Properties

Label 162.2.g.a.103.1
Level $162$
Weight $2$
Character 162.103
Analytic conductor $1.294$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 103.1
Character \(\chi\) \(=\) 162.103
Dual form 162.2.g.a.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.686242 + 0.727374i) q^{2} +(-1.68798 + 0.388253i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(-3.71787 + 0.434557i) q^{5} +(-1.44076 - 0.961353i) q^{6} +(-3.25050 - 1.63246i) q^{7} +(-0.766044 + 0.642788i) q^{8} +(2.69852 - 1.31072i) q^{9} +O(q^{10})\) \(q+(0.686242 + 0.727374i) q^{2} +(-1.68798 + 0.388253i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(-3.71787 + 0.434557i) q^{5} +(-1.44076 - 0.961353i) q^{6} +(-3.25050 - 1.63246i) q^{7} +(-0.766044 + 0.642788i) q^{8} +(2.69852 - 1.31072i) q^{9} +(-2.86744 - 2.40607i) q^{10} +(2.08512 + 4.83385i) q^{11} +(-0.289449 - 1.70769i) q^{12} +(-0.202747 - 0.0480518i) q^{13} +(-1.04322 - 3.48460i) q^{14} +(6.10696 - 2.17700i) q^{15} +(-0.993238 - 0.116093i) q^{16} +(-0.290217 + 1.64590i) q^{17} +(2.80522 + 1.06336i) q^{18} +(0.286765 + 1.62633i) q^{19} +(-0.217647 - 3.73685i) q^{20} +(6.12058 + 1.49354i) q^{21} +(-2.08512 + 4.83385i) q^{22} +(-7.81600 + 3.92534i) q^{23} +(1.04350 - 1.38243i) q^{24} +(8.76851 - 2.07818i) q^{25} +(-0.104182 - 0.180448i) q^{26} +(-4.04614 + 3.26017i) q^{27} +(1.81870 - 3.15009i) q^{28} +(0.216107 - 0.721848i) q^{29} +(5.77434 + 2.94810i) q^{30} +(-4.77184 - 3.13849i) q^{31} +(-0.597159 - 0.802123i) q^{32} +(-5.39638 - 7.34986i) q^{33} +(-1.39634 + 0.918389i) q^{34} +(12.7944 + 4.65677i) q^{35} +(1.15160 + 2.77017i) q^{36} +(5.15467 - 1.87615i) q^{37} +(-0.986157 + 1.32464i) q^{38} +(0.360888 + 0.00239336i) q^{39} +(2.56873 - 2.72269i) q^{40} +(3.43214 - 3.63786i) q^{41} +(3.11383 + 5.47688i) q^{42} +(-0.625285 + 0.839904i) q^{43} +(-4.94691 + 1.80053i) q^{44} +(-9.46317 + 6.04576i) q^{45} +(-8.21885 - 2.99142i) q^{46} +(4.54436 - 2.98887i) q^{47} +(1.72163 - 0.189666i) q^{48} +(3.72073 + 4.99781i) q^{49} +(7.52893 + 4.95185i) q^{50} +(-0.149147 - 2.89092i) q^{51} +(0.0597592 - 0.199610i) q^{52} +(-2.43382 + 4.21549i) q^{53} +(-5.14800 - 0.705790i) q^{54} +(-9.85278 - 17.0655i) q^{55} +(3.53936 - 0.838844i) q^{56} +(-1.11548 - 2.63386i) q^{57} +(0.673355 - 0.338172i) q^{58} +(-4.73861 + 10.9853i) q^{59} +(1.81822 + 6.22321i) q^{60} +(0.123728 + 2.12434i) q^{61} +(-0.991781 - 5.62467i) q^{62} +(-10.9113 - 0.144730i) q^{63} +(0.173648 - 0.984808i) q^{64} +(0.774668 + 0.0905456i) q^{65} +(1.64287 - 8.96896i) q^{66} +(1.79201 + 5.98575i) q^{67} +(-1.62624 - 0.385426i) q^{68} +(11.6692 - 9.66046i) q^{69} +(5.39281 + 12.5019i) q^{70} +(-1.97644 - 1.65843i) q^{71} +(-1.22467 + 2.73865i) q^{72} +(-4.28632 + 3.59665i) q^{73} +(4.90201 + 2.46188i) q^{74} +(-13.9942 + 6.91231i) q^{75} +(-1.64025 + 0.191718i) q^{76} +(1.11340 - 19.1163i) q^{77} +(0.245915 + 0.264143i) q^{78} +(2.96988 + 3.14789i) q^{79} +3.74318 q^{80} +(5.56402 - 7.07402i) q^{81} +5.00136 q^{82} +(-9.81132 - 10.3994i) q^{83} +(-1.84690 + 6.02338i) q^{84} +(0.363751 - 6.24536i) q^{85} +(-1.04002 + 0.121561i) q^{86} +(-0.0845240 + 1.30237i) q^{87} +(-4.70443 - 2.36265i) q^{88} +(0.396952 - 0.333082i) q^{89} +(-10.8915 - 2.73441i) q^{90} +(0.580586 + 0.487170i) q^{91} +(-3.46424 - 8.03101i) q^{92} +(9.27327 + 3.44501i) q^{93} +(5.29255 + 1.25436i) q^{94} +(-1.77289 - 5.92186i) q^{95} +(1.31942 + 1.12212i) q^{96} +(1.84818 + 0.216021i) q^{97} +(-1.08195 + 6.13606i) q^{98} +(11.9626 + 10.3112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 9 q^{6} + 18 q^{13} - 9 q^{20} - 81 q^{23} + 18 q^{25} - 27 q^{26} - 27 q^{27} + 18 q^{28} - 27 q^{29} - 63 q^{30} - 54 q^{31} + 9 q^{33} - 27 q^{35} - 9 q^{36} + 9 q^{38} - 9 q^{41} + 9 q^{42} + 36 q^{43} - 117 q^{45} - 18 q^{46} - 27 q^{47} + 9 q^{48} - 27 q^{51} - 36 q^{52} - 27 q^{53} + 54 q^{55} + 27 q^{57} + 9 q^{58} - 18 q^{59} + 9 q^{63} + 9 q^{65} + 36 q^{66} - 135 q^{67} - 18 q^{68} + 108 q^{69} + 18 q^{70} + 72 q^{71} + 54 q^{72} + 36 q^{73} + 99 q^{74} - 36 q^{75} - 9 q^{76} + 144 q^{77} + 90 q^{78} - 9 q^{79} + 18 q^{80} - 72 q^{82} + 99 q^{83} + 18 q^{84} + 9 q^{85} + 72 q^{86} + 207 q^{87} - 9 q^{88} + 126 q^{89} - 18 q^{90} + 63 q^{91} + 36 q^{92} + 81 q^{93} + 18 q^{94} + 45 q^{95} - 171 q^{97} + 36 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.686242 + 0.727374i 0.485246 + 0.514331i
\(3\) −1.68798 + 0.388253i −0.974553 + 0.224158i
\(4\) −0.0581448 + 0.998308i −0.0290724 + 0.499154i
\(5\) −3.71787 + 0.434557i −1.66268 + 0.194340i −0.894868 0.446331i \(-0.852730\pi\)
−0.767815 + 0.640671i \(0.778656\pi\)
\(6\) −1.44076 0.961353i −0.588189 0.392471i
\(7\) −3.25050 1.63246i −1.22858 0.617014i −0.288336 0.957529i \(-0.593102\pi\)
−0.940239 + 0.340515i \(0.889398\pi\)
\(8\) −0.766044 + 0.642788i −0.270838 + 0.227260i
\(9\) 2.69852 1.31072i 0.899507 0.436907i
\(10\) −2.86744 2.40607i −0.906765 0.760867i
\(11\) 2.08512 + 4.83385i 0.628687 + 1.45746i 0.872979 + 0.487758i \(0.162185\pi\)
−0.244292 + 0.969702i \(0.578556\pi\)
\(12\) −0.289449 1.70769i −0.0835567 0.492969i
\(13\) −0.202747 0.0480518i −0.0562318 0.0133272i 0.202404 0.979302i \(-0.435125\pi\)
−0.258635 + 0.965975i \(0.583273\pi\)
\(14\) −1.04322 3.48460i −0.278812 0.931298i
\(15\) 6.10696 2.17700i 1.57681 0.562098i
\(16\) −0.993238 0.116093i −0.248310 0.0290232i
\(17\) −0.290217 + 1.64590i −0.0703879 + 0.399189i 0.929175 + 0.369639i \(0.120519\pi\)
−0.999563 + 0.0295503i \(0.990592\pi\)
\(18\) 2.80522 + 1.06336i 0.661197 + 0.250636i
\(19\) 0.286765 + 1.62633i 0.0657885 + 0.373105i 0.999871 + 0.0160484i \(0.00510858\pi\)
−0.934083 + 0.357057i \(0.883780\pi\)
\(20\) −0.217647 3.73685i −0.0486673 0.835585i
\(21\) 6.12058 + 1.49354i 1.33562 + 0.325918i
\(22\) −2.08512 + 4.83385i −0.444549 + 1.03058i
\(23\) −7.81600 + 3.92534i −1.62975 + 0.818490i −0.630648 + 0.776069i \(0.717211\pi\)
−0.999100 + 0.0424209i \(0.986493\pi\)
\(24\) 1.04350 1.38243i 0.213004 0.282187i
\(25\) 8.76851 2.07818i 1.75370 0.415635i
\(26\) −0.104182 0.180448i −0.0204317 0.0353887i
\(27\) −4.04614 + 3.26017i −0.778680 + 0.627421i
\(28\) 1.81870 3.15009i 0.343703 0.595310i
\(29\) 0.216107 0.721848i 0.0401301 0.134044i −0.935577 0.353122i \(-0.885120\pi\)
0.975707 + 0.219079i \(0.0703051\pi\)
\(30\) 5.77434 + 2.94810i 1.05425 + 0.538246i
\(31\) −4.77184 3.13849i −0.857047 0.563689i 0.0432006 0.999066i \(-0.486245\pi\)
−0.900248 + 0.435377i \(0.856615\pi\)
\(32\) −0.597159 0.802123i −0.105564 0.141797i
\(33\) −5.39638 7.34986i −0.939389 1.27945i
\(34\) −1.39634 + 0.918389i −0.239471 + 0.157502i
\(35\) 12.7944 + 4.65677i 2.16264 + 0.787137i
\(36\) 1.15160 + 2.77017i 0.191933 + 0.461694i
\(37\) 5.15467 1.87615i 0.847423 0.308437i 0.118434 0.992962i \(-0.462213\pi\)
0.728989 + 0.684525i \(0.239990\pi\)
\(38\) −0.986157 + 1.32464i −0.159976 + 0.214885i
\(39\) 0.360888 + 0.00239336i 0.0577883 + 0.000383244i
\(40\) 2.56873 2.72269i 0.406152 0.430495i
\(41\) 3.43214 3.63786i 0.536010 0.568138i −0.401605 0.915813i \(-0.631547\pi\)
0.937615 + 0.347675i \(0.113029\pi\)
\(42\) 3.11383 + 5.47688i 0.480475 + 0.845101i
\(43\) −0.625285 + 0.839904i −0.0953551 + 0.128084i −0.847240 0.531210i \(-0.821737\pi\)
0.751885 + 0.659294i \(0.229145\pi\)
\(44\) −4.94691 + 1.80053i −0.745774 + 0.271440i
\(45\) −9.46317 + 6.04576i −1.41069 + 0.901248i
\(46\) −8.21885 2.99142i −1.21180 0.441060i
\(47\) 4.54436 2.98887i 0.662863 0.435972i −0.172991 0.984923i \(-0.555343\pi\)
0.835854 + 0.548952i \(0.184973\pi\)
\(48\) 1.72163 0.189666i 0.248497 0.0273759i
\(49\) 3.72073 + 4.99781i 0.531533 + 0.713972i
\(50\) 7.52893 + 4.95185i 1.06475 + 0.700298i
\(51\) −0.149147 2.89092i −0.0208847 0.404809i
\(52\) 0.0597592 0.199610i 0.00828711 0.0276809i
\(53\) −2.43382 + 4.21549i −0.334310 + 0.579042i −0.983352 0.181710i \(-0.941837\pi\)
0.649042 + 0.760753i \(0.275170\pi\)
\(54\) −5.14800 0.705790i −0.700553 0.0960459i
\(55\) −9.85278 17.0655i −1.32855 2.30111i
\(56\) 3.53936 0.838844i 0.472967 0.112095i
\(57\) −1.11548 2.63386i −0.147749 0.348864i
\(58\) 0.673355 0.338172i 0.0884159 0.0444041i
\(59\) −4.73861 + 10.9853i −0.616914 + 1.43017i 0.267542 + 0.963546i \(0.413789\pi\)
−0.884457 + 0.466622i \(0.845471\pi\)
\(60\) 1.81822 + 6.22321i 0.234732 + 0.803413i
\(61\) 0.123728 + 2.12434i 0.0158418 + 0.271993i 0.996922 + 0.0783938i \(0.0249792\pi\)
−0.981081 + 0.193599i \(0.937984\pi\)
\(62\) −0.991781 5.62467i −0.125956 0.714334i
\(63\) −10.9113 0.144730i −1.37469 0.0182343i
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) 0.774668 + 0.0905456i 0.0960857 + 0.0112308i
\(66\) 1.64287 8.96896i 0.202224 1.10400i
\(67\) 1.79201 + 5.98575i 0.218929 + 0.731275i 0.994932 + 0.100546i \(0.0320590\pi\)
−0.776003 + 0.630729i \(0.782756\pi\)
\(68\) −1.62624 0.385426i −0.197211 0.0467398i
\(69\) 11.6692 9.66046i 1.40480 1.16298i
\(70\) 5.39281 + 12.5019i 0.644565 + 1.49427i
\(71\) −1.97644 1.65843i −0.234560 0.196820i 0.517930 0.855423i \(-0.326703\pi\)
−0.752490 + 0.658604i \(0.771147\pi\)
\(72\) −1.22467 + 2.73865i −0.144329 + 0.322753i
\(73\) −4.28632 + 3.59665i −0.501676 + 0.420956i −0.858189 0.513334i \(-0.828410\pi\)
0.356513 + 0.934291i \(0.383966\pi\)
\(74\) 4.90201 + 2.46188i 0.569847 + 0.286188i
\(75\) −13.9942 + 6.91231i −1.61591 + 0.798164i
\(76\) −1.64025 + 0.191718i −0.188150 + 0.0219915i
\(77\) 1.11340 19.1163i 0.126884 2.17851i
\(78\) 0.245915 + 0.264143i 0.0278444 + 0.0299083i
\(79\) 2.96988 + 3.14789i 0.334138 + 0.354166i 0.872558 0.488511i \(-0.162460\pi\)
−0.538420 + 0.842677i \(0.680978\pi\)
\(80\) 3.74318 0.418501
\(81\) 5.56402 7.07402i 0.618224 0.786002i
\(82\) 5.00136 0.552308
\(83\) −9.81132 10.3994i −1.07693 1.14148i −0.989385 0.145321i \(-0.953579\pi\)
−0.0875474 0.996160i \(-0.527903\pi\)
\(84\) −1.84690 + 6.02338i −0.201513 + 0.657205i
\(85\) 0.363751 6.24536i 0.0394543 0.677405i
\(86\) −1.04002 + 0.121561i −0.112148 + 0.0131083i
\(87\) −0.0845240 + 1.30237i −0.00906192 + 0.139628i
\(88\) −4.70443 2.36265i −0.501494 0.251860i
\(89\) 0.396952 0.333082i 0.0420768 0.0353067i −0.621507 0.783409i \(-0.713479\pi\)
0.663584 + 0.748102i \(0.269035\pi\)
\(90\) −10.8915 2.73441i −1.14807 0.288232i
\(91\) 0.580586 + 0.487170i 0.0608620 + 0.0510692i
\(92\) −3.46424 8.03101i −0.361172 0.837291i
\(93\) 9.27327 + 3.44501i 0.961593 + 0.357231i
\(94\) 5.29255 + 1.25436i 0.545885 + 0.129377i
\(95\) −1.77289 5.92186i −0.181895 0.607570i
\(96\) 1.31942 + 1.12212i 0.134662 + 0.114525i
\(97\) 1.84818 + 0.216021i 0.187654 + 0.0219337i 0.209401 0.977830i \(-0.432849\pi\)
−0.0217465 + 0.999764i \(0.506923\pi\)
\(98\) −1.08195 + 6.13606i −0.109294 + 0.619836i
\(99\) 11.9626 + 10.3112i 1.20228 + 1.03632i
\(100\) 1.56482 + 8.87451i 0.156482 + 0.887451i
\(101\) 0.668800 + 11.4829i 0.0665481 + 1.14259i 0.851958 + 0.523610i \(0.175415\pi\)
−0.785410 + 0.618976i \(0.787548\pi\)
\(102\) 2.00042 2.09235i 0.198072 0.207174i
\(103\) −5.88743 + 13.6486i −0.580105 + 1.34484i 0.335228 + 0.942137i \(0.391187\pi\)
−0.915333 + 0.402698i \(0.868073\pi\)
\(104\) 0.186200 0.0935132i 0.0182584 0.00916972i
\(105\) −23.4046 2.89306i −2.28405 0.282334i
\(106\) −4.73642 + 1.12255i −0.460042 + 0.109032i
\(107\) 1.27937 + 2.21593i 0.123681 + 0.214222i 0.921217 0.389050i \(-0.127197\pi\)
−0.797535 + 0.603272i \(0.793863\pi\)
\(108\) −3.01940 4.22886i −0.290541 0.406922i
\(109\) −5.38593 + 9.32871i −0.515879 + 0.893528i 0.483951 + 0.875095i \(0.339201\pi\)
−0.999830 + 0.0184331i \(0.994132\pi\)
\(110\) 5.65162 18.8777i 0.538861 1.79992i
\(111\) −7.97254 + 5.16821i −0.756720 + 0.490544i
\(112\) 3.03901 + 1.99879i 0.287159 + 0.188868i
\(113\) −7.36982 9.89939i −0.693295 0.931256i 0.306493 0.951873i \(-0.400844\pi\)
−0.999787 + 0.0206167i \(0.993437\pi\)
\(114\) 1.15031 2.61884i 0.107737 0.245276i
\(115\) 27.3531 17.9904i 2.55069 1.67761i
\(116\) 0.708062 + 0.257713i 0.0657419 + 0.0239281i
\(117\) −0.610098 + 0.136076i −0.0564036 + 0.0125802i
\(118\) −11.2423 + 4.09185i −1.03494 + 0.376686i
\(119\) 3.63022 4.87624i 0.332782 0.447004i
\(120\) −3.27886 + 5.59315i −0.299317 + 0.510583i
\(121\) −11.4697 + 12.1572i −1.04270 + 1.10520i
\(122\) −1.46028 + 1.54780i −0.132207 + 0.140132i
\(123\) −4.38096 + 7.47315i −0.395018 + 0.673831i
\(124\) 3.41064 4.58128i 0.306284 0.411411i
\(125\) −14.1099 + 5.13559i −1.26203 + 0.459341i
\(126\) −7.38249 8.03588i −0.657684 0.715893i
\(127\) 17.2415 + 6.27538i 1.52993 + 0.556850i 0.963605 0.267331i \(-0.0861417\pi\)
0.566327 + 0.824181i \(0.308364\pi\)
\(128\) 0.835488 0.549509i 0.0738474 0.0485702i
\(129\) 0.729371 1.66051i 0.0642175 0.146199i
\(130\) 0.465749 + 0.625609i 0.0408489 + 0.0548695i
\(131\) −0.165733 0.109005i −0.0144802 0.00952378i 0.542248 0.840218i \(-0.317573\pi\)
−0.556728 + 0.830695i \(0.687944\pi\)
\(132\) 7.65120 4.95989i 0.665951 0.431703i
\(133\) 1.72279 5.75452i 0.149385 0.498980i
\(134\) −3.12412 + 5.41113i −0.269883 + 0.467451i
\(135\) 13.6263 13.8792i 1.17277 1.19453i
\(136\) −0.835645 1.44738i −0.0716560 0.124112i
\(137\) −4.29953 + 1.01901i −0.367333 + 0.0870596i −0.410137 0.912024i \(-0.634519\pi\)
0.0428037 + 0.999084i \(0.486371\pi\)
\(138\) 15.0346 + 1.85845i 1.27983 + 0.158201i
\(139\) −1.10445 + 0.554676i −0.0936783 + 0.0470470i −0.495021 0.868881i \(-0.664840\pi\)
0.401343 + 0.915928i \(0.368543\pi\)
\(140\) −5.39281 + 12.5019i −0.455776 + 1.05661i
\(141\) −6.51032 + 6.80950i −0.548268 + 0.573463i
\(142\) −0.150017 2.57570i −0.0125892 0.216148i
\(143\) −0.190475 1.08024i −0.0159284 0.0903342i
\(144\) −2.83244 + 0.988580i −0.236037 + 0.0823817i
\(145\) −0.489775 + 2.77765i −0.0406736 + 0.230671i
\(146\) −5.55756 0.649586i −0.459947 0.0537601i
\(147\) −8.22091 6.99159i −0.678049 0.576657i
\(148\) 1.57326 + 5.25504i 0.129321 + 0.431962i
\(149\) 7.84141 + 1.85845i 0.642394 + 0.152250i 0.538886 0.842379i \(-0.318845\pi\)
0.103507 + 0.994629i \(0.466993\pi\)
\(150\) −14.6312 5.43548i −1.19463 0.443805i
\(151\) 2.94676 + 6.83136i 0.239804 + 0.555928i 0.995034 0.0995312i \(-0.0317343\pi\)
−0.755230 + 0.655459i \(0.772475\pi\)
\(152\) −1.26506 1.06151i −0.102610 0.0860998i
\(153\) 1.37416 + 4.82189i 0.111094 + 0.389826i
\(154\) 14.6688 12.3086i 1.18204 0.991852i
\(155\) 19.1049 + 9.59486i 1.53455 + 0.770678i
\(156\) −0.0233731 + 0.360138i −0.00187134 + 0.0288341i
\(157\) 19.5842 2.28906i 1.56299 0.182687i 0.709843 0.704360i \(-0.248766\pi\)
0.853145 + 0.521673i \(0.174692\pi\)
\(158\) −0.251636 + 4.32043i −0.0200191 + 0.343715i
\(159\) 2.47154 8.06058i 0.196006 0.639246i
\(160\) 2.56873 + 2.72269i 0.203076 + 0.215248i
\(161\) 31.8139 2.50729
\(162\) 8.96371 0.807367i 0.704256 0.0634328i
\(163\) 7.25041 0.567896 0.283948 0.958840i \(-0.408356\pi\)
0.283948 + 0.958840i \(0.408356\pi\)
\(164\) 3.43214 + 3.63786i 0.268005 + 0.284069i
\(165\) 23.2570 + 24.9808i 1.81055 + 1.94475i
\(166\) 0.831307 14.2730i 0.0645219 1.10780i
\(167\) 18.7077 2.18662i 1.44764 0.169205i 0.644324 0.764753i \(-0.277139\pi\)
0.803320 + 0.595547i \(0.203065\pi\)
\(168\) −5.64867 + 2.79011i −0.435804 + 0.215262i
\(169\) −11.5784 5.81490i −0.890648 0.447300i
\(170\) 4.79233 4.02124i 0.367555 0.308415i
\(171\) 2.90550 + 4.01281i 0.222189 + 0.306867i
\(172\) −0.802126 0.673063i −0.0611615 0.0513206i
\(173\) 1.82769 + 4.23707i 0.138957 + 0.322138i 0.973457 0.228869i \(-0.0735028\pi\)
−0.834500 + 0.551007i \(0.814244\pi\)
\(174\) −1.00531 + 0.832258i −0.0762124 + 0.0630933i
\(175\) −31.8946 7.55917i −2.41101 0.571419i
\(176\) −1.50984 5.04323i −0.113809 0.380148i
\(177\) 3.73357 20.3827i 0.280632 1.53206i
\(178\) 0.514681 + 0.0601575i 0.0385769 + 0.00450900i
\(179\) 4.34713 24.6538i 0.324920 1.84271i −0.185320 0.982678i \(-0.559332\pi\)
0.510240 0.860032i \(-0.329557\pi\)
\(180\) −5.48529 9.79869i −0.408850 0.730351i
\(181\) 2.73733 + 15.5241i 0.203464 + 1.15390i 0.899839 + 0.436223i \(0.143684\pi\)
−0.696375 + 0.717678i \(0.745205\pi\)
\(182\) 0.0440680 + 0.756619i 0.00326654 + 0.0560843i
\(183\) −1.03363 3.53779i −0.0764081 0.261521i
\(184\) 3.46424 8.03101i 0.255387 0.592054i
\(185\) −18.3491 + 9.21528i −1.34905 + 0.677521i
\(186\) 3.85790 + 9.10924i 0.282875 + 0.667922i
\(187\) −8.56116 + 2.02903i −0.626054 + 0.148378i
\(188\) 2.71958 + 4.71046i 0.198346 + 0.343545i
\(189\) 18.4741 3.99203i 1.34379 0.290377i
\(190\) 3.09078 5.35338i 0.224228 0.388375i
\(191\) −0.382243 + 1.27678i −0.0276581 + 0.0923845i −0.970704 0.240277i \(-0.922762\pi\)
0.943046 + 0.332662i \(0.107947\pi\)
\(192\) 0.0892405 + 1.72975i 0.00644038 + 0.124834i
\(193\) −11.1785 7.35219i −0.804644 0.529222i 0.0792808 0.996852i \(-0.474738\pi\)
−0.883924 + 0.467630i \(0.845108\pi\)
\(194\) 1.11117 + 1.49256i 0.0797774 + 0.107160i
\(195\) −1.34277 + 0.147928i −0.0961580 + 0.0105933i
\(196\) −5.20569 + 3.42384i −0.371835 + 0.244560i
\(197\) −24.7068 8.99252i −1.76028 0.640691i −0.760323 0.649545i \(-0.774959\pi\)
−0.999961 + 0.00885463i \(0.997181\pi\)
\(198\) 0.709097 + 15.7772i 0.0503934 + 1.12124i
\(199\) −2.18009 + 0.793488i −0.154542 + 0.0562489i −0.418133 0.908386i \(-0.637315\pi\)
0.263591 + 0.964635i \(0.415093\pi\)
\(200\) −5.38124 + 7.22827i −0.380511 + 0.511116i
\(201\) −5.34886 9.40804i −0.377279 0.663592i
\(202\) −7.89336 + 8.36648i −0.555375 + 0.588663i
\(203\) −1.88085 + 1.99358i −0.132010 + 0.139922i
\(204\) 2.89470 + 0.0191972i 0.202669 + 0.00134408i
\(205\) −11.1794 + 15.0166i −0.780804 + 1.04880i
\(206\) −13.9678 + 5.08387i −0.973184 + 0.354210i
\(207\) −15.9466 + 20.8372i −1.10836 + 1.44829i
\(208\) 0.195797 + 0.0712644i 0.0135761 + 0.00494130i
\(209\) −7.26347 + 4.77726i −0.502425 + 0.330450i
\(210\) −13.9569 19.0092i −0.963114 1.31176i
\(211\) −5.83455 7.83716i −0.401667 0.539532i 0.554566 0.832140i \(-0.312884\pi\)
−0.956233 + 0.292608i \(0.905477\pi\)
\(212\) −4.06685 2.67481i −0.279312 0.183706i
\(213\) 3.98007 + 2.03203i 0.272710 + 0.139232i
\(214\) −0.733854 + 2.45124i −0.0501653 + 0.167564i
\(215\) 1.95974 3.39438i 0.133653 0.231495i
\(216\) 1.00393 5.09825i 0.0683085 0.346892i
\(217\) 10.3874 + 17.9915i 0.705144 + 1.22134i
\(218\) −10.4815 + 2.48416i −0.709897 + 0.168249i
\(219\) 5.83880 7.73524i 0.394549 0.522699i
\(220\) 17.6095 8.84384i 1.18723 0.596252i
\(221\) 0.137929 0.319755i 0.00927811 0.0215091i
\(222\) −9.23031 2.25238i −0.619498 0.151170i
\(223\) −0.340442 5.84516i −0.0227977 0.391421i −0.990335 0.138694i \(-0.955710\pi\)
0.967538 0.252727i \(-0.0813274\pi\)
\(224\) 0.631629 + 3.58215i 0.0422025 + 0.239342i
\(225\) 20.9381 17.1011i 1.39587 1.14007i
\(226\) 2.14308 12.1540i 0.142555 0.808471i
\(227\) −7.48001 0.874287i −0.496465 0.0580285i −0.135824 0.990733i \(-0.543368\pi\)
−0.360642 + 0.932705i \(0.617442\pi\)
\(228\) 2.69427 0.960446i 0.178432 0.0636071i
\(229\) −3.23898 10.8190i −0.214038 0.714937i −0.995816 0.0913799i \(-0.970872\pi\)
0.781778 0.623557i \(-0.214313\pi\)
\(230\) 31.8566 + 7.55015i 2.10056 + 0.497842i
\(231\) 5.54257 + 32.7002i 0.364675 + 2.15151i
\(232\) 0.298448 + 0.691879i 0.0195940 + 0.0454241i
\(233\) 5.82577 + 4.88840i 0.381659 + 0.320250i 0.813353 0.581770i \(-0.197640\pi\)
−0.431694 + 0.902020i \(0.642084\pi\)
\(234\) −0.517653 0.350389i −0.0338400 0.0229056i
\(235\) −15.5965 + 13.0870i −1.01740 + 0.853703i
\(236\) −10.6912 5.36933i −0.695939 0.349514i
\(237\) −6.23527 4.16050i −0.405024 0.270253i
\(238\) 6.03806 0.705748i 0.391389 0.0457468i
\(239\) 1.11084 19.0723i 0.0718541 1.23369i −0.749008 0.662561i \(-0.769470\pi\)
0.820862 0.571126i \(-0.193493\pi\)
\(240\) −6.31840 + 1.45330i −0.407851 + 0.0938102i
\(241\) 4.44457 + 4.71097i 0.286300 + 0.303460i 0.854522 0.519415i \(-0.173850\pi\)
−0.568222 + 0.822875i \(0.692369\pi\)
\(242\) −16.7138 −1.07440
\(243\) −6.64541 + 14.1010i −0.426303 + 0.904580i
\(244\) −2.12794 −0.136227
\(245\) −16.0050 16.9643i −1.02252 1.08381i
\(246\) −8.44217 + 1.94179i −0.538253 + 0.123804i
\(247\) 0.0200073 0.343512i 0.00127303 0.0218571i
\(248\) 5.67282 0.663058i 0.360224 0.0421042i
\(249\) 20.5989 + 13.7446i 1.30540 + 0.871031i
\(250\) −13.4183 6.73893i −0.848648 0.426207i
\(251\) −6.01053 + 5.04343i −0.379381 + 0.318339i −0.812459 0.583018i \(-0.801872\pi\)
0.433078 + 0.901356i \(0.357427\pi\)
\(252\) 0.778919 10.8844i 0.0490673 0.685652i
\(253\) −35.2718 29.5965i −2.21752 1.86072i
\(254\) 7.26726 + 16.8474i 0.455989 + 1.05710i
\(255\) 1.81078 + 10.6832i 0.113395 + 0.669011i
\(256\) 0.973045 + 0.230616i 0.0608153 + 0.0144135i
\(257\) 3.31564 + 11.0750i 0.206824 + 0.690839i 0.996960 + 0.0779088i \(0.0248243\pi\)
−0.790137 + 0.612931i \(0.789991\pi\)
\(258\) 1.70833 0.608983i 0.106356 0.0379136i
\(259\) −19.8180 2.31640i −1.23143 0.143934i
\(260\) −0.135435 + 0.768092i −0.00839935 + 0.0476351i
\(261\) −0.362973 2.23118i −0.0224675 0.138106i
\(262\) −0.0344461 0.195354i −0.00212809 0.0120690i
\(263\) 0.419053 + 7.19487i 0.0258399 + 0.443655i 0.986271 + 0.165136i \(0.0528063\pi\)
−0.960431 + 0.278519i \(0.910157\pi\)
\(264\) 8.85827 + 2.16159i 0.545189 + 0.133037i
\(265\) 7.21674 16.7303i 0.443321 1.02773i
\(266\) 5.36793 2.69588i 0.329129 0.165295i
\(267\) −0.540725 + 0.716353i −0.0330918 + 0.0438401i
\(268\) −6.07982 + 1.44094i −0.371384 + 0.0880196i
\(269\) 10.8367 + 18.7696i 0.660723 + 1.14441i 0.980426 + 0.196888i \(0.0630834\pi\)
−0.319703 + 0.947518i \(0.603583\pi\)
\(270\) 19.4463 + 0.386941i 1.18346 + 0.0235485i
\(271\) 10.7244 18.5753i 0.651463 1.12837i −0.331305 0.943524i \(-0.607489\pi\)
0.982768 0.184844i \(-0.0591779\pi\)
\(272\) 0.479332 1.60108i 0.0290637 0.0970797i
\(273\) −1.16916 0.596916i −0.0707608 0.0361270i
\(274\) −3.69171 2.42808i −0.223024 0.146686i
\(275\) 28.3290 + 38.0524i 1.70830 + 2.29465i
\(276\) 8.96561 + 12.2111i 0.539666 + 0.735024i
\(277\) −10.0441 + 6.60609i −0.603490 + 0.396922i −0.814164 0.580635i \(-0.802804\pi\)
0.210674 + 0.977556i \(0.432434\pi\)
\(278\) −1.16138 0.422707i −0.0696548 0.0253523i
\(279\) −16.9906 2.21472i −1.01720 0.132592i
\(280\) −12.7944 + 4.65677i −0.764609 + 0.278295i
\(281\) −5.53844 + 7.43941i −0.330395 + 0.443798i −0.936017 0.351955i \(-0.885517\pi\)
0.605622 + 0.795753i \(0.292925\pi\)
\(282\) −9.42070 0.0624768i −0.560995 0.00372044i
\(283\) 16.3804 17.3622i 0.973714 1.03208i −0.0257605 0.999668i \(-0.508201\pi\)
0.999475 0.0324087i \(-0.0103178\pi\)
\(284\) 1.77054 1.87667i 0.105063 0.111360i
\(285\) 5.29177 + 9.30762i 0.313457 + 0.551336i
\(286\) 0.655026 0.879852i 0.0387325 0.0520268i
\(287\) −17.0949 + 6.22202i −1.00908 + 0.367274i
\(288\) −2.66280 1.38184i −0.156907 0.0814255i
\(289\) 13.3500 + 4.85901i 0.785295 + 0.285824i
\(290\) −2.35649 + 1.54989i −0.138378 + 0.0910127i
\(291\) −3.20356 + 0.352923i −0.187796 + 0.0206887i
\(292\) −3.34134 4.48820i −0.195537 0.262652i
\(293\) −11.4171 7.50914i −0.666994 0.438689i 0.170337 0.985386i \(-0.445515\pi\)
−0.837330 + 0.546697i \(0.815885\pi\)
\(294\) −0.556033 10.7776i −0.0324285 0.628562i
\(295\) 12.8438 42.9013i 0.747795 2.49781i
\(296\) −2.74274 + 4.75057i −0.159419 + 0.276121i
\(297\) −24.1959 12.7606i −1.40399 0.740444i
\(298\) 4.02932 + 6.97898i 0.233412 + 0.404282i
\(299\) 1.77329 0.420277i 0.102552 0.0243052i
\(300\) −6.08692 14.3724i −0.351429 0.829792i
\(301\) 3.40361 1.70935i 0.196181 0.0985256i
\(302\) −2.94676 + 6.83136i −0.169567 + 0.393101i
\(303\) −5.58717 19.1231i −0.320974 1.09859i
\(304\) −0.0960213 1.64862i −0.00550720 0.0945549i
\(305\) −1.38315 7.84424i −0.0791990 0.449160i
\(306\) −2.56431 + 4.30851i −0.146592 + 0.246301i
\(307\) −2.34246 + 13.2847i −0.133691 + 0.758201i 0.842071 + 0.539367i \(0.181336\pi\)
−0.975762 + 0.218834i \(0.929775\pi\)
\(308\) 19.0192 + 2.22303i 1.08372 + 0.126669i
\(309\) 4.63873 25.3243i 0.263888 1.44065i
\(310\) 6.13156 + 20.4808i 0.348249 + 1.16323i
\(311\) −5.74747 1.36218i −0.325909 0.0772419i 0.0644043 0.997924i \(-0.479485\pi\)
−0.390314 + 0.920682i \(0.627633\pi\)
\(312\) −0.277994 + 0.230141i −0.0157383 + 0.0130291i
\(313\) 3.49181 + 8.09493i 0.197369 + 0.457552i 0.987944 0.154813i \(-0.0494775\pi\)
−0.790575 + 0.612365i \(0.790218\pi\)
\(314\) 15.1045 + 12.6742i 0.852395 + 0.715245i
\(315\) 40.6296 4.20347i 2.28922 0.236839i
\(316\) −3.31525 + 2.78182i −0.186497 + 0.156490i
\(317\) −6.52805 3.27851i −0.366652 0.184139i 0.255928 0.966696i \(-0.417619\pi\)
−0.622580 + 0.782556i \(0.713915\pi\)
\(318\) 7.55913 3.73377i 0.423895 0.209379i
\(319\) 3.93991 0.460510i 0.220593 0.0257836i
\(320\) −0.217647 + 3.73685i −0.0121668 + 0.208896i
\(321\) −3.01989 3.24372i −0.168554 0.181047i
\(322\) 21.8320 + 23.1406i 1.21665 + 1.28958i
\(323\) −2.76000 −0.153570
\(324\) 6.73853 + 5.96592i 0.374363 + 0.331440i
\(325\) −1.87765 −0.104153
\(326\) 4.97554 + 5.27376i 0.275569 + 0.292087i
\(327\) 5.46942 17.8377i 0.302460 0.986428i
\(328\) −0.290803 + 4.99290i −0.0160569 + 0.275687i
\(329\) −19.6507 + 2.29683i −1.08338 + 0.126629i
\(330\) −2.21046 + 34.0594i −0.121682 + 1.87491i
\(331\) −28.6172 14.3721i −1.57294 0.789962i −0.573374 0.819294i \(-0.694366\pi\)
−0.999570 + 0.0293318i \(0.990662\pi\)
\(332\) 10.9523 9.19005i 0.601084 0.504369i
\(333\) 11.4509 11.8192i 0.627504 0.647686i
\(334\) 14.4285 + 12.1069i 0.789491 + 0.662462i
\(335\) −9.26363 21.4755i −0.506126 1.17333i
\(336\) −5.90581 2.19400i −0.322188 0.119692i
\(337\) 25.2820 + 5.99194i 1.37720 + 0.326402i 0.851538 0.524293i \(-0.175670\pi\)
0.525660 + 0.850695i \(0.323819\pi\)
\(338\) −3.71599 12.4123i −0.202123 0.675139i
\(339\) 16.2835 + 13.8486i 0.884401 + 0.752151i
\(340\) 6.21365 + 0.726271i 0.336982 + 0.0393876i
\(341\) 5.22112 29.6104i 0.282740 1.60350i
\(342\) −0.924931 + 4.86714i −0.0500145 + 0.263185i
\(343\) 0.485898 + 2.75566i 0.0262360 + 0.148792i
\(344\) −0.0608835 1.04533i −0.00328262 0.0563604i
\(345\) −39.1865 + 40.9873i −2.10973 + 2.20668i
\(346\) −1.82769 + 4.23707i −0.0982573 + 0.227786i
\(347\) 11.6904 5.87112i 0.627571 0.315178i −0.106436 0.994320i \(-0.533944\pi\)
0.734007 + 0.679142i \(0.237648\pi\)
\(348\) −1.29525 0.160107i −0.0694326 0.00858263i
\(349\) −19.4854 + 4.61812i −1.04303 + 0.247202i −0.716210 0.697885i \(-0.754125\pi\)
−0.326819 + 0.945087i \(0.605977\pi\)
\(350\) −16.3891 28.3867i −0.876034 1.51733i
\(351\) 0.976999 0.466565i 0.0521484 0.0249034i
\(352\) 2.63219 4.55909i 0.140296 0.243001i
\(353\) −8.35199 + 27.8976i −0.444532 + 1.48484i 0.383173 + 0.923676i \(0.374831\pi\)
−0.827705 + 0.561163i \(0.810354\pi\)
\(354\) 17.3880 11.2718i 0.924162 0.599089i
\(355\) 8.06884 + 5.30696i 0.428249 + 0.281664i
\(356\) 0.309438 + 0.415648i 0.0164002 + 0.0220293i
\(357\) −4.23451 + 9.64041i −0.224114 + 0.510225i
\(358\) 20.9157 13.7565i 1.10543 0.727052i
\(359\) 14.6096 + 5.31744i 0.771063 + 0.280644i 0.697441 0.716642i \(-0.254322\pi\)
0.0736220 + 0.997286i \(0.476544\pi\)
\(360\) 3.36307 10.7141i 0.177249 0.564684i
\(361\) 15.2915 5.56563i 0.804813 0.292928i
\(362\) −9.41339 + 12.6444i −0.494757 + 0.664574i
\(363\) 14.6405 24.9741i 0.768427 1.31080i
\(364\) −0.520103 + 0.551277i −0.0272608 + 0.0288948i
\(365\) 14.3731 15.2345i 0.752320 0.797413i
\(366\) 1.86397 3.17961i 0.0974314 0.166201i
\(367\) −5.51820 + 7.41223i −0.288048 + 0.386915i −0.922468 0.386073i \(-0.873831\pi\)
0.634421 + 0.772988i \(0.281239\pi\)
\(368\) 8.21885 2.99142i 0.428437 0.155938i
\(369\) 4.49348 14.3154i 0.233921 0.745231i
\(370\) −19.2949 7.02276i −1.00309 0.365096i
\(371\) 14.7928 9.72936i 0.768002 0.505123i
\(372\) −3.97837 + 9.05727i −0.206269 + 0.469598i
\(373\) 20.1084 + 27.0103i 1.04117 + 1.39854i 0.913555 + 0.406716i \(0.133326\pi\)
0.127619 + 0.991823i \(0.459266\pi\)
\(374\) −7.35089 4.83476i −0.380106 0.249999i
\(375\) 21.8233 14.1470i 1.12695 0.730546i
\(376\) −1.55997 + 5.21066i −0.0804493 + 0.268719i
\(377\) −0.0785012 + 0.135968i −0.00404302 + 0.00700271i
\(378\) 15.5814 + 10.6981i 0.801421 + 0.550251i
\(379\) 0.117576 + 0.203648i 0.00603950 + 0.0104607i 0.869029 0.494761i \(-0.164744\pi\)
−0.862990 + 0.505221i \(0.831411\pi\)
\(380\) 6.01493 1.42556i 0.308559 0.0731299i
\(381\) −31.5396 3.89864i −1.61582 0.199733i
\(382\) −1.19101 + 0.598146i −0.0609372 + 0.0306038i
\(383\) 5.82441 13.5025i 0.297614 0.689946i −0.702142 0.712037i \(-0.747773\pi\)
0.999756 + 0.0220908i \(0.00703228\pi\)
\(384\) −1.19693 + 1.25194i −0.0610808 + 0.0638877i
\(385\) 4.16766 + 71.5559i 0.212403 + 3.64683i
\(386\) −2.32334 13.1763i −0.118255 0.670656i
\(387\) −0.586464 + 3.08607i −0.0298116 + 0.156874i
\(388\) −0.323118 + 1.83249i −0.0164038 + 0.0930308i
\(389\) −21.2249 2.48083i −1.07614 0.125783i −0.440490 0.897757i \(-0.645195\pi\)
−0.635654 + 0.771974i \(0.719269\pi\)
\(390\) −1.02907 0.875184i −0.0521088 0.0443167i
\(391\) −4.19239 14.0035i −0.212018 0.708190i
\(392\) −6.06277 1.43690i −0.306216 0.0725746i
\(393\) 0.322075 + 0.119651i 0.0162465 + 0.00603557i
\(394\) −10.4139 24.1421i −0.524644 1.21626i
\(395\) −12.4096 10.4129i −0.624394 0.523929i
\(396\) −10.9893 + 11.3428i −0.552235 + 0.569996i
\(397\) −17.7928 + 14.9299i −0.892995 + 0.749311i −0.968809 0.247811i \(-0.920289\pi\)
0.0758139 + 0.997122i \(0.475845\pi\)
\(398\) −2.07323 1.04122i −0.103922 0.0521914i
\(399\) −0.673818 + 10.3824i −0.0337331 + 0.519768i
\(400\) −8.95048 + 1.04616i −0.447524 + 0.0523081i
\(401\) −0.933075 + 16.0203i −0.0465955 + 0.800014i 0.891368 + 0.453280i \(0.149746\pi\)
−0.937964 + 0.346734i \(0.887291\pi\)
\(402\) 3.17255 10.3468i 0.158232 0.516052i
\(403\) 0.816664 + 0.865613i 0.0406809 + 0.0431193i
\(404\) −11.5023 −0.572261
\(405\) −17.6122 + 28.7182i −0.875159 + 1.42702i
\(406\) −2.74080 −0.136024
\(407\) 19.8171 + 21.0049i 0.982298 + 1.04117i
\(408\) 1.97250 + 2.11870i 0.0976532 + 0.104891i
\(409\) −0.205707 + 3.53186i −0.0101716 + 0.174639i 0.989396 + 0.145242i \(0.0463959\pi\)
−0.999568 + 0.0293976i \(0.990641\pi\)
\(410\) −18.5944 + 2.17338i −0.918313 + 0.107335i
\(411\) 6.86186 3.38936i 0.338471 0.167185i
\(412\) −13.2832 6.67106i −0.654415 0.328659i
\(413\) 33.3360 27.9723i 1.64036 1.37642i
\(414\) −26.0996 + 2.70023i −1.28273 + 0.132709i
\(415\) 40.9964 + 34.4000i 2.01243 + 1.68863i
\(416\) 0.0825284 + 0.191322i 0.00404629 + 0.00938035i
\(417\) 1.64893 1.36509i 0.0807485 0.0668485i
\(418\) −8.45935 2.00490i −0.413761 0.0980630i
\(419\) 8.97055 + 29.9637i 0.438240 + 1.46382i 0.837221 + 0.546865i \(0.184179\pi\)
−0.398981 + 0.916959i \(0.630636\pi\)
\(420\) 4.24902 23.1968i 0.207331 1.13189i
\(421\) −17.7199 2.07115i −0.863613 0.100942i −0.327259 0.944935i \(-0.606125\pi\)
−0.536354 + 0.843993i \(0.680199\pi\)
\(422\) 1.69663 9.62208i 0.0825907 0.468395i
\(423\) 8.34546 14.0219i 0.405770 0.681769i
\(424\) −0.845255 4.79368i −0.0410492 0.232802i
\(425\) 0.875701 + 15.0352i 0.0424778 + 0.729315i
\(426\) 1.25325 + 4.28947i 0.0607200 + 0.207825i
\(427\) 3.06572 7.10714i 0.148361 0.343939i
\(428\) −2.28657 + 1.14836i −0.110526 + 0.0555081i
\(429\) 0.740924 + 1.74947i 0.0357721 + 0.0844650i
\(430\) 3.81384 0.903896i 0.183920 0.0435898i
\(431\) −9.13617 15.8243i −0.440074 0.762230i 0.557621 0.830096i \(-0.311714\pi\)
−0.997694 + 0.0678655i \(0.978381\pi\)
\(432\) 4.39727 2.76840i 0.211564 0.133195i
\(433\) 14.1667 24.5374i 0.680806 1.17919i −0.293929 0.955827i \(-0.594963\pi\)
0.974735 0.223363i \(-0.0717037\pi\)
\(434\) −5.95829 + 19.9021i −0.286007 + 0.955330i
\(435\) −0.251703 4.87876i −0.0120682 0.233919i
\(436\) −8.99976 5.91923i −0.431010 0.283480i
\(437\) −8.62524 11.5857i −0.412601 0.554220i
\(438\) 9.63323 1.06125i 0.460294 0.0507087i
\(439\) −2.64602 + 1.74031i −0.126287 + 0.0830605i −0.611081 0.791568i \(-0.709265\pi\)
0.484794 + 0.874629i \(0.338895\pi\)
\(440\) 18.5172 + 6.73970i 0.882772 + 0.321303i
\(441\) 16.5912 + 8.60984i 0.790057 + 0.409992i
\(442\) 0.327234 0.119103i 0.0155649 0.00566518i
\(443\) −19.0944 + 25.6482i −0.907200 + 1.21858i 0.0680955 + 0.997679i \(0.478308\pi\)
−0.975296 + 0.220903i \(0.929100\pi\)
\(444\) −4.69590 8.25956i −0.222858 0.391981i
\(445\) −1.33107 + 1.41086i −0.0630990 + 0.0668810i
\(446\) 4.01799 4.25882i 0.190257 0.201661i
\(447\) −13.9577 0.0925653i −0.660175 0.00437819i
\(448\) −2.17211 + 2.91765i −0.102622 + 0.137846i
\(449\) −2.30646 + 0.839483i −0.108849 + 0.0396177i −0.395870 0.918306i \(-0.629557\pi\)
0.287022 + 0.957924i \(0.407335\pi\)
\(450\) 26.8075 + 3.49434i 1.26372 + 0.164725i
\(451\) 24.7413 + 9.00508i 1.16502 + 0.424033i
\(452\) 10.3112 6.78176i 0.484996 0.318987i
\(453\) −7.62635 10.3871i −0.358317 0.488027i
\(454\) −4.49716 6.04073i −0.211062 0.283506i
\(455\) −2.37025 1.55894i −0.111119 0.0730841i
\(456\) 2.54752 + 1.30064i 0.119299 + 0.0609080i
\(457\) 6.35184 21.2166i 0.297126 0.992471i −0.670884 0.741562i \(-0.734085\pi\)
0.968011 0.250909i \(-0.0807295\pi\)
\(458\) 5.64670 9.78037i 0.263853 0.457007i
\(459\) −4.19166 7.60570i −0.195650 0.355004i
\(460\) 16.3695 + 28.3529i 0.763233 + 1.32196i
\(461\) 8.12571 1.92583i 0.378452 0.0896948i −0.0369870 0.999316i \(-0.511776\pi\)
0.415439 + 0.909621i \(0.363628\pi\)
\(462\) −19.9817 + 26.4717i −0.929632 + 1.23158i
\(463\) −21.8558 + 10.9764i −1.01572 + 0.510116i −0.877140 0.480235i \(-0.840552\pi\)
−0.138585 + 0.990351i \(0.544255\pi\)
\(464\) −0.298448 + 0.691879i −0.0138551 + 0.0321197i
\(465\) −35.9739 8.77834i −1.66825 0.407086i
\(466\) 0.442192 + 7.59214i 0.0204841 + 0.351699i
\(467\) −4.93682 27.9981i −0.228449 1.29560i −0.855982 0.517006i \(-0.827046\pi\)
0.627533 0.778590i \(-0.284065\pi\)
\(468\) −0.100371 0.616978i −0.00463967 0.0285198i
\(469\) 3.94657 22.3821i 0.182236 1.03351i
\(470\) −20.2221 2.36363i −0.932777 0.109026i
\(471\) −32.1689 + 11.4675i −1.48226 + 0.528394i
\(472\) −3.43125 11.4612i −0.157936 0.527543i
\(473\) −5.36376 1.27123i −0.246626 0.0584514i
\(474\) −1.25266 7.39047i −0.0575367 0.339456i
\(475\) 5.89430 + 13.6645i 0.270449 + 0.626971i
\(476\) 4.65691 + 3.90761i 0.213449 + 0.179105i
\(477\) −1.04236 + 14.5656i −0.0477264 + 0.666915i
\(478\) 14.6350 12.2802i 0.669390 0.561685i
\(479\) 14.1368 + 7.09975i 0.645926 + 0.324396i 0.741427 0.671033i \(-0.234149\pi\)
−0.0955017 + 0.995429i \(0.530446\pi\)
\(480\) −5.39304 3.59852i −0.246158 0.164249i
\(481\) −1.13525 + 0.132691i −0.0517627 + 0.00605020i
\(482\) −0.376586 + 6.46573i −0.0171530 + 0.294506i
\(483\) −53.7011 + 12.3518i −2.44348 + 0.562028i
\(484\) −11.4697 12.1572i −0.521350 0.552598i
\(485\) −6.96518 −0.316272
\(486\) −14.8171 + 4.84300i −0.672116 + 0.219683i
\(487\) 9.74171 0.441439 0.220720 0.975337i \(-0.429159\pi\)
0.220720 + 0.975337i \(0.429159\pi\)
\(488\) −1.46028 1.54780i −0.0661037 0.0700658i
\(489\) −12.2385 + 2.81499i −0.553445 + 0.127298i
\(490\) 1.35610 23.2833i 0.0612622 1.05183i
\(491\) 5.97315 0.698161i 0.269565 0.0315076i 0.0197632 0.999805i \(-0.493709\pi\)
0.249801 + 0.968297i \(0.419635\pi\)
\(492\) −7.20578 4.80807i −0.324862 0.216765i
\(493\) 1.12537 + 0.565183i 0.0506842 + 0.0254546i
\(494\) 0.263591 0.221179i 0.0118595 0.00995133i
\(495\) −48.9561 33.1374i −2.20041 1.48941i
\(496\) 4.37522 + 3.67124i 0.196453 + 0.164844i
\(497\) 3.71710 + 8.61721i 0.166735 + 0.386535i
\(498\) 4.13830 + 24.4152i 0.185442 + 1.09407i
\(499\) 9.43087 + 2.23516i 0.422184 + 0.100059i 0.436216 0.899842i \(-0.356318\pi\)
−0.0140319 + 0.999902i \(0.504467\pi\)
\(500\) −4.30648 14.3847i −0.192592 0.643301i
\(501\) −30.7292 + 10.9543i −1.37288 + 0.489400i
\(502\) −7.79314 0.910887i −0.347825 0.0406549i
\(503\) −6.11251 + 34.6658i −0.272543 + 1.54567i 0.474116 + 0.880463i \(0.342768\pi\)
−0.746659 + 0.665207i \(0.768343\pi\)
\(504\) 8.45154 6.90275i 0.376461 0.307473i
\(505\) −7.47647 42.4011i −0.332698 1.88683i
\(506\) −2.67722 45.9661i −0.119017 2.04344i
\(507\) 21.8017 + 5.32006i 0.968250 + 0.236272i
\(508\) −7.26726 + 16.8474i −0.322433 + 0.747483i
\(509\) 16.0863 8.07886i 0.713014 0.358089i −0.0550313 0.998485i \(-0.517526\pi\)
0.768045 + 0.640396i \(0.221230\pi\)
\(510\) −6.52808 + 8.64840i −0.289068 + 0.382957i
\(511\) 19.8041 4.69366i 0.876083 0.207635i
\(512\) 0.500000 + 0.866025i 0.0220971 + 0.0382733i
\(513\) −6.46240 5.64545i −0.285322 0.249253i
\(514\) −5.78033 + 10.0118i −0.254960 + 0.441603i
\(515\) 15.9576 53.3021i 0.703176 2.34877i
\(516\) 1.61529 + 0.824687i 0.0711090 + 0.0363048i
\(517\) 23.9233 + 15.7346i 1.05214 + 0.692006i
\(518\) −11.9151 16.0047i −0.523518 0.703207i
\(519\) −4.73015 6.44245i −0.207631 0.282792i
\(520\) −0.651631 + 0.428585i −0.0285759 + 0.0187947i
\(521\) −4.14562 1.50888i −0.181623 0.0661054i 0.249608 0.968347i \(-0.419698\pi\)
−0.431231 + 0.902242i \(0.641921\pi\)
\(522\) 1.37381 1.79514i 0.0601302 0.0785714i
\(523\) −33.2656 + 12.1077i −1.45460 + 0.529432i −0.943873 0.330309i \(-0.892847\pi\)
−0.510730 + 0.859741i \(0.670625\pi\)
\(524\) 0.118457 0.159115i 0.00517481 0.00695097i
\(525\) 56.7722 + 0.376506i 2.47774 + 0.0164321i
\(526\) −4.94579 + 5.24223i −0.215646 + 0.228572i
\(527\) 6.55050 6.94313i 0.285344 0.302447i
\(528\) 4.50663 + 7.92664i 0.196126 + 0.344963i
\(529\) 31.9468 42.9120i 1.38899 1.86574i
\(530\) 17.1216 6.23175i 0.743715 0.270690i
\(531\) 1.61149 + 35.8551i 0.0699325 + 1.55598i
\(532\) 5.64461 + 2.05447i 0.244725 + 0.0890726i
\(533\) −0.870661 + 0.572643i −0.0377125 + 0.0248039i
\(534\) −0.892124 + 0.0982817i −0.0386060 + 0.00425307i
\(535\) −5.71948 7.68260i −0.247275 0.332148i
\(536\) −5.22033 3.43346i −0.225484 0.148303i
\(537\) 2.23406 + 43.3028i 0.0964067 + 1.86865i
\(538\) −6.21598 + 20.7628i −0.267990 + 0.895148i
\(539\) −16.4005 + 28.4064i −0.706418 + 1.22355i
\(540\) 13.0634 + 14.4103i 0.562160 + 0.620119i
\(541\) −12.5590 21.7529i −0.539955 0.935229i −0.998906 0.0467676i \(-0.985108\pi\)
0.458951 0.888462i \(-0.348225\pi\)
\(542\) 20.8707 4.94645i 0.896474 0.212468i
\(543\) −10.6478 25.1416i −0.456942 1.07893i
\(544\) 1.49352 0.750074i 0.0640341 0.0321591i
\(545\) 15.9704 37.0234i 0.684095 1.58591i
\(546\) −0.368145 1.26004i −0.0157552 0.0539249i
\(547\) −0.00653029 0.112121i −0.000279215 0.00479394i 0.998166 0.0605416i \(-0.0192828\pi\)
−0.998445 + 0.0557477i \(0.982246\pi\)
\(548\) −0.767287 4.35150i −0.0327769 0.185887i
\(549\) 3.11830 + 5.57039i 0.133086 + 0.237738i
\(550\) −8.23780 + 46.7189i −0.351261 + 1.99210i
\(551\) 1.23593 + 0.144460i 0.0526526 + 0.00615420i
\(552\) −2.72949 + 14.9011i −0.116175 + 0.634235i
\(553\) −4.51480 15.0805i −0.191989 0.641287i
\(554\) −11.6978 2.77242i −0.496990 0.117789i
\(555\) 27.3950 22.6793i 1.16285 0.962681i
\(556\) −0.489520 1.13483i −0.0207603 0.0481277i
\(557\) 25.6731 + 21.5423i 1.08780 + 0.912775i 0.996545 0.0830527i \(-0.0264670\pi\)
0.0912573 + 0.995827i \(0.470911\pi\)
\(558\) −10.0487 13.8783i −0.425396 0.587517i
\(559\) 0.167133 0.140242i 0.00706899 0.00593159i
\(560\) −12.1672 6.11061i −0.514159 0.258221i
\(561\) 13.6633 6.74885i 0.576863 0.284937i
\(562\) −9.21194 + 1.07672i −0.388582 + 0.0454187i
\(563\) −2.65296 + 45.5495i −0.111809 + 1.91968i 0.218549 + 0.975826i \(0.429868\pi\)
−0.330357 + 0.943856i \(0.607169\pi\)
\(564\) −6.41944 6.89525i −0.270307 0.290342i
\(565\) 31.7019 + 33.6021i 1.33371 + 1.41365i
\(566\) 23.8697 1.00332
\(567\) −29.6339 + 13.9111i −1.24451 + 0.584210i
\(568\) 2.58006 0.108257
\(569\) 3.01473 + 3.19543i 0.126384 + 0.133959i 0.787475 0.616346i \(-0.211388\pi\)
−0.661091 + 0.750306i \(0.729906\pi\)
\(570\) −3.13869 + 10.2364i −0.131465 + 0.428755i
\(571\) −2.32506 + 39.9197i −0.0973006 + 1.67059i 0.498071 + 0.867136i \(0.334042\pi\)
−0.595371 + 0.803451i \(0.702995\pi\)
\(572\) 1.08949 0.127343i 0.0455538 0.00532447i
\(573\) 0.149503 2.30358i 0.00624558 0.0962334i
\(574\) −16.2569 8.16455i −0.678552 0.340782i
\(575\) −60.3771 + 50.6624i −2.51790 + 2.11277i
\(576\) −0.822216 2.88513i −0.0342590 0.120214i
\(577\) −3.85975 3.23872i −0.160684 0.134830i 0.558901 0.829234i \(-0.311223\pi\)
−0.719584 + 0.694405i \(0.755668\pi\)
\(578\) 5.62702 + 13.0449i 0.234053 + 0.542596i
\(579\) 21.7235 + 8.07025i 0.902797 + 0.335388i
\(580\) −2.74447 0.650452i −0.113958 0.0270086i
\(581\) 14.9151 + 49.8199i 0.618783 + 2.06688i
\(582\) −2.45512 2.08799i −0.101768 0.0865500i
\(583\) −25.4518 2.97489i −1.05411 0.123207i
\(584\) 0.971631 5.51039i 0.0402064 0.228022i
\(585\) 2.20914 0.771035i 0.0913365 0.0318784i
\(586\) −2.37293 13.4576i −0.0980250 0.555927i
\(587\) −1.27552 21.8998i −0.0526463 0.903902i −0.916469 0.400106i \(-0.868973\pi\)
0.863823 0.503796i \(-0.168064\pi\)
\(588\) 7.45776 7.80048i 0.307553 0.321686i
\(589\) 3.73581 8.66058i 0.153931 0.356853i
\(590\) 40.0192 20.0984i 1.64756 0.827438i
\(591\) 45.1958 + 5.58669i 1.85911 + 0.229806i
\(592\) −5.33763 + 1.26504i −0.219375 + 0.0519929i
\(593\) 4.13250 + 7.15770i 0.169701 + 0.293931i 0.938315 0.345782i \(-0.112386\pi\)
−0.768614 + 0.639713i \(0.779053\pi\)
\(594\) −7.32249 26.3563i −0.300446 1.08141i
\(595\) −11.3777 + 19.7068i −0.466441 + 0.807899i
\(596\) −2.31124 + 7.72009i −0.0946722 + 0.316227i
\(597\) 3.37186 2.18581i 0.138001 0.0894594i
\(598\) 1.52260 + 1.00143i 0.0622638 + 0.0409515i
\(599\) −8.18252 10.9910i −0.334329 0.449081i 0.602890 0.797825i \(-0.294016\pi\)
−0.937218 + 0.348743i \(0.886609\pi\)
\(600\) 6.27701 14.2904i 0.256258 0.583404i
\(601\) 26.4263 17.3809i 1.07795 0.708980i 0.119098 0.992882i \(-0.462000\pi\)
0.958853 + 0.283902i \(0.0916292\pi\)
\(602\) 3.57904 + 1.30266i 0.145871 + 0.0530926i
\(603\) 12.6814 + 13.8038i 0.516428 + 0.562135i
\(604\) −6.99114 + 2.54457i −0.284465 + 0.103537i
\(605\) 37.3599 50.1830i 1.51889 2.04023i
\(606\) 10.0755 17.1870i 0.409289 0.698175i
\(607\) −0.851718 + 0.902768i −0.0345702 + 0.0366422i −0.744428 0.667703i \(-0.767278\pi\)
0.709858 + 0.704345i \(0.248759\pi\)
\(608\) 1.13327 1.20120i 0.0459602 0.0487149i
\(609\) 2.40081 4.09537i 0.0972859 0.165953i
\(610\) 4.75652 6.38911i 0.192586 0.258688i
\(611\) −1.06497 + 0.387619i −0.0430842 + 0.0156814i
\(612\) −4.89363 + 1.09147i −0.197813 + 0.0441200i
\(613\) −30.1068 10.9580i −1.21600 0.442589i −0.347221 0.937783i \(-0.612875\pi\)
−0.868782 + 0.495195i \(0.835097\pi\)
\(614\) −11.2705 + 7.41270i −0.454839 + 0.299152i
\(615\) 13.0403 29.6880i 0.525837 1.19714i
\(616\) 11.4348 + 15.3596i 0.460722 + 0.618857i
\(617\) −6.97735 4.58907i −0.280897 0.184749i 0.401240 0.915973i \(-0.368579\pi\)
−0.682138 + 0.731224i \(0.738950\pi\)
\(618\) 21.6035 14.0045i 0.869020 0.563343i
\(619\) −7.76825 + 25.9478i −0.312232 + 1.04293i 0.647512 + 0.762055i \(0.275809\pi\)
−0.959745 + 0.280874i \(0.909376\pi\)
\(620\) −10.6895 + 18.5147i −0.429300 + 0.743569i
\(621\) 18.8273 41.3640i 0.755515 1.65988i
\(622\) −2.95334 5.11534i −0.118418 0.205107i
\(623\) −1.83404 + 0.434676i −0.0734793 + 0.0174149i
\(624\) −0.358170 0.0442737i −0.0143383 0.00177237i
\(625\) 9.96269 5.00345i 0.398508 0.200138i
\(626\) −3.49181 + 8.09493i −0.139561 + 0.323538i
\(627\) 10.4058 10.8840i 0.415567 0.434664i
\(628\) 1.14647 + 19.6841i 0.0457492 + 0.785483i
\(629\) 1.59198 + 9.02857i 0.0634764 + 0.359992i
\(630\) 30.9392 + 26.6683i 1.23265 + 1.06249i
\(631\) 3.72186 21.1077i 0.148165 0.840284i −0.816607 0.577194i \(-0.804147\pi\)
0.964771 0.263089i \(-0.0847414\pi\)
\(632\) −4.29849 0.502421i −0.170985 0.0199852i
\(633\) 12.8914 + 10.9636i 0.512386 + 0.435766i
\(634\) −2.09512 6.99818i −0.0832078 0.277933i
\(635\) −66.8285 15.8387i −2.65201 0.628538i
\(636\) 7.90324 + 2.93604i 0.313384 + 0.116422i
\(637\) −0.514212 1.19208i −0.0203738 0.0472318i
\(638\) 3.03870 + 2.54977i 0.120303 + 0.100946i
\(639\) −7.50721 1.88474i −0.296981 0.0745593i
\(640\) −2.86744 + 2.40607i −0.113346 + 0.0951083i
\(641\) −14.0757 7.06906i −0.555955 0.279211i 0.148556 0.988904i \(-0.452537\pi\)
−0.704511 + 0.709693i \(0.748834\pi\)
\(642\) 0.287026 4.42256i 0.0113280 0.174545i
\(643\) 44.1265 5.15764i 1.74018 0.203398i 0.814099 0.580726i \(-0.197231\pi\)
0.926079 + 0.377329i \(0.123157\pi\)
\(644\) −1.84981 + 31.7601i −0.0728929 + 1.25152i
\(645\) −1.99012 + 6.49050i −0.0783610 + 0.255563i
\(646\) −1.89402 2.00755i −0.0745194 0.0789859i
\(647\) 18.9018 0.743108 0.371554 0.928411i \(-0.378825\pi\)
0.371554 + 0.928411i \(0.378825\pi\)
\(648\) 0.284808 + 8.99549i 0.0111883 + 0.353376i
\(649\) −62.9820 −2.47226
\(650\) −1.28852 1.36575i −0.0505399 0.0535691i
\(651\) −24.5190 26.3363i −0.960974 1.03220i
\(652\) −0.421574 + 7.23815i −0.0165101 + 0.283468i
\(653\) 19.0339 2.22475i 0.744856 0.0870611i 0.264805 0.964302i \(-0.414692\pi\)
0.480051 + 0.877241i \(0.340618\pi\)
\(654\) 16.7280 8.26268i 0.654118 0.323096i
\(655\) 0.663544 + 0.333245i 0.0259268 + 0.0130209i
\(656\) −3.83126 + 3.21481i −0.149586 + 0.125517i
\(657\) −6.85252 + 15.3238i −0.267342 + 0.597839i
\(658\) −15.1558 12.7172i −0.590833 0.495768i
\(659\) 0.654481 + 1.51726i 0.0254950 + 0.0591040i 0.930488 0.366323i \(-0.119383\pi\)
−0.904993 + 0.425427i \(0.860124\pi\)
\(660\) −26.2908 + 21.7651i −1.02337 + 0.847207i
\(661\) −41.3076 9.79007i −1.60668 0.380790i −0.673211 0.739451i \(-0.735085\pi\)
−0.933468 + 0.358661i \(0.883233\pi\)
\(662\) −9.18443 30.6781i −0.356963 1.19234i
\(663\) −0.108675 + 0.593290i −0.00422058 + 0.0230415i
\(664\) 14.2005 + 1.65980i 0.551086 + 0.0644128i
\(665\) −3.90445 + 22.1432i −0.151408 + 0.858677i
\(666\) 16.4550 + 0.218265i 0.637619 + 0.00845758i
\(667\) 1.14441 + 6.49026i 0.0443116 + 0.251304i
\(668\) 1.09516 + 18.8032i 0.0423730 + 0.727517i
\(669\) 2.84406 + 9.73430i 0.109958 + 0.376350i
\(670\) 9.26363 21.4755i 0.357885 0.829671i
\(671\) −10.0107 + 5.02757i −0.386460 + 0.194087i
\(672\) −2.45695 5.80134i −0.0947790 0.223792i
\(673\) 12.3539 2.92794i 0.476209 0.112864i 0.0144998 0.999895i \(-0.495384\pi\)
0.461710 + 0.887031i \(0.347236\pi\)
\(674\) 12.9912 + 22.5014i 0.500401 + 0.866720i
\(675\) −28.7034 + 36.9955i −1.10480 + 1.42396i
\(676\) 6.47829 11.2207i 0.249165 0.431567i
\(677\) −3.18713 + 10.6457i −0.122491 + 0.409149i −0.997137 0.0756130i \(-0.975909\pi\)
0.874646 + 0.484762i \(0.161094\pi\)
\(678\) 1.10136 + 21.3477i 0.0422975 + 0.819853i
\(679\) −5.65488 3.71927i −0.217014 0.142733i
\(680\) 3.73579 + 5.01804i 0.143261 + 0.192433i
\(681\) 12.9655 1.42836i 0.496839 0.0547348i
\(682\) 25.1208 16.5222i 0.961925 0.632668i
\(683\) −19.0189 6.92231i −0.727737 0.264875i −0.0485305 0.998822i \(-0.515454\pi\)
−0.679207 + 0.733947i \(0.737676\pi\)
\(684\) −4.17496 + 2.66726i −0.159633 + 0.101985i
\(685\) 15.5423 5.65692i 0.593840 0.216140i
\(686\) −1.67095 + 2.24448i −0.0637973 + 0.0856947i
\(687\) 9.66781 + 17.0046i 0.368850 + 0.648765i
\(688\) 0.718564 0.761633i 0.0273950 0.0290370i
\(689\) 0.696010 0.737728i 0.0265159 0.0281052i
\(690\) −56.7045 0.376056i −2.15870 0.0143162i
\(691\) 15.8395 21.2762i 0.602564 0.809384i −0.391269 0.920277i \(-0.627964\pi\)
0.993832 + 0.110893i \(0.0353711\pi\)
\(692\) −4.33617 + 1.57824i −0.164836 + 0.0599955i
\(693\) −22.0517 53.0451i −0.837673 2.01502i
\(694\) 12.2929 + 4.47425i 0.466632 + 0.169840i
\(695\) 3.86517 2.54216i 0.146614 0.0964297i
\(696\) −0.772396 1.05200i −0.0292776 0.0398760i
\(697\) 4.99149 + 6.70473i 0.189066 + 0.253960i
\(698\) −16.7308 11.0040i −0.633269 0.416508i
\(699\) −11.7317 5.98963i −0.443733 0.226549i
\(700\) 9.40089 31.4011i 0.355320 1.18685i
\(701\) −5.03336 + 8.71804i −0.190107 + 0.329276i −0.945286 0.326244i \(-0.894217\pi\)
0.755178 + 0.655520i \(0.227550\pi\)
\(702\) 1.00982 + 0.390467i 0.0381134 + 0.0147372i
\(703\) 4.52941 + 7.84517i 0.170830 + 0.295886i
\(704\) 5.12249 1.21405i 0.193061 0.0457563i
\(705\) 21.2454 28.1460i 0.800149 1.06004i
\(706\) −26.0235 + 13.0695i −0.979406 + 0.491876i
\(707\) 16.5714 38.4169i 0.623232 1.44481i
\(708\) 20.1312 + 4.91240i 0.756576 + 0.184619i
\(709\) 2.70801 + 46.4947i 0.101701 + 1.74614i 0.534962 + 0.844876i \(0.320326\pi\)
−0.433261 + 0.901269i \(0.642637\pi\)
\(710\) 1.67703 + 9.51092i 0.0629379 + 0.356938i
\(711\) 12.1403 + 4.60196i 0.455297 + 0.172587i
\(712\) −0.0899818 + 0.510312i −0.00337221 + 0.0191247i
\(713\) 49.6163 + 5.79931i 1.85814 + 0.217186i
\(714\) −9.91808 + 3.53558i −0.371175 + 0.132316i
\(715\) 1.17759 + 3.93342i 0.0440393 + 0.147102i
\(716\) 24.3593 + 5.77326i 0.910350 + 0.215757i
\(717\) 5.52982 + 32.6249i 0.206515 + 1.21840i
\(718\) 6.15792 + 14.2757i 0.229811 + 0.532763i
\(719\) −27.0503 22.6979i −1.00881 0.846490i −0.0206270 0.999787i \(-0.506566\pi\)
−0.988180 + 0.153298i \(0.951011\pi\)
\(720\) 10.1011 4.90627i 0.376444 0.182846i
\(721\) 41.4179 34.7538i 1.54248 1.29430i
\(722\) 14.5419 + 7.30323i 0.541195 + 0.271798i
\(723\) −9.33137 6.22638i −0.347037 0.231562i
\(724\) −15.6570 + 1.83005i −0.581889 + 0.0680131i
\(725\) 0.394811 6.77865i 0.0146629 0.251753i
\(726\) 28.2124 6.48917i 1.04706 0.240836i
\(727\) −4.09655 4.34209i −0.151933 0.161039i 0.646937 0.762544i \(-0.276050\pi\)
−0.798870 + 0.601504i \(0.794568\pi\)
\(728\) −0.757901 −0.0280897
\(729\) 5.74254 26.3823i 0.212686 0.977120i
\(730\) 20.9446 0.775194
\(731\) −1.20093 1.27291i −0.0444180 0.0470803i
\(732\) 3.59190 0.826177i 0.132760 0.0305364i
\(733\) 2.73945 47.0345i 0.101184 1.73726i −0.441447 0.897287i \(-0.645535\pi\)
0.542631 0.839971i \(-0.317428\pi\)
\(734\) −9.17828 + 1.07279i −0.338776 + 0.0395973i
\(735\) 33.6025 + 22.4214i 1.23945 + 0.827025i
\(736\) 7.81600 + 3.92534i 0.288101 + 0.144690i
\(737\) −25.1976 + 21.1433i −0.928166 + 0.778824i
\(738\) 13.4963 6.55539i 0.496805 0.241307i
\(739\) −9.19760 7.71770i −0.338339 0.283900i 0.457748 0.889082i \(-0.348656\pi\)
−0.796088 + 0.605182i \(0.793101\pi\)
\(740\) −8.13278 18.8539i −0.298967 0.693083i
\(741\) 0.0995977 + 0.587608i 0.00365881 + 0.0215863i
\(742\) 17.2283 + 4.08318i 0.632471 + 0.149898i
\(743\) 9.51664 + 31.7878i 0.349132 + 1.16618i 0.934664 + 0.355532i \(0.115700\pi\)
−0.585533 + 0.810649i \(0.699115\pi\)
\(744\) −9.31815 + 3.32171i −0.341620 + 0.121780i
\(745\) −29.9610 3.50194i −1.09769 0.128301i
\(746\) −5.84734 + 33.1619i −0.214086 + 1.21414i
\(747\) −40.1067 15.2030i −1.46743 0.556250i
\(748\) −1.52781 8.66466i −0.0558624 0.316811i
\(749\) −0.541164 9.29142i −0.0197737 0.339501i
\(750\) 25.2662 + 6.16545i 0.922590 + 0.225130i
\(751\) −14.2808 + 33.1067i −0.521115 + 1.20808i 0.431003 + 0.902351i \(0.358160\pi\)
−0.952118 + 0.305731i \(0.901099\pi\)
\(752\) −4.86062 + 2.44109i −0.177248 + 0.0890175i
\(753\) 8.18750 10.8468i 0.298369 0.395279i
\(754\) −0.152770 + 0.0362072i −0.00556357 + 0.00131859i
\(755\) −13.9243 24.1176i −0.506757 0.877729i
\(756\) 2.91110 + 18.6750i 0.105876 + 0.679203i
\(757\) −14.8811 + 25.7749i −0.540864 + 0.936804i 0.457990 + 0.888957i \(0.348569\pi\)
−0.998855 + 0.0478471i \(0.984764\pi\)
\(758\) −0.0674426 + 0.225274i −0.00244963 + 0.00818232i
\(759\) 71.0288 + 36.2638i 2.57818 + 1.31629i
\(760\) 5.16461 + 3.39682i 0.187340 + 0.123216i
\(761\) 32.1802 + 43.2255i 1.16653 + 1.56692i 0.755281 + 0.655401i \(0.227500\pi\)
0.411250 + 0.911522i \(0.365092\pi\)
\(762\) −18.8080 25.6165i −0.681342 0.927987i
\(763\) 32.7358 21.5307i 1.18511 0.779462i
\(764\) −1.25239 0.455834i −0.0453100 0.0164915i
\(765\) −7.20434 17.3300i −0.260474 0.626568i
\(766\) 13.8183 5.02946i 0.499276 0.181722i
\(767\) 1.48860 1.99954i 0.0537503 0.0721992i
\(768\) −1.73201 0.0114865i −0.0624986 0.000414482i