0.493322 8.47001i −0.0193200 0.331711i
$$653$$ 42.1106 + 4.92202i 1.64791 + 0.192614i 0.888784 0.458326i $$-0.151551\pi$$
0.759130 + 0.650939i $$0.225625\pi$$
$$654$$ 1.36870 23.7865i 0.0535202 0.930125i
$$655$$ −7.90204 + 3.96855i −0.308758 + 0.155064i
$$656$$ −6.12113 5.13623i −0.238990 0.200536i
$$657$$ 21.9848 + 7.96695i 0.857707 + 0.310820i
$$658$$ 0.686791 0.576286i 0.0267739 0.0224660i
$$659$$ 14.2014 32.9225i 0.553208 1.28248i −0.380611 0.924735i $$-0.624286\pi$$
0.933819 0.357745i $$-0.116454\pi$$
$$660$$ −0.589126 + 1.97284i −0.0229317 + 0.0767928i
$$661$$ 17.4665 4.13964i 0.679369 0.161013i 0.123577 0.992335i $$-0.460563\pi$$
0.555792 + 0.831322i $$0.312415\pi$$
$$662$$ −5.33822 + 17.8309i −0.207476 + 0.693018i
$$663$$ −9.74994 + 6.42242i −0.378656 + 0.249426i
$$664$$ 2.11409 0.247101i 0.0820425 0.00958939i
$$665$$ 0.120360 + 0.682593i 0.00466735 + 0.0264698i
$$666$$ −8.94587 + 9.50871i −0.346646 + 0.368455i
$$667$$ −7.58643 + 43.0248i −0.293748 + 1.66593i
$$668$$ −1.11509 + 19.1454i −0.0431442 + 0.740757i
$$669$$ −48.5500 + 5.70914i −1.87705 + 0.220728i
$$670$$ 5.72795 + 13.2789i 0.221290 + 0.513008i
$$671$$ −1.50228 0.754473i −0.0579949 0.0291261i
$$672$$ −0.165562 0.000115915i −0.00638669 4.47151e-6i
$$673$$ −42.4250 10.0549i −1.63537 0.387589i −0.692673 0.721252i $$-0.743567\pi$$
−0.942692 + 0.333663i $$0.891715\pi$$
$$674$$ −10.6707 + 18.4822i −0.411021 + 0.711909i
$$675$$ −2.36521 7.84037i −0.0910369 0.301776i
$$676$$ 5.54155 + 9.59825i 0.213137 + 0.369163i
$$677$$ −9.25729 30.9215i −0.355787 1.18841i −0.929335 0.369238i $$-0.879619\pi$$
0.573548 0.819172i $$-0.305567\pi$$
$$678$$ −9.49268 + 3.46258i −0.364564 + 0.132980i
$$679$$ 1.32017 0.868291i 0.0506636 0.0333219i
$$680$$ 5.37967 7.22615i 0.206301 0.277110i
$$681$$ 3.21127 + 10.6991i 0.123056 + 0.409991i
$$682$$ −0.00152484 0.00100290i −5.83890e−5 3.84031e-5i
$$683$$ −7.75469 + 2.82248i −0.296725 + 0.107999i −0.486093 0.873907i $$-0.661578\pi$$
0.189368 + 0.981906i $$0.439356\pi$$
$$684$$ 11.4355 2.72719i 0.437248 0.104277i
$$685$$ 25.6532 + 9.33698i 0.980157 + 0.356748i
$$686$$ −0.798609 1.07272i −0.0304910 0.0409566i
$$687$$ −21.5626 2.50501i −0.822665 0.0955719i
$$688$$ 7.65621 + 8.11511i 0.291890 + 0.309386i
$$689$$ 9.92152 + 10.5162i 0.377980 + 0.400635i
$$690$$ −8.75160 20.2495i −0.333168 0.770885i
$$691$$ −5.62712 7.55853i −0.214066 0.287540i 0.682101 0.731258i $$-0.261067\pi$$
−0.896166 + 0.443718i $$0.853659\pi$$
$$692$$ 4.32565 + 1.57441i 0.164436 + 0.0598499i
$$693$$ −0.0732027 0.169052i −0.00278074 0.00642174i
$$694$$ 3.62426 1.31912i 0.137575 0.0500732i
$$695$$ 25.6945 + 16.8995i 0.974648 + 0.641036i
$$696$$ −10.6993 2.52788i −0.405558 0.0958191i
$$697$$ −23.2310 + 31.2047i −0.879939 + 1.18196i
$$698$$ 3.27748 2.15563i 0.124055 0.0815920i
$$699$$ −21.6362 18.1292i −0.818358 0.685708i
$$700$$ −0.0432068 0.144321i −0.00163306 0.00545481i
$$701$$ 8.79871 + 15.2398i 0.332323 + 0.575600i 0.982967 0.183783i $$-0.0588344\pi$$
−0.650644 + 0.759383i $$0.725501\pi$$
$$702$$ −7.19417 + 0.0151105i −0.271526 + 0.000570311i
$$703$$ 8.52681 14.7689i 0.321595 0.557018i
$$704$$ 0.625099 + 0.148151i 0.0235593 + 0.00558366i
$$705$$ −15.0120 + 26.0436i −0.565384 + 0.980860i
$$706$$ 25.9712 + 13.0432i 0.977438 + 0.490888i
$$707$$ 0.490525 + 1.13717i 0.0184481 + 0.0427675i
$$708$$ −3.19470 4.28497i −0.120064 0.161039i
$$709$$ 2.54446 43.6868i 0.0955594 1.64069i −0.521125 0.853480i $$-0.674487\pi$$
0.616684 0.787211i $$-0.288476\pi$$
$$710$$ −2.52335 + 14.3106i −0.0946997 + 0.537069i
$$711$$ −12.7387 + 29.6458i −0.477740 + 1.11180i
$$712$$ 0.905232 + 5.13383i 0.0339250 + 0.192398i
$$713$$ 0.0194221 0.00227012i 0.000727363 8.50166e-5i
$$714$$ 0.0474310 + 0.804654i 0.00177506 + 0.0301134i
$$715$$ −0.472024 + 1.57667i −0.0176527 + 0.0589641i
$$716$$ 23.7118 5.61980i 0.886151 0.210022i
$$717$$ 28.8575 6.86070i 1.07770 0.256217i
$$718$$ 2.67297 6.19665i 0.0997544 0.231257i
$$719$$ −0.280642 + 0.235486i −0.0104662 + 0.00878215i −0.648006 0.761635i $$-0.724397\pi$$
0.637540 + 0.770418i $$0.279952\pi$$
$$720$$ 5.21374 1.90592i 0.194305 0.0710294i
$$721$$ 0.728283 + 0.611102i 0.0271227 + 0.0227586i
$$722$$ 3.25592 1.63519i 0.121173 0.0608553i
$$723$$ −38.1256 25.0374i −1.41791 0.931151i
$$724$$ −8.69711 1.01655i −0.323226 0.0377797i
$$725$$ −0.581662 9.98676i −0.0216024 0.370899i
$$726$$ −3.19696 18.0569i −0.118650 0.670155i
$$727$$ 16.2157 17.1877i 0.601408 0.637455i −0.353120 0.935578i $$-0.614879\pi$$
0.954527 + 0.298123i $$0.0963606\pi$$
$$728$$ −0.132343 −0.00490494
$$729$$ −13.4017 + 23.4392i −0.496358 + 0.868118i
$$730$$ −14.4231 −0.533822
$$731$$ 37.2748 39.5090i 1.37866 1.46129i
$$732$$ 0.790183 + 4.46307i 0.0292060 + 0.164960i
$$733$$ −0.563137 9.66869i −0.0207999 0.357121i −0.992609 0.121353i $$-0.961277\pi$$
0.971809 0.235768i $$-0.0757605\pi$$
$$734$$ 11.3398 + 1.32543i 0.418559 + 0.0489225i
$$735$$ 18.7282 + 12.2989i 0.690799 + 0.453653i
$$736$$ −6.15084 + 3.08907i −0.226723 + 0.113865i
$$737$$ 3.84612 + 3.22727i 0.141673 + 0.118878i
$$738$$ −22.5145 + 8.23033i −0.828771 + 0.302963i
$$739$$ 30.9774 25.9931i 1.13952 0.956172i 0.140098 0.990138i $$-0.455258\pi$$
0.999423 + 0.0339660i $$0.0108138\pi$$
$$740$$ 3.18946 7.39399i 0.117247 0.271809i
$$741$$ 9.14255 2.17359i 0.335860 0.0798487i
$$742$$ 0.971257 0.230192i 0.0356560 0.00845062i
$$743$$ −0.0999801 + 0.333957i −0.00366792 + 0.0122517i −0.959804 0.280672i $$-0.909443\pi$$
0.956136 + 0.292923i $$0.0946280\pi$$
$$744$$ 0.000289553 0.00491218i 1.06155e−5 0.000180089i
$$745$$ 17.3008 2.02217i 0.633852 0.0740866i
$$746$$ −3.80749 21.5934i −0.139402 0.790589i
$$747$$ 2.52093 5.86675i 0.0922360 0.214653i
$$748$$ 0.543110 3.08013i 0.0198581 0.112621i
$$749$$ −0.0260713 + 0.447628i −0.000952626 + 0.0163560i
$$750$$ 12.5976 + 16.8968i 0.459999 + 0.616983i
$$751$$ 17.8544 + 41.3912i 0.651518 + 1.51039i 0.848064 + 0.529893i $$0.177768\pi$$
−0.196547 + 0.980494i $$0.562973\pi$$
$$752$$ 8.38166 + 4.20943i 0.305648 + 0.153502i
$$753$$ 4.46279 7.74229i 0.162633 0.282145i
$$754$$ −8.55114 2.02666i −0.311414 0.0738065i
$$755$$ 7.81224 13.5312i 0.284316 0.492451i
$$756$$ −0.247439 + 0.430663i −0.00899927 + 0.0156631i
$$757$$ −1.07067 1.85445i −0.0389141 0.0674011i 0.845912 0.533322i $$-0.179057\pi$$
−0.884826 + 0.465921i $$0.845723\pi$$
$$758$$ 0.489566 + 1.63527i 0.0177819 + 0.0593955i
$$759$$ −5.87031 4.91878i −0.213079 0.178540i
$$760$$ −6.05830 + 3.98461i −0.219758 + 0.144537i
$$761$$ −10.4708 + 14.0647i −0.379565 + 0.509844i −0.950319 0.311277i $$-0.899243\pi$$
0.570755 + 0.821121i $$0.306651\pi$$
$$762$$ 36.7955 + 8.69350i 1.33296 + 0.314932i
$$763$$ −1.09857 0.722540i −0.0397709 0.0261577i
$$764$$ 4.20657 1.53107i 0.152188 0.0553921i
$$765$$ −10.7393 24.8010i −0.388281 0.896682i
$$766$$ −18.7192 6.81323i −0.676352 0.246172i
$$767$$ −2.55130 3.42699i −0.0921221 0.123741i
$$768$$ −0.687144