Properties

Label 162.2.g.a.103.4
Level $162$
Weight $2$
Character 162.103
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 103.4
Character \(\chi\) \(=\) 162.103
Dual form 162.2.g.a.151.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.686242 + 0.727374i) q^{2} +(1.65061 + 0.524883i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(-1.97104 + 0.230382i) q^{5} +(0.750928 + 1.56080i) q^{6} +(0.868864 + 0.436360i) q^{7} +(-0.766044 + 0.642788i) q^{8} +(2.44900 + 1.73275i) q^{9} +O(q^{10})\) \(q+(0.686242 + 0.727374i) q^{2} +(1.65061 + 0.524883i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(-1.97104 + 0.230382i) q^{5} +(0.750928 + 1.56080i) q^{6} +(0.868864 + 0.436360i) q^{7} +(-0.766044 + 0.642788i) q^{8} +(2.44900 + 1.73275i) q^{9} +(-1.52019 - 1.27559i) q^{10} +(-1.12994 - 2.61950i) q^{11} +(-0.619969 + 1.61729i) q^{12} +(1.19896 + 0.284159i) q^{13} +(0.278854 + 0.931437i) q^{14} +(-3.37434 - 0.654298i) q^{15} +(-0.993238 - 0.116093i) q^{16} +(0.944814 - 5.35831i) q^{17} +(0.420246 + 2.97042i) q^{18} +(-0.724393 - 4.10824i) q^{19} +(-0.115386 - 1.98110i) q^{20} +(1.20511 + 1.17631i) q^{21} +(1.12994 - 2.61950i) q^{22} +(-5.83149 + 2.92869i) q^{23} +(-1.60183 + 0.658905i) q^{24} +(-1.03329 + 0.244894i) q^{25} +(0.616088 + 1.06710i) q^{26} +(3.13283 + 4.14552i) q^{27} +(-0.486141 + 0.842022i) q^{28} +(1.00971 - 3.37266i) q^{29} +(-1.83969 - 2.90341i) q^{30} +(7.08842 + 4.66213i) q^{31} +(-0.597159 - 0.802123i) q^{32} +(-0.490156 - 4.91685i) q^{33} +(4.54586 - 2.98986i) q^{34} +(-1.81310 - 0.659913i) q^{35} +(-1.87221 + 2.34410i) q^{36} +(-3.74261 + 1.36220i) q^{37} +(2.49111 - 3.34615i) q^{38} +(1.82986 + 1.09835i) q^{39} +(1.36182 - 1.44344i) q^{40} +(-6.52714 + 6.91836i) q^{41} +(-0.0286179 + 1.68380i) q^{42} +(6.25458 - 8.40136i) q^{43} +(2.68077 - 0.975719i) q^{44} +(-5.22627 - 2.85112i) q^{45} +(-6.13206 - 2.23189i) q^{46} +(-3.54890 + 2.33415i) q^{47} +(-1.57851 - 0.712958i) q^{48} +(-3.61560 - 4.85659i) q^{49} +(-0.887215 - 0.583531i) q^{50} +(4.37200 - 8.34854i) q^{51} +(-0.353392 + 1.18041i) q^{52} +(0.380960 - 0.659842i) q^{53} +(-0.865464 + 5.12357i) q^{54} +(2.83065 + 4.90283i) q^{55} +(-0.946075 + 0.224224i) q^{56} +(0.960658 - 7.16130i) q^{57} +(3.14608 - 1.58002i) q^{58} +(-0.0874810 + 0.202804i) q^{59} +(0.849391 - 3.33058i) q^{60} +(0.258923 + 4.44553i) q^{61} +(1.47326 + 8.35528i) q^{62} +(1.37174 + 2.57417i) q^{63} +(0.173648 - 0.984808i) q^{64} +(-2.42867 - 0.283871i) q^{65} +(3.24002 - 3.73067i) q^{66} +(2.08086 + 6.95054i) q^{67} +(5.29431 + 1.25477i) q^{68} +(-11.1627 + 1.77325i) q^{69} +(-0.764219 - 1.77166i) q^{70} +(11.3942 + 9.56084i) q^{71} +(-2.98983 + 0.246820i) q^{72} +(-5.51892 + 4.63093i) q^{73} +(-3.55916 - 1.78748i) q^{74} +(-1.83409 - 0.138133i) q^{75} +(4.14341 - 0.484295i) q^{76} +(0.161279 - 2.76905i) q^{77} +(0.456817 + 2.08473i) q^{78} +(-1.53350 - 1.62541i) q^{79} +1.98446 q^{80} +(2.99515 + 8.48699i) q^{81} -9.51143 q^{82} +(8.03965 + 8.52153i) q^{83} +(-1.24439 + 1.13468i) q^{84} +(-0.627813 + 10.7791i) q^{85} +(10.4031 - 1.21595i) q^{86} +(3.43688 - 5.03695i) q^{87} +(2.54937 + 1.28034i) q^{88} +(0.108478 - 0.0910242i) q^{89} +(-1.51265 - 5.75801i) q^{90} +(0.917739 + 0.770075i) q^{91} +(-2.58466 - 5.99192i) q^{92} +(9.25311 + 11.4159i) q^{93} +(-4.13320 - 0.979586i) q^{94} +(2.37427 + 7.93063i) q^{95} +(-0.564652 - 1.63743i) q^{96} +(-10.5566 - 1.23389i) q^{97} +(1.05138 - 5.96268i) q^{98} +(1.77172 - 8.37304i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.686242 + 0.727374i 0.485246 + 0.514331i
\(3\) 1.65061 + 0.524883i 0.952977 + 0.303041i
\(4\) −0.0581448 + 0.998308i −0.0290724 + 0.499154i
\(5\) −1.97104 + 0.230382i −0.881477 + 0.103030i −0.544776 0.838582i \(-0.683385\pi\)
−0.336701 + 0.941612i \(0.609311\pi\)
\(6\) 0.750928 + 1.56080i 0.306565 + 0.637195i
\(7\) 0.868864 + 0.436360i 0.328400 + 0.164928i 0.605358 0.795954i \(-0.293030\pi\)
−0.276958 + 0.960882i \(0.589326\pi\)
\(8\) −0.766044 + 0.642788i −0.270838 + 0.227260i
\(9\) 2.44900 + 1.73275i 0.816332 + 0.577583i
\(10\) −1.52019 1.27559i −0.480725 0.403376i
\(11\) −1.12994 2.61950i −0.340690 0.789809i −0.999303 0.0373267i \(-0.988116\pi\)
0.658613 0.752482i \(-0.271143\pi\)
\(12\) −0.619969 + 1.61729i −0.178970 + 0.466872i
\(13\) 1.19896 + 0.284159i 0.332532 + 0.0788116i 0.393490 0.919329i \(-0.371267\pi\)
−0.0609580 + 0.998140i \(0.519416\pi\)
\(14\) 0.278854 + 0.931437i 0.0745268 + 0.248937i
\(15\) −3.37434 0.654298i −0.871250 0.168939i
\(16\) −0.993238 0.116093i −0.248310 0.0290232i
\(17\) 0.944814 5.35831i 0.229151 1.29958i −0.625437 0.780275i \(-0.715079\pi\)
0.854588 0.519306i \(-0.173810\pi\)
\(18\) 0.420246 + 2.97042i 0.0990529 + 0.700135i
\(19\) −0.724393 4.10824i −0.166187 0.942494i −0.947832 0.318770i \(-0.896730\pi\)
0.781645 0.623724i \(-0.214381\pi\)
\(20\) −0.115386 1.98110i −0.0258011 0.442988i
\(21\) 1.20511 + 1.17631i 0.262977 + 0.256692i
\(22\) 1.12994 2.61950i 0.240904 0.558479i
\(23\) −5.83149 + 2.92869i −1.21595 + 0.610673i −0.936898 0.349603i \(-0.886317\pi\)
−0.279052 + 0.960276i \(0.590020\pi\)
\(24\) −1.60183 + 0.658905i −0.326971 + 0.134498i
\(25\) −1.03329 + 0.244894i −0.206658 + 0.0489788i
\(26\) 0.616088 + 1.06710i 0.120825 + 0.209275i
\(27\) 3.13283 + 4.14552i 0.602914 + 0.797806i
\(28\) −0.486141 + 0.842022i −0.0918721 + 0.159127i
\(29\) 1.00971 3.37266i 0.187498 0.626287i −0.811616 0.584192i \(-0.801412\pi\)
0.999114 0.0420949i \(-0.0134032\pi\)
\(30\) −1.83969 2.90341i −0.335880 0.530088i
\(31\) 7.08842 + 4.66213i 1.27312 + 0.837343i 0.992472 0.122469i \(-0.0390811\pi\)
0.280645 + 0.959812i \(0.409452\pi\)
\(32\) −0.597159 0.802123i −0.105564 0.141797i
\(33\) −0.490156 4.91685i −0.0853252 0.855913i
\(34\) 4.54586 2.98986i 0.779609 0.512757i
\(35\) −1.81310 0.659913i −0.306469 0.111546i
\(36\) −1.87221 + 2.34410i −0.312036 + 0.390684i
\(37\) −3.74261 + 1.36220i −0.615281 + 0.223944i −0.630812 0.775935i \(-0.717278\pi\)
0.0155313 + 0.999879i \(0.495056\pi\)
\(38\) 2.49111 3.34615i 0.404112 0.542817i
\(39\) 1.82986 + 1.09835i 0.293013 + 0.175877i
\(40\) 1.36182 1.44344i 0.215323 0.228229i
\(41\) −6.52714 + 6.91836i −1.01937 + 1.08047i −0.0226309 + 0.999744i \(0.507204\pi\)
−0.996737 + 0.0807225i \(0.974277\pi\)
\(42\) −0.0286179 + 1.68380i −0.00441584 + 0.259816i
\(43\) 6.25458 8.40136i 0.953815 1.28120i −0.00583023 0.999983i \(-0.501856\pi\)
0.959645 0.281213i \(-0.0907368\pi\)
\(44\) 2.68077 0.975719i 0.404141 0.147095i
\(45\) −5.22627 2.85112i −0.779086 0.425020i
\(46\) −6.13206 2.23189i −0.904123 0.329074i
\(47\) −3.54890 + 2.33415i −0.517660 + 0.340470i −0.781305 0.624149i \(-0.785446\pi\)
0.263645 + 0.964620i \(0.415075\pi\)
\(48\) −1.57851 0.712958i −0.227838 0.102907i
\(49\) −3.61560 4.85659i −0.516514 0.693798i
\(50\) −0.887215 0.583531i −0.125471 0.0825237i
\(51\) 4.37200 8.34854i 0.612203 1.16903i
\(52\) −0.353392 + 1.18041i −0.0490067 + 0.163694i
\(53\) 0.380960 0.659842i 0.0523288 0.0906362i −0.838674 0.544633i \(-0.816669\pi\)
0.891003 + 0.453997i \(0.150002\pi\)
\(54\) −0.865464 + 5.12357i −0.117775 + 0.697230i
\(55\) 2.83065 + 4.90283i 0.381685 + 0.661097i
\(56\) −0.946075 + 0.224224i −0.126425 + 0.0299632i
\(57\) 0.960658 7.16130i 0.127242 0.948537i
\(58\) 3.14608 1.58002i 0.413101 0.207467i
\(59\) −0.0874810 + 0.202804i −0.0113891 + 0.0264028i −0.923816 0.382837i \(-0.874947\pi\)
0.912427 + 0.409240i \(0.134206\pi\)
\(60\) 0.849391 3.33058i 0.109656 0.429977i
\(61\) 0.258923 + 4.44553i 0.0331517 + 0.569192i 0.973458 + 0.228864i \(0.0735011\pi\)
−0.940307 + 0.340328i \(0.889462\pi\)
\(62\) 1.47326 + 8.35528i 0.187104 + 1.06112i
\(63\) 1.37174 + 2.57417i 0.172823 + 0.324314i
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) −2.42867 0.283871i −0.301240 0.0352099i
\(66\) 3.24002 3.73067i 0.398819 0.459214i
\(67\) 2.08086 + 6.95054i 0.254217 + 0.849144i 0.985877 + 0.167474i \(0.0535610\pi\)
−0.731659 + 0.681670i \(0.761254\pi\)
\(68\) 5.29431 + 1.25477i 0.642029 + 0.152164i
\(69\) −11.1627 + 1.77325i −1.34383 + 0.213474i
\(70\) −0.764219 1.77166i −0.0913417 0.211754i
\(71\) 11.3942 + 9.56084i 1.35224 + 1.13466i 0.978296 + 0.207212i \(0.0664389\pi\)
0.373943 + 0.927452i \(0.378006\pi\)
\(72\) −2.98983 + 0.246820i −0.352355 + 0.0290880i
\(73\) −5.51892 + 4.63093i −0.645941 + 0.542009i −0.905836 0.423628i \(-0.860756\pi\)
0.259895 + 0.965637i \(0.416312\pi\)
\(74\) −3.55916 1.78748i −0.413744 0.207790i
\(75\) −1.83409 0.138133i −0.211783 0.0159502i
\(76\) 4.14341 0.484295i 0.475281 0.0555524i
\(77\) 0.161279 2.76905i 0.0183794 0.315562i
\(78\) 0.456817 + 2.08473i 0.0517244 + 0.236049i
\(79\) −1.53350 1.62541i −0.172532 0.182873i 0.635338 0.772234i \(-0.280861\pi\)
−0.807870 + 0.589361i \(0.799379\pi\)
\(80\) 1.98446 0.221870
\(81\) 2.99515 + 8.48699i 0.332795 + 0.942999i
\(82\) −9.51143 −1.05036
\(83\) 8.03965 + 8.52153i 0.882466 + 0.935360i 0.998322 0.0579063i \(-0.0184425\pi\)
−0.115856 + 0.993266i \(0.536961\pi\)
\(84\) −1.24439 + 1.13468i −0.135774 + 0.123803i
\(85\) −0.627813 + 10.7791i −0.0680958 + 1.16916i
\(86\) 10.4031 1.21595i 1.12179 0.131119i
\(87\) 3.43688 5.03695i 0.368472 0.540017i
\(88\) 2.54937 + 1.28034i 0.271763 + 0.136485i
\(89\) 0.108478 0.0910242i 0.0114987 0.00964855i −0.637020 0.770847i \(-0.719833\pi\)
0.648519 + 0.761199i \(0.275389\pi\)
\(90\) −1.51265 5.75801i −0.159448 0.606947i
\(91\) 0.917739 + 0.770075i 0.0962052 + 0.0807258i
\(92\) −2.58466 5.99192i −0.269469 0.624700i
\(93\) 9.25311 + 11.4159i 0.959503 + 1.18378i
\(94\) −4.13320 0.979586i −0.426307 0.101037i
\(95\) 2.37427 + 7.93063i 0.243595 + 0.813665i
\(96\) −0.564652 1.63743i −0.0576296 0.167119i
\(97\) −10.5566 1.23389i −1.07186 0.125283i −0.438188 0.898883i \(-0.644380\pi\)
−0.633674 + 0.773601i \(0.718454\pi\)
\(98\) 1.05138 5.96268i 0.106206 0.602322i
\(99\) 1.77172 8.37304i 0.178064 0.841523i
\(100\) −0.184399 1.04578i −0.0184399 0.104578i
\(101\) −0.296004 5.08219i −0.0294535 0.505697i −0.980484 0.196599i \(-0.937010\pi\)
0.951030 0.309097i \(-0.100027\pi\)
\(102\) 9.07275 2.54903i 0.898337 0.252392i
\(103\) −6.19951 + 14.3721i −0.610856 + 1.41612i 0.279183 + 0.960238i \(0.409936\pi\)
−0.890039 + 0.455885i \(0.849323\pi\)
\(104\) −1.10111 + 0.553000i −0.107973 + 0.0542261i
\(105\) −2.64633 2.04092i −0.258255 0.199173i
\(106\) 0.741382 0.175711i 0.0720094 0.0170665i
\(107\) −2.98808 5.17551i −0.288869 0.500336i 0.684671 0.728852i \(-0.259946\pi\)
−0.973540 + 0.228516i \(0.926613\pi\)
\(108\) −4.32067 + 2.88649i −0.415756 + 0.277753i
\(109\) −1.48611 + 2.57401i −0.142343 + 0.246546i −0.928379 0.371636i \(-0.878797\pi\)
0.786035 + 0.618182i \(0.212130\pi\)
\(110\) −1.62368 + 5.42346i −0.154812 + 0.517107i
\(111\) −6.89256 + 0.284019i −0.654213 + 0.0269579i
\(112\) −0.812330 0.534278i −0.0767580 0.0504845i
\(113\) −9.71400 13.0482i −0.913816 1.22747i −0.973369 0.229243i \(-0.926375\pi\)
0.0595531 0.998225i \(-0.481032\pi\)
\(114\) 5.86818 4.21562i 0.549606 0.394829i
\(115\) 10.8194 7.11604i 1.00892 0.663574i
\(116\) 3.30824 + 1.20410i 0.307163 + 0.111798i
\(117\) 2.44388 + 2.77341i 0.225936 + 0.256402i
\(118\) −0.207547 + 0.0755410i −0.0191063 + 0.00695412i
\(119\) 3.15907 4.24336i 0.289591 0.388988i
\(120\) 3.00547 1.66776i 0.274360 0.152245i
\(121\) 1.96365 2.08135i 0.178514 0.189214i
\(122\) −3.05588 + 3.23904i −0.276666 + 0.293249i
\(123\) −14.4051 + 7.99350i −1.29886 + 0.720749i
\(124\) −5.06639 + 6.80535i −0.454976 + 0.611138i
\(125\) 11.3042 4.11438i 1.01107 0.368001i
\(126\) −0.931035 + 2.76427i −0.0829432 + 0.246261i
\(127\) −6.20947 2.26006i −0.551002 0.200548i 0.0514898 0.998674i \(-0.483603\pi\)
−0.602492 + 0.798125i \(0.705825\pi\)
\(128\) 0.835488 0.549509i 0.0738474 0.0485702i
\(129\) 14.7336 10.5844i 1.29722 0.931905i
\(130\) −1.46018 1.96136i −0.128066 0.172022i
\(131\) 17.9758 + 11.8229i 1.57055 + 1.03297i 0.972904 + 0.231208i \(0.0742677\pi\)
0.597646 + 0.801760i \(0.296103\pi\)
\(132\) 4.93703 0.203438i 0.429713 0.0177070i
\(133\) 1.16327 3.88559i 0.100868 0.336924i
\(134\) −3.62767 + 6.28331i −0.313383 + 0.542796i
\(135\) −7.13000 7.44926i −0.613653 0.641130i
\(136\) 2.72048 + 4.71202i 0.233280 + 0.404052i
\(137\) 19.7062 4.67046i 1.68362 0.399024i 0.726142 0.687545i \(-0.241311\pi\)
0.957474 + 0.288520i \(0.0931633\pi\)
\(138\) −8.95013 6.90258i −0.761886 0.587587i
\(139\) 0.844890 0.424320i 0.0716626 0.0359903i −0.412607 0.910909i \(-0.635382\pi\)
0.484270 + 0.874919i \(0.339085\pi\)
\(140\) 0.764219 1.77166i 0.0645883 0.149733i
\(141\) −7.08299 + 1.99000i −0.596495 + 0.167588i
\(142\) 0.864848 + 14.8489i 0.0725764 + 1.24609i
\(143\) −0.610402 3.46176i −0.0510444 0.289487i
\(144\) −2.23128 2.00534i −0.185940 0.167112i
\(145\) −1.21318 + 6.88027i −0.100749 + 0.571375i
\(146\) −7.15573 0.836385i −0.592212 0.0692197i
\(147\) −3.41878 9.91408i −0.281976 0.817699i
\(148\) −1.14228 3.81548i −0.0938949 0.313631i
\(149\) −13.5047 3.20067i −1.10635 0.262209i −0.363450 0.931614i \(-0.618401\pi\)
−0.742898 + 0.669404i \(0.766549\pi\)
\(150\) −1.15816 1.42886i −0.0945631 0.116666i
\(151\) −8.89594 20.6231i −0.723942 1.67829i −0.734745 0.678344i \(-0.762698\pi\)
0.0108032 0.999942i \(-0.496561\pi\)
\(152\) 3.19564 + 2.68146i 0.259201 + 0.217495i
\(153\) 11.5985 11.4853i 0.937680 0.928535i
\(154\) 2.12481 1.78293i 0.171222 0.143672i
\(155\) −15.0457 7.55621i −1.20850 0.606929i
\(156\) −1.20289 + 1.76290i −0.0963082 + 0.141145i
\(157\) −13.9173 + 1.62669i −1.11072 + 0.129824i −0.651609 0.758555i \(-0.725906\pi\)
−0.459110 + 0.888380i \(0.651832\pi\)
\(158\) 0.129932 2.23085i 0.0103369 0.177477i
\(159\) 0.975154 0.889179i 0.0773347 0.0705164i
\(160\) 1.36182 + 1.44344i 0.107661 + 0.114114i
\(161\) −6.34473 −0.500035
\(162\) −4.11782 + 8.00272i −0.323526 + 0.628753i
\(163\) 13.5318 1.05990 0.529948 0.848030i \(-0.322211\pi\)
0.529948 + 0.848030i \(0.322211\pi\)
\(164\) −6.52714 6.91836i −0.509684 0.540233i
\(165\) 2.09887 + 9.57839i 0.163397 + 0.745677i
\(166\) −0.681195 + 11.6957i −0.0528710 + 0.907759i
\(167\) −6.19397 + 0.723971i −0.479304 + 0.0560226i −0.352315 0.935882i \(-0.614605\pi\)
−0.126989 + 0.991904i \(0.540531\pi\)
\(168\) −1.67929 0.126474i −0.129560 0.00975766i
\(169\) −10.2605 5.15300i −0.789266 0.396384i
\(170\) −8.27128 + 6.94043i −0.634378 + 0.532307i
\(171\) 5.34451 11.3162i 0.408705 0.865375i
\(172\) 8.02348 + 6.73250i 0.611785 + 0.513348i
\(173\) 4.76907 + 11.0560i 0.362586 + 0.840569i 0.997676 + 0.0681309i \(0.0217035\pi\)
−0.635090 + 0.772438i \(0.719037\pi\)
\(174\) 6.02227 0.956667i 0.456547 0.0725248i
\(175\) −1.00465 0.238106i −0.0759443 0.0179991i
\(176\) 0.818196 + 2.73296i 0.0616738 + 0.206005i
\(177\) −0.250845 + 0.288832i −0.0188547 + 0.0217099i
\(178\) 0.140651 + 0.0164397i 0.0105422 + 0.00123221i
\(179\) 1.82508 10.3506i 0.136413 0.773637i −0.837452 0.546510i \(-0.815956\pi\)
0.973865 0.227126i \(-0.0729330\pi\)
\(180\) 3.15018 5.05165i 0.234800 0.376528i
\(181\) −3.69405 20.9500i −0.274577 1.55720i −0.740303 0.672273i \(-0.765318\pi\)
0.465727 0.884929i \(-0.345793\pi\)
\(182\) 0.0696589 + 1.19600i 0.00516346 + 0.0886532i
\(183\) −1.90601 + 7.47372i −0.140896 + 0.552473i
\(184\) 2.58466 5.99192i 0.190544 0.441730i
\(185\) 7.06302 3.54718i 0.519283 0.260794i
\(186\) −1.95377 + 14.5646i −0.143258 + 1.06792i
\(187\) −15.1037 + 3.57963i −1.10449 + 0.261769i
\(188\) −2.12385 3.67861i −0.154898 0.268290i
\(189\) 0.913065 + 4.96894i 0.0664157 + 0.361437i
\(190\) −4.13920 + 7.16931i −0.300289 + 0.520116i
\(191\) −1.54218 + 5.15125i −0.111589 + 0.372732i −0.995481 0.0949580i \(-0.969728\pi\)
0.883893 + 0.467690i \(0.154914\pi\)
\(192\) 0.803534 1.53438i 0.0579900 0.110735i
\(193\) 1.48697 + 0.977995i 0.107034 + 0.0703977i 0.601898 0.798573i \(-0.294411\pi\)
−0.494863 + 0.868971i \(0.664782\pi\)
\(194\) −6.34689 8.52535i −0.455680 0.612085i
\(195\) −3.85978 1.74333i −0.276405 0.124842i
\(196\) 5.05860 3.32709i 0.361329 0.237650i
\(197\) 13.2546 + 4.82428i 0.944352 + 0.343716i 0.767883 0.640590i \(-0.221310\pi\)
0.176469 + 0.984306i \(0.443532\pi\)
\(198\) 7.30616 4.45723i 0.519226 0.316762i
\(199\) 26.4129 9.61351i 1.87236 0.681484i 0.906639 0.421906i \(-0.138639\pi\)
0.965722 0.259578i \(-0.0835833\pi\)
\(200\) 0.634130 0.851785i 0.0448398 0.0602303i
\(201\) −0.213552 + 12.5648i −0.0150628 + 0.886254i
\(202\) 3.49352 3.70291i 0.245803 0.260536i
\(203\) 2.34899 2.48978i 0.164867 0.174749i
\(204\) 8.08020 + 4.85003i 0.565727 + 0.339570i
\(205\) 11.2714 15.1401i 0.787229 1.05743i
\(206\) −14.7082 + 5.35336i −1.02477 + 0.372986i
\(207\) −19.3560 2.93218i −1.34533 0.203801i
\(208\) −1.15787 0.421429i −0.0802836 0.0292208i
\(209\) −9.94300 + 6.53961i −0.687772 + 0.452355i
\(210\) −0.331510 3.32544i −0.0228764 0.229477i
\(211\) −4.64579 6.24038i −0.319830 0.429606i 0.612912 0.790151i \(-0.289998\pi\)
−0.932742 + 0.360545i \(0.882591\pi\)
\(212\) 0.636574 + 0.418682i 0.0437201 + 0.0287552i
\(213\) 13.7890 + 21.7618i 0.944803 + 1.49109i
\(214\) 1.71398 5.72511i 0.117166 0.391360i
\(215\) −10.3925 + 18.0004i −0.708765 + 1.22762i
\(216\) −5.06458 1.16191i −0.344601 0.0790579i
\(217\) 4.12451 + 7.14385i 0.279990 + 0.484956i
\(218\) −2.89210 + 0.685440i −0.195878 + 0.0464239i
\(219\) −11.5403 + 4.74704i −0.779818 + 0.320775i
\(220\) −5.05912 + 2.54079i −0.341086 + 0.171300i
\(221\) 2.65541 6.15593i 0.178622 0.414093i
\(222\) −4.93655 4.81856i −0.331320 0.323401i
\(223\) 1.33370 + 22.8987i 0.0893110 + 1.53341i 0.684016 + 0.729467i \(0.260232\pi\)
−0.594705 + 0.803944i \(0.702731\pi\)
\(224\) −0.168835 0.957512i −0.0112808 0.0639764i
\(225\) −2.95486 1.19069i −0.196991 0.0793792i
\(226\) 2.82474 16.0199i 0.187899 1.06563i
\(227\) 8.01258 + 0.936536i 0.531813 + 0.0621601i 0.377762 0.925903i \(-0.376694\pi\)
0.154052 + 0.988063i \(0.450768\pi\)
\(228\) 7.09333 + 1.37543i 0.469767 + 0.0910898i
\(229\) −7.42196 24.7911i −0.490457 1.63824i −0.742004 0.670395i \(-0.766125\pi\)
0.251547 0.967845i \(-0.419061\pi\)
\(230\) 12.6007 + 2.98643i 0.830869 + 0.196920i
\(231\) 1.71963 4.48595i 0.113144 0.295154i
\(232\) 1.39442 + 3.23263i 0.0915483 + 0.212233i
\(233\) 5.02217 + 4.21410i 0.329013 + 0.276075i 0.792298 0.610135i \(-0.208885\pi\)
−0.463284 + 0.886210i \(0.653329\pi\)
\(234\) −0.340214 + 3.68084i −0.0222405 + 0.240624i
\(235\) 6.45729 5.41831i 0.421227 0.353451i
\(236\) −0.197374 0.0991250i −0.0128480 0.00645249i
\(237\) −1.67805 3.48782i −0.109001 0.226558i
\(238\) 5.25439 0.614150i 0.340592 0.0398094i
\(239\) 0.437409 7.51002i 0.0282936 0.485783i −0.954163 0.299289i \(-0.903251\pi\)
0.982456 0.186494i \(-0.0597124\pi\)
\(240\) 3.27556 + 1.04161i 0.211437 + 0.0672357i
\(241\) 19.2683 + 20.4232i 1.24118 + 1.31557i 0.931055 + 0.364879i \(0.118890\pi\)
0.310126 + 0.950696i \(0.399629\pi\)
\(242\) 2.86146 0.183942
\(243\) 0.489137 + 15.5808i 0.0313781 + 0.999508i
\(244\) −4.45306 −0.285078
\(245\) 8.24537 + 8.73958i 0.526777 + 0.558351i
\(246\) −15.6996 4.99239i −1.00097 0.318303i
\(247\) 0.298874 5.13147i 0.0190169 0.326507i
\(248\) −8.42680 + 0.984952i −0.535102 + 0.0625445i
\(249\) 8.79748 + 18.2856i 0.557518 + 1.15880i
\(250\) 10.7501 + 5.39889i 0.679894 + 0.341456i
\(251\) −6.61197 + 5.54810i −0.417344 + 0.350193i −0.827152 0.561979i \(-0.810040\pi\)
0.409808 + 0.912172i \(0.365596\pi\)
\(252\) −2.64957 + 1.21975i −0.166907 + 0.0768367i
\(253\) 14.2609 + 11.9663i 0.896577 + 0.752318i
\(254\) −2.61729 6.06756i −0.164223 0.380712i
\(255\) −6.69405 + 17.4626i −0.419198 + 1.09355i
\(256\) 0.973045 + 0.230616i 0.0608153 + 0.0144135i
\(257\) −1.84364 6.15819i −0.115003 0.384138i 0.881036 0.473049i \(-0.156846\pi\)
−0.996040 + 0.0889110i \(0.971661\pi\)
\(258\) 17.8096 + 3.45336i 1.10878 + 0.214997i
\(259\) −3.84623 0.449559i −0.238993 0.0279343i
\(260\) 0.424606 2.40806i 0.0263329 0.149341i
\(261\) 8.31674 6.51005i 0.514793 0.402962i
\(262\) 3.73609 + 21.1884i 0.230817 + 1.30903i
\(263\) 0.326352 + 5.60324i 0.0201237 + 0.345511i 0.993309 + 0.115488i \(0.0368431\pi\)
−0.973185 + 0.230023i \(0.926120\pi\)
\(264\) 3.53597 + 3.45146i 0.217624 + 0.212422i
\(265\) −0.598872 + 1.38834i −0.0367884 + 0.0852852i
\(266\) 3.62456 1.82032i 0.222236 0.111611i
\(267\) 0.226832 0.0933065i 0.0138819 0.00571027i
\(268\) −7.05978 + 1.67320i −0.431244 + 0.102207i
\(269\) −13.8587 24.0039i −0.844978 1.46354i −0.885641 0.464372i \(-0.846280\pi\)
0.0406627 0.999173i \(-0.487053\pi\)
\(270\) 0.525489 10.2982i 0.0319802 0.626726i
\(271\) 0.898149 1.55564i 0.0545587 0.0944984i −0.837456 0.546504i \(-0.815958\pi\)
0.892015 + 0.452006i \(0.149291\pi\)
\(272\) −1.56049 + 5.21239i −0.0946185 + 0.316048i
\(273\) 1.11063 + 1.75280i 0.0672181 + 0.106084i
\(274\) 16.9204 + 11.1287i 1.02220 + 0.672311i
\(275\) 1.80906 + 2.42998i 0.109090 + 0.146533i
\(276\) −1.12120 11.2469i −0.0674881 0.676986i
\(277\) 6.99361 4.59977i 0.420205 0.276373i −0.321747 0.946826i \(-0.604270\pi\)
0.741953 + 0.670452i \(0.233900\pi\)
\(278\) 0.888438 + 0.323365i 0.0532850 + 0.0193941i
\(279\) 9.28120 + 23.7000i 0.555651 + 1.41888i
\(280\) 1.81310 0.659913i 0.108353 0.0394374i
\(281\) −8.75814 + 11.7642i −0.522467 + 0.701795i −0.982533 0.186090i \(-0.940418\pi\)
0.460066 + 0.887885i \(0.347826\pi\)
\(282\) −6.30811 3.78636i −0.375643 0.225474i
\(283\) 14.6425 15.5202i 0.870407 0.922578i −0.127188 0.991879i \(-0.540595\pi\)
0.997596 + 0.0693007i \(0.0220768\pi\)
\(284\) −10.2072 + 10.8190i −0.605685 + 0.641988i
\(285\) −0.243665 + 14.3365i −0.0144334 + 0.849224i
\(286\) 2.09911 2.81960i 0.124123 0.166726i
\(287\) −8.69009 + 3.16293i −0.512960 + 0.186702i
\(288\) −0.0725594 2.99912i −0.00427561 0.176725i
\(289\) −11.8440 4.31087i −0.696707 0.253581i
\(290\) −5.83706 + 3.83909i −0.342764 + 0.225439i
\(291\) −16.7772 7.57766i −0.983494 0.444210i
\(292\) −4.30219 5.77885i −0.251767 0.338182i
\(293\) 12.9636 + 8.52628i 0.757341 + 0.498111i 0.868498 0.495692i \(-0.165085\pi\)
−0.111158 + 0.993803i \(0.535456\pi\)
\(294\) 4.86513 9.29018i 0.283740 0.541814i
\(295\) 0.125707 0.419889i 0.00731892 0.0244469i
\(296\) 1.99140 3.44921i 0.115748 0.200481i
\(297\) 7.31927 12.8906i 0.424707 0.747991i
\(298\) −6.93940 12.0194i −0.401989 0.696265i
\(299\) −7.82396 + 1.85431i −0.452471 + 0.107238i
\(300\) 0.244542 1.82296i 0.0141186 0.105249i
\(301\) 9.10040 4.57039i 0.524538 0.263433i
\(302\) 8.89594 20.6231i 0.511904 1.18673i
\(303\) 2.17897 8.54405i 0.125179 0.490843i
\(304\) 0.242558 + 4.16456i 0.0139116 + 0.238854i
\(305\) −1.53452 8.70268i −0.0878662 0.498314i
\(306\) 16.3135 + 0.554689i 0.932580 + 0.0317095i
\(307\) −0.146163 + 0.828930i −0.00834195 + 0.0473096i −0.988695 0.149943i \(-0.952091\pi\)
0.980353 + 0.197253i \(0.0632020\pi\)
\(308\) 2.75499 + 0.322012i 0.156980 + 0.0183483i
\(309\) −17.7766 + 20.4686i −1.01128 + 1.16442i
\(310\) −4.82876 16.1292i −0.274255 0.916077i
\(311\) −7.29384 1.72867i −0.413596 0.0980239i 0.0185498 0.999828i \(-0.494095\pi\)
−0.432145 + 0.901804i \(0.642243\pi\)
\(312\) −2.10776 + 0.334828i −0.119329 + 0.0189559i
\(313\) 11.2311 + 26.0367i 0.634821 + 1.47168i 0.866646 + 0.498923i \(0.166271\pi\)
−0.231826 + 0.972757i \(0.574470\pi\)
\(314\) −10.7338 9.00674i −0.605745 0.508280i
\(315\) −3.29680 4.75777i −0.185754 0.268070i
\(316\) 1.71183 1.43639i 0.0962978 0.0808034i
\(317\) −0.263419 0.132294i −0.0147951 0.00743037i 0.441386 0.897317i \(-0.354487\pi\)
−0.456181 + 0.889887i \(0.650783\pi\)
\(318\) 1.31596 + 0.0991099i 0.0737952 + 0.00555781i
\(319\) −9.97558 + 1.16598i −0.558525 + 0.0652822i
\(320\) −0.115386 + 1.98110i −0.00645028 + 0.110747i
\(321\) −2.21561 10.1111i −0.123663 0.564348i
\(322\) −4.35402 4.61499i −0.242640 0.257183i
\(323\) −22.6976 −1.26293
\(324\) −8.64679 + 2.49661i −0.480377 + 0.138701i
\(325\) −1.30846 −0.0725805
\(326\) 9.28611 + 9.84271i 0.514310 + 0.545137i
\(327\) −3.80403 + 3.46865i −0.210364 + 0.191817i
\(328\) 0.553040 9.49533i 0.0305365 0.524292i
\(329\) −4.10204 + 0.479459i −0.226153 + 0.0264334i
\(330\) −5.52674 + 8.09975i −0.304237 + 0.445877i
\(331\) −23.2599 11.6816i −1.27848 0.642076i −0.325623 0.945500i \(-0.605574\pi\)
−0.952856 + 0.303423i \(0.901870\pi\)
\(332\) −8.97458 + 7.53057i −0.492544 + 0.413294i
\(333\) −11.5260 3.14899i −0.631620 0.172564i
\(334\) −4.77716 4.00851i −0.261394 0.219336i
\(335\) −5.70274 13.2204i −0.311574 0.722309i
\(336\) −1.06040 1.30826i −0.0578497 0.0713715i
\(337\) 5.69426 + 1.34956i 0.310186 + 0.0735154i 0.382761 0.923848i \(-0.374973\pi\)
−0.0725746 + 0.997363i \(0.523122\pi\)
\(338\) −3.29300 10.9994i −0.179116 0.598288i
\(339\) −9.18521 26.6361i −0.498872 1.44667i
\(340\) −10.7244 1.25350i −0.581611 0.0679806i
\(341\) 4.20294 23.8360i 0.227602 1.29079i
\(342\) 11.8988 3.87822i 0.643412 0.209710i
\(343\) −2.20409 12.5000i −0.119009 0.674936i
\(344\) 0.609004 + 10.4562i 0.0328353 + 0.563760i
\(345\) 21.5937 6.06684i 1.16256 0.326628i
\(346\) −4.76907 + 11.0560i −0.256387 + 0.594372i
\(347\) 20.1631 10.1263i 1.08241 0.543609i 0.184076 0.982912i \(-0.441071\pi\)
0.898339 + 0.439303i \(0.144775\pi\)
\(348\) 4.82859 + 3.72394i 0.258839 + 0.199624i
\(349\) −31.3627 + 7.43310i −1.67881 + 0.397885i −0.956047 0.293214i \(-0.905275\pi\)
−0.722760 + 0.691099i \(0.757127\pi\)
\(350\) −0.516240 0.894154i −0.0275942 0.0477945i
\(351\) 2.57816 + 5.86055i 0.137612 + 0.312813i
\(352\) −1.42641 + 2.47061i −0.0760277 + 0.131684i
\(353\) −2.61760 + 8.74338i −0.139321 + 0.465363i −0.998963 0.0455332i \(-0.985501\pi\)
0.859642 + 0.510897i \(0.170686\pi\)
\(354\) −0.382229 + 0.0157503i −0.0203152 + 0.000837121i
\(355\) −24.6610 16.2198i −1.30887 0.860859i
\(356\) 0.0845627 + 0.113587i 0.00448182 + 0.00602012i
\(357\) 7.44164 5.34597i 0.393853 0.282939i
\(358\) 8.78117 5.77546i 0.464099 0.305243i
\(359\) −1.25255 0.455890i −0.0661069 0.0240609i 0.308755 0.951142i \(-0.400088\pi\)
−0.374862 + 0.927081i \(0.622310\pi\)
\(360\) 5.83622 1.17530i 0.307596 0.0619435i
\(361\) 1.50129 0.546425i 0.0790153 0.0287592i
\(362\) 12.7035 17.0637i 0.667680 0.896849i
\(363\) 4.33368 2.40480i 0.227459 0.126219i
\(364\) −0.822134 + 0.871411i −0.0430915 + 0.0456743i
\(365\) 9.81115 10.3992i 0.513539 0.544320i
\(366\) −6.74417 + 3.74240i −0.352523 + 0.195618i
\(367\) −6.53198 + 8.77397i −0.340966 + 0.457997i −0.939223 0.343307i \(-0.888453\pi\)
0.598257 + 0.801304i \(0.295860\pi\)
\(368\) 6.13206 2.23189i 0.319656 0.116345i
\(369\) −27.9727 + 5.63313i −1.45620 + 0.293249i
\(370\) 7.42706 + 2.70323i 0.386115 + 0.140534i
\(371\) 0.618930 0.407077i 0.0321333 0.0211344i
\(372\) −11.9346 + 8.57368i −0.618782 + 0.444525i
\(373\) −5.02841 6.75432i −0.260361 0.349726i 0.652651 0.757659i \(-0.273657\pi\)
−0.913012 + 0.407933i \(0.866250\pi\)
\(374\) −12.9685 8.52951i −0.670585 0.441051i
\(375\) 20.8183 0.857849i 1.07505 0.0442991i
\(376\) 1.21825 4.06925i 0.0628266 0.209855i
\(377\) 2.16897 3.75677i 0.111708 0.193484i
\(378\) −2.98769 + 4.07403i −0.153670 + 0.209546i
\(379\) 5.48813 + 9.50572i 0.281906 + 0.488276i 0.971854 0.235583i \(-0.0756999\pi\)
−0.689948 + 0.723859i \(0.742367\pi\)
\(380\) −8.05526 + 1.90913i −0.413226 + 0.0979364i
\(381\) −9.06312 6.98972i −0.464318 0.358094i
\(382\) −4.80520 + 2.41326i −0.245855 + 0.123473i
\(383\) −6.04204 + 14.0070i −0.308734 + 0.715725i −0.999976 0.00689765i \(-0.997804\pi\)
0.691242 + 0.722623i \(0.257064\pi\)
\(384\) 1.66749 0.468489i 0.0850937 0.0239075i
\(385\) 0.320051 + 5.49507i 0.0163113 + 0.280055i
\(386\) 0.309052 + 1.75272i 0.0157304 + 0.0892113i
\(387\) 29.8749 9.73727i 1.51863 0.494973i
\(388\) 1.84562 10.4670i 0.0936970 0.531382i
\(389\) 25.7573 + 3.01059i 1.30595 + 0.152643i 0.740452 0.672109i \(-0.234611\pi\)
0.565494 + 0.824752i \(0.308686\pi\)
\(390\) −1.38069 4.00385i −0.0699140 0.202743i
\(391\) 10.1831 + 34.0140i 0.514983 + 1.72016i
\(392\) 5.89146 + 1.39630i 0.297564 + 0.0705239i
\(393\) 23.4653 + 28.9500i 1.18367 + 1.46034i
\(394\) 5.58681 + 12.9517i 0.281459 + 0.652496i
\(395\) 3.39705 + 2.85047i 0.170924 + 0.143423i
\(396\) 8.25586 + 2.25557i 0.414873 + 0.113347i
\(397\) −10.2452 + 8.59675i −0.514192 + 0.431458i −0.862601 0.505884i \(-0.831166\pi\)
0.348409 + 0.937342i \(0.386722\pi\)
\(398\) 25.1183 + 12.6149i 1.25906 + 0.632326i
\(399\) 3.95958 5.80300i 0.198227 0.290513i
\(400\) 1.05473 0.123281i 0.0527366 0.00616403i
\(401\) 0.216108 3.71042i 0.0107919 0.185290i −0.988604 0.150539i \(-0.951899\pi\)
0.999396 0.0347509i \(-0.0110638\pi\)
\(402\) −9.28586 + 8.46717i −0.463137 + 0.422304i
\(403\) 7.17396 + 7.60396i 0.357361 + 0.378780i
\(404\) 5.09080 0.253277
\(405\) −7.85883 16.0382i −0.390508 0.796945i
\(406\) 3.42298 0.169879
\(407\) 7.79720 + 8.26455i 0.386493 + 0.409659i
\(408\) 2.01719 + 9.20562i 0.0998656 + 0.455746i
\(409\) 0.553163 9.49745i 0.0273522 0.469618i −0.956625 0.291323i \(-0.905905\pi\)
0.983977 0.178296i \(-0.0570583\pi\)
\(410\) 18.7474 2.19126i 0.925870 0.108219i
\(411\) 34.9786 + 2.63438i 1.72537 + 0.129944i
\(412\) −13.9873 7.02468i −0.689104 0.346081i
\(413\) −0.164505 + 0.138036i −0.00809474 + 0.00679229i
\(414\) −11.1501 16.0912i −0.547997 0.790840i
\(415\) −17.8097 14.9441i −0.874244 0.733578i
\(416\) −0.488040 1.13140i −0.0239281 0.0554716i
\(417\) 1.61730 0.256916i 0.0791994 0.0125812i
\(418\) −11.5800 2.74452i −0.566398 0.134239i
\(419\) 2.87324 + 9.59729i 0.140367 + 0.468859i 0.999047 0.0436541i \(-0.0139000\pi\)
−0.858680 + 0.512513i \(0.828715\pi\)
\(420\) 2.19134 2.52318i 0.106926 0.123119i
\(421\) 13.8333 + 1.61688i 0.674195 + 0.0788021i 0.446300 0.894884i \(-0.352742\pi\)
0.227895 + 0.973686i \(0.426816\pi\)
\(422\) 1.35095 7.66164i 0.0657634 0.372963i
\(423\) −12.7357 0.433039i −0.619232 0.0210551i
\(424\) 0.132306 + 0.750344i 0.00642534 + 0.0364399i
\(425\) 0.335951 + 5.76806i 0.0162960 + 0.279792i
\(426\) −6.36640 + 24.9636i −0.308453 + 1.20949i
\(427\) −1.71488 + 3.97554i −0.0829890 + 0.192390i
\(428\) 5.34050 2.68210i 0.258143 0.129644i
\(429\) 0.809489 6.03440i 0.0390825 0.291343i
\(430\) −20.2248 + 4.79337i −0.975327 + 0.231157i
\(431\) −2.88041 4.98901i −0.138744 0.240312i 0.788277 0.615320i \(-0.210973\pi\)
−0.927022 + 0.375008i \(0.877640\pi\)
\(432\) −2.63038 4.48119i −0.126554 0.215601i
\(433\) −8.41428 + 14.5740i −0.404364 + 0.700380i −0.994247 0.107109i \(-0.965841\pi\)
0.589883 + 0.807489i \(0.299174\pi\)
\(434\) −2.36584 + 7.90247i −0.113564 + 0.379331i
\(435\) −5.61382 + 10.7198i −0.269162 + 0.513977i
\(436\) −2.48325 1.63326i −0.118926 0.0782189i
\(437\) 16.2560 + 21.8356i 0.777631 + 1.04454i
\(438\) −11.3723 5.13646i −0.543388 0.245430i
\(439\) 14.5175 9.54834i 0.692884 0.455717i −0.153598 0.988133i \(-0.549086\pi\)
0.846483 + 0.532416i \(0.178716\pi\)
\(440\) −5.31988 1.93628i −0.253615 0.0923084i
\(441\) −0.439323 18.1587i −0.0209202 0.864699i
\(442\) 6.29992 2.29298i 0.299657 0.109066i
\(443\) 9.72557 13.0637i 0.462076 0.620675i −0.508619 0.860992i \(-0.669844\pi\)
0.970695 + 0.240316i \(0.0772512\pi\)
\(444\) 0.117229 6.89742i 0.00556343 0.327337i
\(445\) −0.192845 + 0.204404i −0.00914175 + 0.00968968i
\(446\) −15.7407 + 16.6841i −0.745343 + 0.790017i
\(447\) −20.6109 12.3714i −0.974864 0.585149i
\(448\) 0.580607 0.779891i 0.0274311 0.0368464i
\(449\) −25.5331 + 9.29330i −1.20498 + 0.438578i −0.864961 0.501840i \(-0.832657\pi\)
−0.340022 + 0.940417i \(0.610435\pi\)
\(450\) −1.16167 2.96639i −0.0547618 0.139837i
\(451\) 25.4979 + 9.28048i 1.20065 + 0.437001i
\(452\) 13.5909 8.93888i 0.639263 0.420450i
\(453\) −3.85896 38.7100i −0.181310 1.81875i
\(454\) 4.81735 + 6.47083i 0.226090 + 0.303691i
\(455\) −1.98632 1.30642i −0.0931199 0.0612459i
\(456\) 3.86729 + 6.10337i 0.181102 + 0.285817i
\(457\) −9.69386 + 32.3798i −0.453460 + 1.51466i 0.359951 + 0.932971i \(0.382794\pi\)
−0.813411 + 0.581690i \(0.802392\pi\)
\(458\) 12.9391 22.4112i 0.604605 1.04721i
\(459\) 25.1729 12.8699i 1.17497 0.600717i
\(460\) 6.47491 + 11.2149i 0.301894 + 0.522896i
\(461\) −7.38299 + 1.74980i −0.343860 + 0.0814963i −0.398917 0.916987i \(-0.630614\pi\)
0.0550573 + 0.998483i \(0.482466\pi\)
\(462\) 4.44305 1.82763i 0.206709 0.0850291i
\(463\) 3.86605 1.94161i 0.179671 0.0902341i −0.356690 0.934223i \(-0.616095\pi\)
0.536361 + 0.843989i \(0.319799\pi\)
\(464\) −1.39442 + 3.23263i −0.0647344 + 0.150071i
\(465\) −20.8683 20.3695i −0.967744 0.944614i
\(466\) 0.381196 + 6.54489i 0.0176586 + 0.303186i
\(467\) 0.567766 + 3.21996i 0.0262731 + 0.149002i 0.995122 0.0986496i \(-0.0314523\pi\)
−0.968849 + 0.247652i \(0.920341\pi\)
\(468\) −2.91081 + 2.27848i −0.134552 + 0.105323i
\(469\) −1.22496 + 6.94708i −0.0565633 + 0.320786i
\(470\) 8.37239 + 0.978592i 0.386190 + 0.0451391i
\(471\) −23.8257 4.61991i −1.09783 0.212874i
\(472\) −0.0633454 0.211588i −0.00291571 0.00973915i
\(473\) −29.0747 6.89082i −1.33685 0.316840i
\(474\) 1.38540 3.61405i 0.0636337 0.165999i
\(475\) 1.75459 + 4.06760i 0.0805061 + 0.186634i
\(476\) 4.05250 + 3.40045i 0.185746 + 0.155859i
\(477\) 2.07631 0.955841i 0.0950677 0.0437649i
\(478\) 5.76276 4.83553i 0.263582 0.221172i
\(479\) 6.32528 + 3.17667i 0.289009 + 0.145146i 0.587397 0.809299i \(-0.300153\pi\)
−0.298388 + 0.954445i \(0.596449\pi\)
\(480\) 1.49019 + 3.09735i 0.0680174 + 0.141374i
\(481\) −4.87433 + 0.569727i −0.222250 + 0.0259773i
\(482\) −1.63259 + 28.0305i −0.0743625 + 1.27675i
\(483\) −10.4727 3.33024i −0.476522 0.151531i
\(484\) 1.96365 + 2.08135i 0.0892570 + 0.0946069i
\(485\) 21.0918 0.957730
\(486\) −10.9974 + 11.0480i −0.498851 + 0.501146i
\(487\) 4.59607 0.208268 0.104134 0.994563i \(-0.466793\pi\)
0.104134 + 0.994563i \(0.466793\pi\)
\(488\) −3.05588 3.23904i −0.138333 0.146625i
\(489\) 22.3357 + 7.10264i 1.01006 + 0.321192i
\(490\) −0.698625 + 11.9949i −0.0315606 + 0.541875i
\(491\) −8.61591 + 1.00706i −0.388831 + 0.0454478i −0.308263 0.951301i \(-0.599748\pi\)
−0.0805682 + 0.996749i \(0.525673\pi\)
\(492\) −7.14239 14.8455i −0.322004 0.669285i
\(493\) −17.1178 8.59686i −0.770945 0.387183i
\(494\) 3.93759 3.30403i 0.177161 0.148655i
\(495\) −1.56313 + 16.9118i −0.0702574 + 0.760129i
\(496\) −6.49925 5.45352i −0.291825 0.244870i
\(497\) 5.72801 + 13.2790i 0.256937 + 0.595646i
\(498\) −7.26324 + 18.9474i −0.325474 + 0.849052i
\(499\) 23.1673 + 5.49075i 1.03711 + 0.245800i 0.713694 0.700457i \(-0.247021\pi\)
0.323416 + 0.946257i \(0.395169\pi\)
\(500\) 3.45014 + 11.5243i 0.154295 + 0.515381i
\(501\) −10.6038 2.05612i −0.473743 0.0918607i
\(502\) −8.57295 1.00203i −0.382629 0.0447230i
\(503\) −5.01805 + 28.4588i −0.223744 + 1.26891i 0.641329 + 0.767266i \(0.278384\pi\)
−0.865072 + 0.501647i \(0.832728\pi\)
\(504\) −2.70546 1.09019i −0.120511 0.0485608i
\(505\) 1.75428 + 9.94902i 0.0780644 + 0.442725i
\(506\) 1.08244 + 18.5848i 0.0481205 + 0.826197i
\(507\) −14.2312 13.8911i −0.632032 0.616926i
\(508\) 2.61729 6.06756i 0.116123 0.269204i
\(509\) −3.09062 + 1.55217i −0.136989 + 0.0687986i −0.515974 0.856604i \(-0.672570\pi\)
0.378984 + 0.925403i \(0.376273\pi\)
\(510\) −17.2955 + 7.11445i −0.765859 + 0.315033i
\(511\) −6.81594 + 1.61541i −0.301519 + 0.0714614i
\(512\) 0.500000 + 0.866025i 0.0220971 + 0.0382733i
\(513\) 14.7614 15.8734i 0.651731 0.700828i
\(514\) 3.21412 5.56703i 0.141769 0.245551i
\(515\) 8.90843 29.7562i 0.392552 1.31122i
\(516\) 9.70982 + 15.3241i 0.427451 + 0.674605i
\(517\) 10.1243 + 6.65889i 0.445268 + 0.292857i
\(518\) −2.31244 3.10615i −0.101603 0.136476i
\(519\) 2.06877 + 20.7522i 0.0908090 + 0.910921i
\(520\) 2.04294 1.34366i 0.0895888 0.0589235i
\(521\) 16.4823 + 5.99907i 0.722103 + 0.262824i 0.676818 0.736150i \(-0.263358\pi\)
0.0452845 + 0.998974i \(0.485581\pi\)
\(522\) 10.4425 + 1.58191i 0.457057 + 0.0692383i
\(523\) −19.7671 + 7.19463i −0.864354 + 0.314599i −0.735879 0.677113i \(-0.763231\pi\)
−0.128476 + 0.991713i \(0.541008\pi\)
\(524\) −12.8481 + 17.2579i −0.561270 + 0.753916i
\(525\) −1.53330 0.920343i −0.0669187 0.0401671i
\(526\) −3.85169 + 4.08256i −0.167942 + 0.178008i
\(527\) 31.6784 33.5771i 1.37993 1.46264i
\(528\) −0.0839690 + 4.94050i −0.00365428 + 0.215008i
\(529\) 11.6945 15.7084i 0.508455 0.682974i
\(530\) −1.42081 + 0.517134i −0.0617163 + 0.0224629i
\(531\) −0.565649 + 0.345083i −0.0245471 + 0.0149753i
\(532\) 3.81138 + 1.38723i 0.165244 + 0.0601440i
\(533\) −9.79171 + 6.44011i −0.424126 + 0.278952i
\(534\) 0.223530 + 0.100961i 0.00967310 + 0.00436901i
\(535\) 7.08199 + 9.51276i 0.306181 + 0.411272i
\(536\) −6.06175 3.98688i −0.261828 0.172207i
\(537\) 8.44532 16.1267i 0.364443 0.695919i
\(538\) 7.94942 26.5529i 0.342724 1.14478i
\(539\) −8.63641 + 14.9587i −0.371997 + 0.644317i
\(540\) 7.85123 6.68480i 0.337863 0.287668i
\(541\) −20.1667 34.9297i −0.867033 1.50174i −0.865015 0.501746i \(-0.832691\pi\)
−0.00201779 0.999998i \(-0.500642\pi\)
\(542\) 1.74788 0.414255i 0.0750778 0.0177938i
\(543\) 4.89889 36.5191i 0.210231 1.56719i
\(544\) −4.86223 + 2.44190i −0.208466 + 0.104696i
\(545\) 2.33618 5.41587i 0.100071 0.231990i
\(546\) −0.512779 + 2.01068i −0.0219449 + 0.0860492i
\(547\) 1.80071 + 30.9170i 0.0769927 + 1.32191i 0.786664 + 0.617381i \(0.211806\pi\)
−0.709672 + 0.704533i \(0.751157\pi\)
\(548\) 3.51674 + 19.9444i 0.150228 + 0.851984i
\(549\) −7.06889 + 11.3357i −0.301693 + 0.483797i
\(550\) −0.526057 + 2.98341i −0.0224311 + 0.127213i
\(551\) −14.5871 1.70499i −0.621431 0.0726349i
\(552\) 7.41131 8.53364i 0.315446 0.363216i
\(553\) −0.623135 2.08142i −0.0264984 0.0885109i
\(554\) 8.14506 + 1.93041i 0.346050 + 0.0820154i
\(555\) 13.5201 2.14774i 0.573897 0.0911663i
\(556\) 0.374476 + 0.868133i 0.0158813 + 0.0368170i
\(557\) 10.3130 + 8.65366i 0.436977 + 0.366667i 0.834577 0.550892i \(-0.185712\pi\)
−0.397600 + 0.917559i \(0.630157\pi\)
\(558\) −10.8696 + 23.0148i −0.460147 + 0.974295i
\(559\) 9.88634 8.29562i 0.418148 0.350867i
\(560\) 1.72423 + 0.865939i 0.0728619 + 0.0365926i
\(561\) −26.8091 2.01910i −1.13188 0.0852464i
\(562\) −14.5672 + 1.70266i −0.614480 + 0.0718224i
\(563\) −0.458868 + 7.87846i −0.0193390 + 0.332037i 0.974737 + 0.223354i \(0.0717006\pi\)
−0.994076 + 0.108684i \(0.965336\pi\)
\(564\) −1.57479 7.18671i −0.0663107 0.302615i
\(565\) 22.1528 + 23.4806i 0.931974 + 0.987835i
\(566\) 21.3373 0.896872
\(567\) −1.10100 + 8.68100i −0.0462377 + 0.364568i
\(568\) −14.8740 −0.624101
\(569\) −25.8894 27.4412i −1.08534 1.15039i −0.987890 0.155155i \(-0.950412\pi\)
−0.0974514 0.995240i \(-0.531069\pi\)
\(570\) −10.5952 + 9.66110i −0.443786 + 0.404659i
\(571\) 0.919070 15.7798i 0.0384619 0.660365i −0.922894 0.385055i \(-0.874182\pi\)
0.961355 0.275310i \(-0.0887805\pi\)
\(572\) 3.49140 0.408086i 0.145983 0.0170629i
\(573\) −5.24934 + 7.69322i −0.219294 + 0.321389i
\(574\) −8.26413 4.15040i −0.344938 0.173234i
\(575\) 5.30840 4.45428i 0.221376 0.185756i
\(576\) 2.13169 2.11090i 0.0888204 0.0879542i
\(577\) 5.24576 + 4.40171i 0.218384 + 0.183246i 0.745416 0.666600i \(-0.232251\pi\)
−0.527032 + 0.849845i \(0.676695\pi\)
\(578\) −4.99225 11.5733i −0.207650 0.481387i
\(579\) 1.94107 + 2.39477i 0.0806680 + 0.0995232i
\(580\) −6.79809 1.61118i −0.282275 0.0669005i
\(581\) 3.26691 + 10.9122i 0.135534 + 0.452716i
\(582\) −6.00139 17.4034i −0.248766 0.721393i
\(583\) −2.15892 0.252341i −0.0894132 0.0104509i
\(584\) 1.25104 7.09499i 0.0517683 0.293593i
\(585\) −5.45593 4.90348i −0.225575 0.202734i
\(586\) 2.69436 + 15.2805i 0.111303 + 0.631230i
\(587\) −0.563435 9.67381i −0.0232555 0.399281i −0.989770 0.142670i \(-0.954431\pi\)
0.966515 0.256611i \(-0.0826058\pi\)
\(588\) 10.0961 2.83654i 0.416356 0.116977i
\(589\) 14.0183 32.4981i 0.577615 1.33906i
\(590\) 0.391681 0.196710i 0.0161253 0.00809841i
\(591\) 19.3459 + 14.9201i 0.795786 + 0.613731i
\(592\) 3.87544 0.918497i 0.159280 0.0377500i
\(593\) 0.957963 + 1.65924i 0.0393388 + 0.0681368i 0.885024 0.465545i \(-0.154142\pi\)
−0.845686 + 0.533681i \(0.820808\pi\)
\(594\) 14.3991 3.52225i 0.590803 0.144520i
\(595\) −5.24906 + 9.09164i −0.215190 + 0.372721i
\(596\) 3.98049 13.2958i 0.163047 0.544615i
\(597\) 48.6433 2.00442i 1.99084 0.0820355i
\(598\) −6.71790 4.41843i −0.274715 0.180683i
\(599\) −0.862763 1.15889i −0.0352515 0.0473510i 0.784148 0.620574i \(-0.213100\pi\)
−0.819399 + 0.573223i \(0.805693\pi\)
\(600\) 1.49379 1.07312i 0.0609836 0.0438098i
\(601\) 39.7954 26.1738i 1.62329 1.06765i 0.681301 0.732003i \(-0.261414\pi\)
0.941987 0.335650i \(-0.108956\pi\)
\(602\) 9.56945 + 3.48300i 0.390022 + 0.141956i
\(603\) −6.94755 + 20.6275i −0.282926 + 0.840015i
\(604\) 21.1055 7.68177i 0.858770 0.312567i
\(605\) −3.39094 + 4.55482i −0.137861 + 0.185180i
\(606\) 7.71002 4.27836i 0.313198 0.173796i
\(607\) −15.2794 + 16.1952i −0.620171 + 0.657343i −0.958967 0.283517i \(-0.908499\pi\)
0.338796 + 0.940860i \(0.389980\pi\)
\(608\) −2.86273 + 3.03432i −0.116099 + 0.123058i
\(609\) 5.18410 2.87670i 0.210070 0.116570i
\(610\) 5.27705 7.08831i 0.213662 0.286997i
\(611\) −4.91827 + 1.79010i −0.198972 + 0.0724198i
\(612\) 10.7915 + 12.2466i 0.436221 + 0.495041i
\(613\) −25.2994 9.20823i −1.02183 0.371917i −0.223868 0.974620i \(-0.571868\pi\)
−0.797966 + 0.602703i \(0.794091\pi\)
\(614\) −0.703245 + 0.462532i −0.0283807 + 0.0186663i
\(615\) 26.5514 19.0742i 1.07066 0.769146i
\(616\) 1.65636 + 2.22488i 0.0667368 + 0.0896430i
\(617\) −29.6392 19.4940i −1.19323 0.784800i −0.211930 0.977285i \(-0.567975\pi\)
−0.981300 + 0.192485i \(0.938345\pi\)
\(618\) −27.0874 + 1.11618i −1.08961 + 0.0448992i
\(619\) 5.62648 18.7937i 0.226147 0.755384i −0.767320 0.641265i \(-0.778410\pi\)
0.993467 0.114120i \(-0.0364047\pi\)
\(620\) 8.41825 14.5808i 0.338085 0.585581i
\(621\) −30.4100 14.9995i −1.22031 0.601910i
\(622\) −3.74794 6.49163i −0.150279 0.260291i
\(623\) 0.133972 0.0317520i 0.00536748 0.00127212i
\(624\) −1.68998 1.30336i −0.0676533 0.0521761i
\(625\) −16.5883 + 8.33096i −0.663532 + 0.333238i
\(626\) −11.2311 + 26.0367i −0.448886 + 1.04063i
\(627\) −19.8445 + 5.57541i −0.792513 + 0.222660i
\(628\) −0.814726 13.9883i −0.0325111 0.558194i
\(629\) 3.76301 + 21.3411i 0.150041 + 0.850925i
\(630\) 1.19827 5.66299i 0.0477404 0.225619i
\(631\) 0.517896 2.93714i 0.0206171 0.116926i −0.972762 0.231805i \(-0.925537\pi\)
0.993379 + 0.114879i \(0.0366481\pi\)
\(632\) 2.21952 + 0.259425i 0.0882878 + 0.0103194i
\(633\) −4.39290 12.7389i −0.174602 0.506326i
\(634\) −0.0845419 0.282390i −0.00335759 0.0112151i
\(635\) 12.7598 + 3.02413i 0.506358 + 0.120009i
\(636\) 0.830974 + 1.02521i 0.0329503 + 0.0406520i
\(637\) −2.95492 6.85027i −0.117078 0.271418i
\(638\) −7.69376 6.45583i −0.304599 0.255589i
\(639\) 11.3377 + 43.1577i 0.448513 + 1.70729i
\(640\) −1.52019 + 1.27559i −0.0600906 + 0.0504220i
\(641\) −28.3678 14.2469i −1.12046 0.562717i −0.210577 0.977577i \(-0.567534\pi\)
−0.909885 + 0.414860i \(0.863830\pi\)
\(642\) 5.83412 8.55025i 0.230254 0.337451i
\(643\) −0.206843 + 0.0241765i −0.00815709 + 0.000953427i −0.120170 0.992753i \(-0.538344\pi\)
0.112013 + 0.993707i \(0.464270\pi\)
\(644\) 0.368913 6.33400i 0.0145372 0.249595i
\(645\) −26.6021 + 24.2567i −1.04746 + 0.955106i
\(646\) −15.5761 16.5097i −0.612832 0.649564i
\(647\) 6.27460 0.246680 0.123340 0.992364i \(-0.460639\pi\)
0.123340 + 0.992364i \(0.460639\pi\)
\(648\) −7.74976 4.57617i −0.304439 0.179769i
\(649\) 0.630093 0.0247333
\(650\) −0.897922 0.951742i −0.0352194 0.0373304i
\(651\) 3.05824 + 13.9566i 0.119862 + 0.547001i
\(652\) −0.786807 + 13.5090i −0.0308137 + 0.529051i
\(653\) −13.8519 + 1.61905i −0.542066 + 0.0633584i −0.382720 0.923864i \(-0.625013\pi\)
−0.159346 + 0.987223i \(0.550939\pi\)
\(654\) −5.13349 0.386623i −0.200735 0.0151182i
\(655\) −38.1548 19.1621i −1.49083 0.748724i
\(656\) 7.28618 6.11383i 0.284477 0.238705i
\(657\) −21.5400 + 1.77820i −0.840357 + 0.0693742i
\(658\) −3.16373 2.65469i −0.123335 0.103491i
\(659\) −6.52478 15.1261i −0.254169 0.589231i 0.742583 0.669754i \(-0.233600\pi\)
−0.996753 + 0.0805227i \(0.974341\pi\)
\(660\) −9.68422 + 1.53839i −0.376958 + 0.0598816i
\(661\) 7.39619 + 1.75293i 0.287679 + 0.0681811i 0.371922 0.928264i \(-0.378699\pi\)
−0.0842429 + 0.996445i \(0.526847\pi\)
\(662\) −7.46505 24.9350i −0.290137 0.969126i
\(663\) 7.61418 8.76724i 0.295710 0.340491i
\(664\) −11.6363 1.36008i −0.451575 0.0527815i
\(665\) −1.39769 + 7.92667i −0.0541999 + 0.307383i
\(666\) −5.61912 10.5447i −0.217736 0.408597i
\(667\) 3.98935 + 22.6247i 0.154468 + 0.876034i
\(668\) −0.362599 6.22559i −0.0140294 0.240875i
\(669\) −9.81774 + 38.4968i −0.379576 + 1.48837i
\(670\) 5.70274 13.2204i 0.220316 0.510750i
\(671\) 11.3525 5.70144i 0.438258 0.220102i
\(672\) 0.223902 1.66909i 0.00863719 0.0643866i
\(673\) 35.8100 8.48713i 1.38037 0.327155i 0.527626 0.849477i \(-0.323082\pi\)
0.852749 + 0.522322i \(0.174934\pi\)
\(674\) 2.92600 + 5.06798i 0.112705 + 0.195211i
\(675\) −4.25234 3.51631i −0.163672 0.135343i
\(676\) 5.74087 9.94348i 0.220803 0.382442i
\(677\) −3.60674 + 12.0473i −0.138618 + 0.463017i −0.998905 0.0467941i \(-0.985100\pi\)
0.860286 + 0.509811i \(0.170285\pi\)
\(678\) 13.0711 24.9599i 0.501993 0.958578i
\(679\) −8.63384 5.67857i −0.331336 0.217923i
\(680\) −6.44776 8.66084i −0.247260 0.332128i
\(681\) 12.7340 + 5.75152i 0.487969 + 0.220399i
\(682\) 20.2219 13.3002i 0.774338 0.509290i
\(683\) −39.4063 14.3427i −1.50784 0.548809i −0.549765 0.835320i \(-0.685283\pi\)
−0.958077 + 0.286510i \(0.907505\pi\)
\(684\) 10.9863 + 5.99345i 0.420073 + 0.229165i
\(685\) −37.7658 + 13.7456i −1.44296 + 0.525194i
\(686\) 7.57963 10.1812i 0.289392 0.388720i
\(687\) 0.761693 44.8159i 0.0290604 1.70983i
\(688\) −7.18763 + 7.61844i −0.274026 + 0.290450i
\(689\) 0.644257 0.682872i 0.0245442 0.0260154i
\(690\) 19.2313 + 11.5433i 0.732124 + 0.439448i
\(691\) 8.96528 12.0425i 0.341055 0.458117i −0.598194 0.801351i \(-0.704115\pi\)
0.939250 + 0.343234i \(0.111522\pi\)
\(692\) −11.3145 + 4.11816i −0.430114 + 0.156549i
\(693\) 5.19304 6.50193i 0.197267 0.246988i
\(694\) 21.2024 + 7.71704i 0.804832 + 0.292935i
\(695\) −1.56756 + 1.03100i −0.0594609 + 0.0391081i
\(696\) 0.604885 + 6.06771i 0.0229281 + 0.229996i
\(697\) 30.9038 + 41.5110i 1.17056 + 1.57234i
\(698\) −26.9290 17.7115i −1.01928 0.670390i
\(699\) 6.07771 + 9.59187i 0.229880 + 0.362798i
\(700\) 0.296119 0.989105i 0.0111922 0.0373846i
\(701\) −0.796766 + 1.38004i −0.0300934 + 0.0521234i −0.880680 0.473712i \(-0.842914\pi\)
0.850586 + 0.525835i \(0.176247\pi\)
\(702\) −2.49357 + 5.89704i −0.0941137 + 0.222569i
\(703\) 8.30735 + 14.3888i 0.313318 + 0.542682i
\(704\) −2.77591 + 0.657904i −0.104621 + 0.0247957i
\(705\) 13.5024 5.55416i 0.508530 0.209182i
\(706\) −8.15601 + 4.09610i −0.306956 + 0.154159i
\(707\) 1.96048 4.54489i 0.0737313 0.170928i
\(708\) −0.273758 0.267215i −0.0102884 0.0100425i
\(709\) 0.669472 + 11.4944i 0.0251426 + 0.431681i 0.987267 + 0.159071i \(0.0508499\pi\)
−0.962125 + 0.272610i \(0.912113\pi\)
\(710\) −5.12556 29.0685i −0.192359 1.09092i
\(711\) −0.939094 6.63779i −0.0352188 0.248937i
\(712\) −0.0245901 + 0.139457i −0.000921552 + 0.00522638i
\(713\) −54.9900 6.42741i −2.05939 0.240708i
\(714\) 8.99528 + 1.74422i 0.336640 + 0.0652759i
\(715\) 2.00066 + 6.68266i 0.0748203 + 0.249917i
\(716\) 10.2269 + 2.42383i 0.382198 + 0.0905826i
\(717\) 4.66387 12.1665i 0.174175 0.454366i
\(718\) −0.527948 1.22392i −0.0197028 0.0456763i
\(719\) 28.3871 + 23.8196i 1.05866 + 0.888321i 0.993977 0.109584i \(-0.0349520\pi\)
0.0646828 + 0.997906i \(0.479396\pi\)
\(720\) 4.85994 + 3.43858i 0.181119 + 0.128148i
\(721\) −11.6579 + 9.78216i −0.434164 + 0.364307i
\(722\) 1.42770 + 0.717020i 0.0531336 + 0.0266847i
\(723\) 21.0846 + 43.8243i 0.784143 + 1.62984i
\(724\) 21.1293 2.46967i 0.785266 0.0917844i
\(725\) −0.217376 + 3.73220i −0.00807314 + 0.138610i
\(726\) 4.72314 + 1.50193i 0.175292 + 0.0557419i
\(727\) −11.2689 11.9444i −0.417941 0.442992i 0.483858 0.875146i \(-0.339235\pi\)
−0.901800 + 0.432154i \(0.857754\pi\)
\(728\) −1.19802 −0.0444017
\(729\) −7.37072 + 25.9745i −0.272990 + 0.962017i
\(730\) 14.2969 0.529153
\(731\) −39.1077 41.4517i −1.44645 1.53315i
\(732\) −7.35025 2.33734i −0.271673 0.0863905i
\(733\) 2.18643 37.5395i 0.0807575 1.38655i −0.677944 0.735114i \(-0.737129\pi\)
0.758701 0.651439i \(-0.225834\pi\)
\(734\) −10.8645 + 1.26987i −0.401015 + 0.0468719i
\(735\) 9.02259 + 18.7534i 0.332803 + 0.691731i
\(736\) 5.83149 + 2.92869i 0.214952 + 0.107953i
\(737\) 15.8557 13.3045i 0.584052 0.490078i
\(738\) −23.2934 16.4809i −0.857443 0.606671i
\(739\) −5.93639 4.98123i −0.218374 0.183237i 0.527038 0.849842i \(-0.323303\pi\)
−0.745412 + 0.666604i \(0.767747\pi\)
\(740\) 3.13050 + 7.25732i 0.115080 + 0.266784i
\(741\) 3.18674 8.31315i 0.117068 0.305391i
\(742\) 0.720833 + 0.170840i 0.0264626 + 0.00627175i
\(743\) −7.94369 26.5338i −0.291426 0.973430i −0.970851 0.239685i \(-0.922956\pi\)
0.679425 0.733745i \(-0.262229\pi\)
\(744\) −14.4263 2.79732i −0.528894 0.102555i
\(745\) 27.3557 + 3.19743i 1.00224 + 0.117145i
\(746\) 1.46221 8.29263i 0.0535355 0.303615i
\(747\) 4.92338 + 34.7999i 0.180137 + 1.27326i
\(748\) −2.69538 15.2863i −0.0985528 0.558921i
\(749\) −0.337852 5.80069i −0.0123448 0.211953i
\(750\) 14.9103 + 14.5540i 0.544449 + 0.531436i
\(751\) −16.7919 + 38.9280i −0.612745 + 1.42050i 0.275576 + 0.961279i \(0.411131\pi\)
−0.888321 + 0.459223i \(0.848128\pi\)
\(752\) 3.79588 1.90636i 0.138422 0.0695179i
\(753\) −13.8259 + 5.68721i −0.503842 + 0.207254i
\(754\) 4.22102 1.00040i 0.153720 0.0364324i
\(755\) 22.2855 + 38.5996i 0.811052 + 1.40478i
\(756\) −5.01362 + 0.622602i −0.182344 + 0.0226438i
\(757\) 18.8633 32.6722i 0.685598 1.18749i −0.287651 0.957735i \(-0.592874\pi\)
0.973249 0.229755i \(-0.0737924\pi\)
\(758\) −3.14803 + 10.5151i −0.114341 + 0.381927i
\(759\) 17.2582 + 27.2370i 0.626434 + 0.988642i
\(760\) −6.91651 4.54906i −0.250888 0.165012i
\(761\) 29.8042 + 40.0340i 1.08040 + 1.45123i 0.882084 + 0.471092i \(0.156140\pi\)
0.198316 + 0.980138i \(0.436453\pi\)
\(762\) −1.13535 11.3889i −0.0411294 0.412577i
\(763\) −2.41442 + 1.58799i −0.0874079 + 0.0574891i
\(764\) −5.05287 1.83909i −0.182806 0.0665361i
\(765\) −20.2150 + 25.3102i −0.730876 + 0.915092i
\(766\) −14.3346 + 5.21738i −0.517931 + 0.188512i
\(767\) −0.162515 +