Properties

Label 162.2.e.a.73.1
Level $162$
Weight $2$
Character 162.73
Analytic conductor $1.294$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(19,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 73.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 162.73
Dual form 162.2.e.a.91.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 - 0.984808i) q^{2} +(-0.939693 - 0.342020i) q^{4} +(0.673648 - 0.565258i) q^{5} +(3.31908 - 1.20805i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.439693 - 0.761570i) q^{10} +(-2.73783 - 2.29731i) q^{11} +(-0.641559 - 3.63846i) q^{13} +(-0.613341 - 3.47843i) q^{14} +(0.766044 + 0.642788i) q^{16} +(3.12449 + 5.41177i) q^{17} +(-2.08512 + 3.61154i) q^{19} +(-0.826352 + 0.300767i) q^{20} +(-2.73783 + 2.29731i) q^{22} +(1.93969 + 0.705990i) q^{23} +(-0.733956 + 4.16247i) q^{25} -3.69459 q^{26} -3.53209 q^{28} +(-0.0282185 + 0.160035i) q^{29} +(-1.53936 - 0.560282i) q^{31} +(0.766044 - 0.642788i) q^{32} +(5.87211 - 2.13727i) q^{34} +(1.55303 - 2.68993i) q^{35} +(3.85844 + 6.68302i) q^{37} +(3.19459 + 2.68058i) q^{38} +(0.152704 + 0.866025i) q^{40} +(1.33750 + 7.58532i) q^{41} +(-8.29086 - 6.95686i) q^{43} +(1.78699 + 3.09516i) q^{44} +(1.03209 - 1.78763i) q^{46} +(-6.02481 + 2.19285i) q^{47} +(4.19459 - 3.51968i) q^{49} +(3.97178 + 1.44561i) q^{50} +(-0.641559 + 3.63846i) q^{52} -0.716881 q^{53} -3.14290 q^{55} +(-0.613341 + 3.47843i) q^{56} +(0.152704 + 0.0555796i) q^{58} +(5.35117 - 4.49016i) q^{59} +(1.19207 - 0.433877i) q^{61} +(-0.819078 + 1.41868i) q^{62} +(-0.500000 - 0.866025i) q^{64} +(-2.48886 - 2.08840i) q^{65} +(0.624485 + 3.54163i) q^{67} +(-1.08512 - 6.15403i) q^{68} +(-2.37939 - 1.99654i) q^{70} +(-6.76991 - 11.7258i) q^{71} +(1.16385 - 2.01584i) q^{73} +(7.25150 - 2.63933i) q^{74} +(3.19459 - 2.68058i) q^{76} +(-11.8623 - 4.31753i) q^{77} +(-1.14930 + 6.51800i) q^{79} +0.879385 q^{80} +7.70233 q^{82} +(0.773318 - 4.38571i) q^{83} +(5.16385 + 1.87949i) q^{85} +(-8.29086 + 6.95686i) q^{86} +(3.35844 - 1.22237i) q^{88} +(4.62449 - 8.00984i) q^{89} +(-6.52481 - 11.3013i) q^{91} +(-1.58125 - 1.32683i) q^{92} +(1.11334 + 6.31407i) q^{94} +(0.636812 + 3.61154i) q^{95} +(-8.64930 - 7.25762i) q^{97} +(-2.73783 - 4.74205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} - 3 q^{8} + 3 q^{10} + 3 q^{11} - 12 q^{13} + 3 q^{14} + 6 q^{17} + 9 q^{19} - 6 q^{20} + 3 q^{22} + 6 q^{23} - 9 q^{25} - 18 q^{26} - 12 q^{28} - 15 q^{29} - 18 q^{31} + 6 q^{34}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 0.984808i 0.122788 0.696364i
\(3\) 0 0
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) 0.673648 0.565258i 0.301265 0.252791i −0.479606 0.877484i \(-0.659220\pi\)
0.780870 + 0.624693i \(0.214776\pi\)
\(6\) 0 0
\(7\) 3.31908 1.20805i 1.25449 0.456598i 0.372576 0.928002i \(-0.378475\pi\)
0.881918 + 0.471403i \(0.156252\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 0 0
\(10\) −0.439693 0.761570i −0.139043 0.240830i
\(11\) −2.73783 2.29731i −0.825486 0.692665i 0.128764 0.991675i \(-0.458899\pi\)
−0.954250 + 0.299011i \(0.903343\pi\)
\(12\) 0 0
\(13\) −0.641559 3.63846i −0.177937 1.00913i −0.934700 0.355439i \(-0.884331\pi\)
0.756763 0.653689i \(-0.226780\pi\)
\(14\) −0.613341 3.47843i −0.163922 0.929649i
\(15\) 0 0
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) 3.12449 + 5.41177i 0.757799 + 1.31255i 0.943971 + 0.330029i \(0.107059\pi\)
−0.186172 + 0.982517i \(0.559608\pi\)
\(18\) 0 0
\(19\) −2.08512 + 3.61154i −0.478360 + 0.828544i −0.999692 0.0248102i \(-0.992102\pi\)
0.521332 + 0.853354i \(0.325435\pi\)
\(20\) −0.826352 + 0.300767i −0.184778 + 0.0672537i
\(21\) 0 0
\(22\) −2.73783 + 2.29731i −0.583706 + 0.489788i
\(23\) 1.93969 + 0.705990i 0.404454 + 0.147209i 0.536233 0.844070i \(-0.319847\pi\)
−0.131779 + 0.991279i \(0.542069\pi\)
\(24\) 0 0
\(25\) −0.733956 + 4.16247i −0.146791 + 0.832494i
\(26\) −3.69459 −0.724569
\(27\) 0 0
\(28\) −3.53209 −0.667502
\(29\) −0.0282185 + 0.160035i −0.00524004 + 0.0297178i −0.987316 0.158770i \(-0.949247\pi\)
0.982076 + 0.188487i \(0.0603584\pi\)
\(30\) 0 0
\(31\) −1.53936 0.560282i −0.276478 0.100630i 0.200060 0.979784i \(-0.435886\pi\)
−0.476538 + 0.879154i \(0.658108\pi\)
\(32\) 0.766044 0.642788i 0.135419 0.113630i
\(33\) 0 0
\(34\) 5.87211 2.13727i 1.00706 0.366539i
\(35\) 1.55303 2.68993i 0.262511 0.454682i
\(36\) 0 0
\(37\) 3.85844 + 6.68302i 0.634324 + 1.09868i 0.986658 + 0.162807i \(0.0520547\pi\)
−0.352334 + 0.935874i \(0.614612\pi\)
\(38\) 3.19459 + 2.68058i 0.518231 + 0.434848i
\(39\) 0 0
\(40\) 0.152704 + 0.866025i 0.0241446 + 0.136931i
\(41\) 1.33750 + 7.58532i 0.208882 + 1.18463i 0.891213 + 0.453585i \(0.149855\pi\)
−0.682331 + 0.731043i \(0.739034\pi\)
\(42\) 0 0
\(43\) −8.29086 6.95686i −1.26434 1.06091i −0.995205 0.0978094i \(-0.968816\pi\)
−0.269139 0.963101i \(-0.586739\pi\)
\(44\) 1.78699 + 3.09516i 0.269399 + 0.466612i
\(45\) 0 0
\(46\) 1.03209 1.78763i 0.152173 0.263572i
\(47\) −6.02481 + 2.19285i −0.878810 + 0.319861i −0.741729 0.670699i \(-0.765994\pi\)
−0.137080 + 0.990560i \(0.543772\pi\)
\(48\) 0 0
\(49\) 4.19459 3.51968i 0.599228 0.502812i
\(50\) 3.97178 + 1.44561i 0.561695 + 0.204440i
\(51\) 0 0
\(52\) −0.641559 + 3.63846i −0.0889683 + 0.504564i
\(53\) −0.716881 −0.0984712 −0.0492356 0.998787i \(-0.515679\pi\)
−0.0492356 + 0.998787i \(0.515679\pi\)
\(54\) 0 0
\(55\) −3.14290 −0.423789
\(56\) −0.613341 + 3.47843i −0.0819611 + 0.464825i
\(57\) 0 0
\(58\) 0.152704 + 0.0555796i 0.0200510 + 0.00729796i
\(59\) 5.35117 4.49016i 0.696663 0.584569i −0.224159 0.974552i \(-0.571964\pi\)
0.920822 + 0.389983i \(0.127519\pi\)
\(60\) 0 0
\(61\) 1.19207 0.433877i 0.152628 0.0555522i −0.264576 0.964365i \(-0.585232\pi\)
0.417205 + 0.908813i \(0.363010\pi\)
\(62\) −0.819078 + 1.41868i −0.104023 + 0.180173i
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −2.48886 2.08840i −0.308705 0.259034i
\(66\) 0 0
\(67\) 0.624485 + 3.54163i 0.0762930 + 0.432679i 0.998898 + 0.0469331i \(0.0149448\pi\)
−0.922605 + 0.385746i \(0.873944\pi\)
\(68\) −1.08512 6.15403i −0.131590 0.746286i
\(69\) 0 0
\(70\) −2.37939 1.99654i −0.284391 0.238632i
\(71\) −6.76991 11.7258i −0.803441 1.39160i −0.917338 0.398108i \(-0.869667\pi\)
0.113897 0.993493i \(-0.463666\pi\)
\(72\) 0 0
\(73\) 1.16385 2.01584i 0.136218 0.235937i −0.789844 0.613308i \(-0.789839\pi\)
0.926062 + 0.377371i \(0.123172\pi\)
\(74\) 7.25150 2.63933i 0.842969 0.306816i
\(75\) 0 0
\(76\) 3.19459 2.68058i 0.366445 0.307484i
\(77\) −11.8623 4.31753i −1.35184 0.492028i
\(78\) 0 0
\(79\) −1.14930 + 6.51800i −0.129306 + 0.733333i 0.849350 + 0.527830i \(0.176994\pi\)
−0.978656 + 0.205503i \(0.934117\pi\)
\(80\) 0.879385 0.0983183
\(81\) 0 0
\(82\) 7.70233 0.850580
\(83\) 0.773318 4.38571i 0.0848827 0.481394i −0.912499 0.409079i \(-0.865850\pi\)
0.997382 0.0723151i \(-0.0230387\pi\)
\(84\) 0 0
\(85\) 5.16385 + 1.87949i 0.560098 + 0.203859i
\(86\) −8.29086 + 6.95686i −0.894026 + 0.750177i
\(87\) 0 0
\(88\) 3.35844 1.22237i 0.358011 0.130305i
\(89\) 4.62449 8.00984i 0.490194 0.849042i −0.509742 0.860327i \(-0.670259\pi\)
0.999936 + 0.0112857i \(0.00359243\pi\)
\(90\) 0 0
\(91\) −6.52481 11.3013i −0.683986 1.18470i
\(92\) −1.58125 1.32683i −0.164857 0.138331i
\(93\) 0 0
\(94\) 1.11334 + 6.31407i 0.114832 + 0.651247i
\(95\) 0.636812 + 3.61154i 0.0653355 + 0.370536i
\(96\) 0 0
\(97\) −8.64930 7.25762i −0.878203 0.736900i 0.0876055 0.996155i \(-0.472079\pi\)
−0.965809 + 0.259255i \(0.916523\pi\)
\(98\) −2.73783 4.74205i −0.276562 0.479020i
\(99\) 0 0
\(100\) 2.11334 3.66041i 0.211334 0.366041i
\(101\) 8.80928 3.20631i 0.876556 0.319040i 0.135737 0.990745i \(-0.456660\pi\)
0.740819 + 0.671705i \(0.234438\pi\)
\(102\) 0 0
\(103\) −2.47178 + 2.07407i −0.243552 + 0.204364i −0.756390 0.654121i \(-0.773039\pi\)
0.512838 + 0.858485i \(0.328594\pi\)
\(104\) 3.47178 + 1.26363i 0.340436 + 0.123909i
\(105\) 0 0
\(106\) −0.124485 + 0.705990i −0.0120911 + 0.0685718i
\(107\) 2.28312 0.220717 0.110359 0.993892i \(-0.464800\pi\)
0.110359 + 0.993892i \(0.464800\pi\)
\(108\) 0 0
\(109\) 10.4192 0.997980 0.498990 0.866608i \(-0.333704\pi\)
0.498990 + 0.866608i \(0.333704\pi\)
\(110\) −0.545759 + 3.09516i −0.0520361 + 0.295112i
\(111\) 0 0
\(112\) 3.31908 + 1.20805i 0.313623 + 0.114150i
\(113\) −8.52869 + 7.15642i −0.802311 + 0.673219i −0.948759 0.315999i \(-0.897660\pi\)
0.146448 + 0.989218i \(0.453216\pi\)
\(114\) 0 0
\(115\) 1.70574 0.620838i 0.159061 0.0578934i
\(116\) 0.0812519 0.140732i 0.00754405 0.0130667i
\(117\) 0 0
\(118\) −3.49273 6.04958i −0.321531 0.556909i
\(119\) 16.9081 + 14.1876i 1.54996 + 1.30057i
\(120\) 0 0
\(121\) 0.307934 + 1.74638i 0.0279940 + 0.158762i
\(122\) −0.220285 1.24930i −0.0199437 0.113106i
\(123\) 0 0
\(124\) 1.25490 + 1.05299i 0.112693 + 0.0945610i
\(125\) 4.05690 + 7.02676i 0.362861 + 0.628493i
\(126\) 0 0
\(127\) 4.95336 8.57948i 0.439540 0.761305i −0.558114 0.829764i \(-0.688475\pi\)
0.997654 + 0.0684588i \(0.0218082\pi\)
\(128\) −0.939693 + 0.342020i −0.0830579 + 0.0302306i
\(129\) 0 0
\(130\) −2.48886 + 2.08840i −0.218287 + 0.183165i
\(131\) −8.48545 3.08845i −0.741377 0.269839i −0.0564046 0.998408i \(-0.517964\pi\)
−0.684973 + 0.728569i \(0.740186\pi\)
\(132\) 0 0
\(133\) −2.55778 + 14.5059i −0.221788 + 1.25782i
\(134\) 3.59627 0.310670
\(135\) 0 0
\(136\) −6.24897 −0.535845
\(137\) −0.352044 + 1.99654i −0.0300772 + 0.170576i −0.996146 0.0877077i \(-0.972046\pi\)
0.966069 + 0.258284i \(0.0831570\pi\)
\(138\) 0 0
\(139\) −0.155230 0.0564991i −0.0131664 0.00479219i 0.335429 0.942066i \(-0.391119\pi\)
−0.348595 + 0.937273i \(0.613341\pi\)
\(140\) −2.37939 + 1.99654i −0.201095 + 0.168739i
\(141\) 0 0
\(142\) −12.7233 + 4.63089i −1.06771 + 0.388616i
\(143\) −6.60220 + 11.4353i −0.552103 + 0.956271i
\(144\) 0 0
\(145\) 0.0714517 + 0.123758i 0.00593374 + 0.0102775i
\(146\) −1.78312 1.49621i −0.147572 0.123828i
\(147\) 0 0
\(148\) −1.34002 7.59964i −0.110149 0.624687i
\(149\) 1.00727 + 5.71253i 0.0825191 + 0.467989i 0.997864 + 0.0653193i \(0.0208066\pi\)
−0.915345 + 0.402670i \(0.868082\pi\)
\(150\) 0 0
\(151\) 10.7626 + 9.03093i 0.875851 + 0.734926i 0.965322 0.261063i \(-0.0840730\pi\)
−0.0894705 + 0.995989i \(0.528517\pi\)
\(152\) −2.08512 3.61154i −0.169126 0.292934i
\(153\) 0 0
\(154\) −6.31180 + 10.9324i −0.508620 + 0.880955i
\(155\) −1.35369 + 0.492704i −0.108731 + 0.0395749i
\(156\) 0 0
\(157\) −3.65657 + 3.06823i −0.291826 + 0.244871i −0.776933 0.629584i \(-0.783225\pi\)
0.485106 + 0.874455i \(0.338781\pi\)
\(158\) 6.21941 + 2.26368i 0.494790 + 0.180089i
\(159\) 0 0
\(160\) 0.152704 0.866025i 0.0120723 0.0684653i
\(161\) 7.29086 0.574600
\(162\) 0 0
\(163\) −10.7169 −0.839411 −0.419705 0.907660i \(-0.637867\pi\)
−0.419705 + 0.907660i \(0.637867\pi\)
\(164\) 1.33750 7.58532i 0.104441 0.592314i
\(165\) 0 0
\(166\) −4.18479 1.52314i −0.324803 0.118219i
\(167\) 9.88120 8.29131i 0.764630 0.641601i −0.174698 0.984622i \(-0.555895\pi\)
0.939328 + 0.343021i \(0.111450\pi\)
\(168\) 0 0
\(169\) −0.610815 + 0.222318i −0.0469857 + 0.0171014i
\(170\) 2.74763 4.75903i 0.210733 0.365001i
\(171\) 0 0
\(172\) 5.41147 + 9.37295i 0.412621 + 0.714681i
\(173\) −9.86097 8.27433i −0.749715 0.629086i 0.185712 0.982604i \(-0.440541\pi\)
−0.935428 + 0.353518i \(0.884985\pi\)
\(174\) 0 0
\(175\) 2.59240 + 14.7022i 0.195967 + 1.11138i
\(176\) −0.620615 3.51968i −0.0467806 0.265306i
\(177\) 0 0
\(178\) −7.08512 5.94512i −0.531052 0.445606i
\(179\) −4.48158 7.76233i −0.334969 0.580184i 0.648510 0.761206i \(-0.275393\pi\)
−0.983479 + 0.181023i \(0.942059\pi\)
\(180\) 0 0
\(181\) 0.992726 1.71945i 0.0737887 0.127806i −0.826770 0.562540i \(-0.809824\pi\)
0.900559 + 0.434734i \(0.143158\pi\)
\(182\) −12.2626 + 4.46324i −0.908967 + 0.330837i
\(183\) 0 0
\(184\) −1.58125 + 1.32683i −0.116571 + 0.0978151i
\(185\) 6.37686 + 2.32099i 0.468836 + 0.170642i
\(186\) 0 0
\(187\) 3.87820 21.9944i 0.283602 1.60839i
\(188\) 6.41147 0.467605
\(189\) 0 0
\(190\) 3.66725 0.266050
\(191\) −2.27853 + 12.9222i −0.164869 + 0.935018i 0.784331 + 0.620343i \(0.213007\pi\)
−0.949200 + 0.314675i \(0.898105\pi\)
\(192\) 0 0
\(193\) −5.40895 1.96870i −0.389345 0.141710i 0.139928 0.990162i \(-0.455313\pi\)
−0.529273 + 0.848452i \(0.677535\pi\)
\(194\) −8.64930 + 7.25762i −0.620984 + 0.521067i
\(195\) 0 0
\(196\) −5.14543 + 1.87278i −0.367531 + 0.133770i
\(197\) −13.3405 + 23.1064i −0.950471 + 1.64626i −0.206062 + 0.978539i \(0.566065\pi\)
−0.744409 + 0.667724i \(0.767269\pi\)
\(198\) 0 0
\(199\) 5.32160 + 9.21729i 0.377239 + 0.653396i 0.990659 0.136360i \(-0.0435404\pi\)
−0.613421 + 0.789756i \(0.710207\pi\)
\(200\) −3.23783 2.71686i −0.228949 0.192111i
\(201\) 0 0
\(202\) −1.62789 9.23222i −0.114538 0.649576i
\(203\) 0.0996702 + 0.565258i 0.00699548 + 0.0396733i
\(204\) 0 0
\(205\) 5.18866 + 4.35381i 0.362392 + 0.304083i
\(206\) 1.61334 + 2.79439i 0.112407 + 0.194694i
\(207\) 0 0
\(208\) 1.84730 3.19961i 0.128087 0.221853i
\(209\) 14.0055 5.09759i 0.968782 0.352608i
\(210\) 0 0
\(211\) −4.09105 + 3.43280i −0.281640 + 0.236324i −0.772653 0.634828i \(-0.781071\pi\)
0.491014 + 0.871152i \(0.336626\pi\)
\(212\) 0.673648 + 0.245188i 0.0462663 + 0.0168396i
\(213\) 0 0
\(214\) 0.396459 2.24843i 0.0271014 0.153700i
\(215\) −9.51754 −0.649091
\(216\) 0 0
\(217\) −5.78611 −0.392787
\(218\) 1.80928 10.2609i 0.122540 0.694957i
\(219\) 0 0
\(220\) 2.95336 + 1.07494i 0.199116 + 0.0724722i
\(221\) 17.6860 14.8403i 1.18969 0.998266i
\(222\) 0 0
\(223\) 17.9008 6.51536i 1.19873 0.436301i 0.335947 0.941881i \(-0.390944\pi\)
0.862779 + 0.505580i \(0.168722\pi\)
\(224\) 1.76604 3.05888i 0.117999 0.204380i
\(225\) 0 0
\(226\) 5.56670 + 9.64181i 0.370292 + 0.641364i
\(227\) 2.65136 + 2.22475i 0.175977 + 0.147662i 0.726522 0.687143i \(-0.241136\pi\)
−0.550545 + 0.834806i \(0.685580\pi\)
\(228\) 0 0
\(229\) −5.02528 28.4998i −0.332080 1.88332i −0.454352 0.890822i \(-0.650129\pi\)
0.122272 0.992497i \(-0.460982\pi\)
\(230\) −0.315207 1.78763i −0.0207842 0.117873i
\(231\) 0 0
\(232\) −0.124485 0.104455i −0.00817285 0.00685784i
\(233\) −3.33022 5.76811i −0.218170 0.377882i 0.736078 0.676896i \(-0.236675\pi\)
−0.954249 + 0.299015i \(0.903342\pi\)
\(234\) 0 0
\(235\) −2.81908 + 4.88279i −0.183896 + 0.318518i
\(236\) −6.56418 + 2.38917i −0.427292 + 0.155521i
\(237\) 0 0
\(238\) 16.9081 14.1876i 1.09599 0.919643i
\(239\) 7.31908 + 2.66393i 0.473432 + 0.172315i 0.567706 0.823231i \(-0.307831\pi\)
−0.0942745 + 0.995546i \(0.530053\pi\)
\(240\) 0 0
\(241\) 3.80200 21.5622i 0.244909 1.38895i −0.575796 0.817593i \(-0.695308\pi\)
0.820705 0.571352i \(-0.193581\pi\)
\(242\) 1.77332 0.113993
\(243\) 0 0
\(244\) −1.26857 −0.0812119
\(245\) 0.836152 4.74205i 0.0534198 0.302959i
\(246\) 0 0
\(247\) 14.4782 + 5.26963i 0.921224 + 0.335298i
\(248\) 1.25490 1.05299i 0.0796862 0.0668647i
\(249\) 0 0
\(250\) 7.62449 2.77509i 0.482215 0.175512i
\(251\) 8.04236 13.9298i 0.507629 0.879239i −0.492332 0.870407i \(-0.663855\pi\)
0.999961 0.00883173i \(-0.00281126\pi\)
\(252\) 0 0
\(253\) −3.68866 6.38895i −0.231904 0.401670i
\(254\) −7.58899 6.36792i −0.476176 0.399559i
\(255\) 0 0
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) −4.49138 25.4719i −0.280165 1.58889i −0.722063 0.691828i \(-0.756806\pi\)
0.441898 0.897065i \(-0.354305\pi\)
\(258\) 0 0
\(259\) 20.8799 + 17.5203i 1.29741 + 1.08866i
\(260\) 1.62449 + 2.81369i 0.100746 + 0.174498i
\(261\) 0 0
\(262\) −4.51501 + 7.82023i −0.278939 + 0.483136i
\(263\) −29.5967 + 10.7723i −1.82501 + 0.664250i −0.830832 + 0.556523i \(0.812135\pi\)
−0.994180 + 0.107727i \(0.965643\pi\)
\(264\) 0 0
\(265\) −0.482926 + 0.405223i −0.0296659 + 0.0248926i
\(266\) 13.8414 + 5.03785i 0.848669 + 0.308890i
\(267\) 0 0
\(268\) 0.624485 3.54163i 0.0381465 0.216340i
\(269\) 4.60906 0.281019 0.140510 0.990079i \(-0.455126\pi\)
0.140510 + 0.990079i \(0.455126\pi\)
\(270\) 0 0
\(271\) −1.31820 −0.0800750 −0.0400375 0.999198i \(-0.512748\pi\)
−0.0400375 + 0.999198i \(0.512748\pi\)
\(272\) −1.08512 + 6.15403i −0.0657952 + 0.373143i
\(273\) 0 0
\(274\) 1.90508 + 0.693392i 0.115090 + 0.0418893i
\(275\) 11.5719 9.70999i 0.697813 0.585535i
\(276\) 0 0
\(277\) −28.9624 + 10.5415i −1.74018 + 0.633375i −0.999269 0.0382227i \(-0.987830\pi\)
−0.740916 + 0.671598i \(0.765608\pi\)
\(278\) −0.0825961 + 0.143061i −0.00495378 + 0.00858021i
\(279\) 0 0
\(280\) 1.55303 + 2.68993i 0.0928115 + 0.160754i
\(281\) −16.4172 13.7756i −0.979365 0.821785i 0.00462815 0.999989i \(-0.498527\pi\)
−0.983994 + 0.178204i \(0.942971\pi\)
\(282\) 0 0
\(283\) −0.307934 1.74638i −0.0183047 0.103811i 0.974287 0.225313i \(-0.0723403\pi\)
−0.992591 + 0.121501i \(0.961229\pi\)
\(284\) 2.35117 + 13.3341i 0.139516 + 0.791235i
\(285\) 0 0
\(286\) 10.1152 + 8.48762i 0.598121 + 0.501884i
\(287\) 13.6027 + 23.5605i 0.802940 + 1.39073i
\(288\) 0 0
\(289\) −11.0248 + 19.0955i −0.648519 + 1.12327i
\(290\) 0.134285 0.0488759i 0.00788551 0.00287009i
\(291\) 0 0
\(292\) −1.78312 + 1.49621i −0.104349 + 0.0875593i
\(293\) −29.0920 10.5886i −1.69957 0.618594i −0.703795 0.710403i \(-0.748513\pi\)
−0.995777 + 0.0918092i \(0.970735\pi\)
\(294\) 0 0
\(295\) 1.06670 6.04958i 0.0621059 0.352220i
\(296\) −7.71688 −0.448535
\(297\) 0 0
\(298\) 5.80066 0.336023
\(299\) 1.32429 7.51044i 0.0765858 0.434340i
\(300\) 0 0
\(301\) −35.9222 13.0746i −2.07052 0.753608i
\(302\) 10.7626 9.03093i 0.619320 0.519672i
\(303\) 0 0
\(304\) −3.91875 + 1.42631i −0.224756 + 0.0818044i
\(305\) 0.557781 0.966105i 0.0319385 0.0553190i
\(306\) 0 0
\(307\) −4.26857 7.39338i −0.243620 0.421963i 0.718123 0.695917i \(-0.245002\pi\)
−0.961743 + 0.273954i \(0.911668\pi\)
\(308\) 9.67024 + 8.11430i 0.551013 + 0.462355i
\(309\) 0 0
\(310\) 0.250152 + 1.41868i 0.0142077 + 0.0805759i
\(311\) 3.12789 + 17.7391i 0.177366 + 1.00589i 0.935377 + 0.353652i \(0.115060\pi\)
−0.758011 + 0.652242i \(0.773829\pi\)
\(312\) 0 0
\(313\) 13.1800 + 11.0594i 0.744980 + 0.625113i 0.934170 0.356828i \(-0.116142\pi\)
−0.189190 + 0.981941i \(0.560586\pi\)
\(314\) 2.38666 + 4.13381i 0.134687 + 0.233285i
\(315\) 0 0
\(316\) 3.30928 5.73184i 0.186161 0.322441i
\(317\) 23.4094 8.52033i 1.31480 0.478549i 0.413014 0.910725i \(-0.364476\pi\)
0.901790 + 0.432175i \(0.142254\pi\)
\(318\) 0 0
\(319\) 0.444907 0.373321i 0.0249100 0.0209020i
\(320\) −0.826352 0.300767i −0.0461945 0.0168134i
\(321\) 0 0
\(322\) 1.26604 7.18009i 0.0705539 0.400131i
\(323\) −26.0597 −1.45000
\(324\) 0 0
\(325\) 15.6159 0.866212
\(326\) −1.86097 + 10.5541i −0.103069 + 0.584536i
\(327\) 0 0
\(328\) −7.23783 2.63435i −0.399642 0.145458i
\(329\) −17.3478 + 14.5565i −0.956413 + 0.802526i
\(330\) 0 0
\(331\) −8.32547 + 3.03022i −0.457609 + 0.166556i −0.560531 0.828133i \(-0.689403\pi\)
0.102922 + 0.994689i \(0.467181\pi\)
\(332\) −2.22668 + 3.85673i −0.122205 + 0.211665i
\(333\) 0 0
\(334\) −6.44949 11.1708i −0.352901 0.611242i
\(335\) 2.42262 + 2.03282i 0.132362 + 0.111065i
\(336\) 0 0
\(337\) 3.65910 + 20.7518i 0.199324 + 1.13042i 0.906125 + 0.423010i \(0.139026\pi\)
−0.706801 + 0.707412i \(0.749862\pi\)
\(338\) 0.112874 + 0.640140i 0.00613953 + 0.0348190i
\(339\) 0 0
\(340\) −4.20961 3.53228i −0.228298 0.191565i
\(341\) 2.92737 + 5.07035i 0.158526 + 0.274575i
\(342\) 0 0
\(343\) −2.69207 + 4.66280i −0.145358 + 0.251767i
\(344\) 10.1702 3.70167i 0.548343 0.199580i
\(345\) 0 0
\(346\) −9.86097 + 8.27433i −0.530129 + 0.444831i
\(347\) 20.7754 + 7.56164i 1.11528 + 0.405930i 0.832929 0.553380i \(-0.186662\pi\)
0.282355 + 0.959310i \(0.408884\pi\)
\(348\) 0 0
\(349\) 0.381911 2.16593i 0.0204433 0.115939i −0.972878 0.231317i \(-0.925697\pi\)
0.993322 + 0.115377i \(0.0368077\pi\)
\(350\) 14.9290 0.797989
\(351\) 0 0
\(352\) −3.57398 −0.190494
\(353\) −0.826352 + 4.68647i −0.0439823 + 0.249436i −0.998870 0.0475321i \(-0.984864\pi\)
0.954887 + 0.296968i \(0.0959755\pi\)
\(354\) 0 0
\(355\) −11.1887 4.07234i −0.593833 0.216137i
\(356\) −7.08512 + 5.94512i −0.375511 + 0.315091i
\(357\) 0 0
\(358\) −8.42262 + 3.06558i −0.445149 + 0.162021i
\(359\) −1.30288 + 2.25666i −0.0687634 + 0.119102i −0.898357 0.439266i \(-0.855239\pi\)
0.829594 + 0.558367i \(0.188572\pi\)
\(360\) 0 0
\(361\) 0.804530 + 1.39349i 0.0423437 + 0.0733414i
\(362\) −1.52094 1.27622i −0.0799391 0.0670768i
\(363\) 0 0
\(364\) 2.26604 + 12.8514i 0.118773 + 0.673595i
\(365\) −0.355448 2.01584i −0.0186050 0.105514i
\(366\) 0 0
\(367\) −10.9042 9.14971i −0.569195 0.477611i 0.312184 0.950022i \(-0.398939\pi\)
−0.881379 + 0.472411i \(0.843384\pi\)
\(368\) 1.03209 + 1.78763i 0.0538014 + 0.0931867i
\(369\) 0 0
\(370\) 3.39306 5.87695i 0.176397 0.305528i
\(371\) −2.37939 + 0.866025i −0.123532 + 0.0449618i
\(372\) 0 0
\(373\) −1.76810 + 1.48362i −0.0915489 + 0.0768187i −0.687413 0.726266i \(-0.741254\pi\)
0.595865 + 0.803085i \(0.296810\pi\)
\(374\) −20.9868 7.63857i −1.08520 0.394981i
\(375\) 0 0
\(376\) 1.11334 6.31407i 0.0574162 0.325623i
\(377\) 0.600385 0.0309214
\(378\) 0 0
\(379\) −6.02734 −0.309604 −0.154802 0.987946i \(-0.549474\pi\)
−0.154802 + 0.987946i \(0.549474\pi\)
\(380\) 0.636812 3.61154i 0.0326677 0.185268i
\(381\) 0 0
\(382\) 12.3302 + 4.48783i 0.630869 + 0.229618i
\(383\) −16.3007 + 13.6779i −0.832925 + 0.698907i −0.955960 0.293495i \(-0.905181\pi\)
0.123036 + 0.992402i \(0.460737\pi\)
\(384\) 0 0
\(385\) −10.4315 + 3.79677i −0.531641 + 0.193501i
\(386\) −2.87804 + 4.98491i −0.146488 + 0.253725i
\(387\) 0 0
\(388\) 5.64543 + 9.77817i 0.286603 + 0.496411i
\(389\) 15.8248 + 13.2785i 0.802347 + 0.673249i 0.948768 0.315973i \(-0.102331\pi\)
−0.146421 + 0.989222i \(0.546775\pi\)
\(390\) 0 0
\(391\) 2.23989 + 12.7030i 0.113276 + 0.642419i
\(392\) 0.950837 + 5.39246i 0.0480245 + 0.272361i
\(393\) 0 0
\(394\) 20.4388 + 17.1502i 1.02969 + 0.864015i
\(395\) 2.91013 + 5.04049i 0.146425 + 0.253615i
\(396\) 0 0
\(397\) 12.2638 21.2416i 0.615504 1.06608i −0.374792 0.927109i \(-0.622286\pi\)
0.990296 0.138975i \(-0.0443807\pi\)
\(398\) 10.0013 3.64019i 0.501322 0.182466i
\(399\) 0 0
\(400\) −3.23783 + 2.71686i −0.161891 + 0.135843i
\(401\) 13.7433 + 5.00217i 0.686310 + 0.249796i 0.661554 0.749897i \(-0.269897\pi\)
0.0247555 + 0.999694i \(0.492119\pi\)
\(402\) 0 0
\(403\) −1.05097 + 5.96037i −0.0523527 + 0.296907i
\(404\) −9.37464 −0.466406
\(405\) 0 0
\(406\) 0.573978 0.0284860
\(407\) 4.78921 27.1610i 0.237392 1.34632i
\(408\) 0 0
\(409\) 33.9479 + 12.3560i 1.67862 + 0.610966i 0.993119 0.117110i \(-0.0373629\pi\)
0.685497 + 0.728076i \(0.259585\pi\)
\(410\) 5.18866 4.35381i 0.256250 0.215019i
\(411\) 0 0
\(412\) 3.03209 1.10359i 0.149380 0.0543700i
\(413\) 12.3366 21.3677i 0.607045 1.05143i
\(414\) 0 0
\(415\) −1.95811 3.39155i −0.0961199 0.166485i
\(416\) −2.83022 2.37484i −0.138763 0.116436i
\(417\) 0 0
\(418\) −2.58812 14.6779i −0.126589 0.717921i
\(419\) −3.42309 19.4133i −0.167229 0.948401i −0.946737 0.322009i \(-0.895642\pi\)
0.779508 0.626392i \(-0.215469\pi\)
\(420\) 0 0
\(421\) 2.63041 + 2.20718i 0.128199 + 0.107571i 0.704633 0.709572i \(-0.251112\pi\)
−0.576434 + 0.817144i \(0.695556\pi\)
\(422\) 2.67024 + 4.62500i 0.129985 + 0.225141i
\(423\) 0 0
\(424\) 0.358441 0.620838i 0.0174074 0.0301505i
\(425\) −24.8195 + 9.03358i −1.20392 + 0.438193i
\(426\) 0 0
\(427\) 3.43242 2.88014i 0.166106 0.139380i
\(428\) −2.14543 0.780873i −0.103703 0.0377449i
\(429\) 0 0
\(430\) −1.65270 + 9.37295i −0.0797004 + 0.452004i
\(431\) 28.7151 1.38316 0.691579 0.722300i \(-0.256915\pi\)
0.691579 + 0.722300i \(0.256915\pi\)
\(432\) 0 0
\(433\) −14.1179 −0.678464 −0.339232 0.940703i \(-0.610167\pi\)
−0.339232 + 0.940703i \(0.610167\pi\)
\(434\) −1.00475 + 5.69821i −0.0482294 + 0.273523i
\(435\) 0 0
\(436\) −9.79086 3.56358i −0.468897 0.170665i
\(437\) −6.59421 + 5.53320i −0.315444 + 0.264689i
\(438\) 0 0
\(439\) −14.5842 + 5.30823i −0.696068 + 0.253348i −0.665731 0.746192i \(-0.731880\pi\)
−0.0303369 + 0.999540i \(0.509658\pi\)
\(440\) 1.57145 2.72183i 0.0749160 0.129758i
\(441\) 0 0
\(442\) −11.5437 19.9943i −0.549078 0.951031i
\(443\) 27.3897 + 22.9826i 1.30132 + 1.09194i 0.989915 + 0.141662i \(0.0452445\pi\)
0.311407 + 0.950277i \(0.399200\pi\)
\(444\) 0 0
\(445\) −1.41235 8.00984i −0.0669519 0.379703i
\(446\) −3.30793 18.7602i −0.156635 0.888322i
\(447\) 0 0
\(448\) −2.70574 2.27038i −0.127834 0.107266i
\(449\) −12.8564 22.2679i −0.606730 1.05089i −0.991775 0.127990i \(-0.959148\pi\)
0.385045 0.922898i \(-0.374186\pi\)
\(450\) 0 0
\(451\) 13.7640 23.8399i 0.648121 1.12258i
\(452\) 10.4620 3.80785i 0.492090 0.179106i
\(453\) 0 0
\(454\) 2.65136 2.22475i 0.124434 0.104413i
\(455\) −10.7836 3.92490i −0.505542 0.184002i
\(456\) 0 0
\(457\) 0.352921 2.00152i 0.0165090 0.0936270i −0.975440 0.220265i \(-0.929308\pi\)
0.991949 + 0.126638i \(0.0404188\pi\)
\(458\) −28.9394 −1.35225
\(459\) 0 0
\(460\) −1.81521 −0.0846345
\(461\) −3.74628 + 21.2462i −0.174482 + 0.989535i 0.764259 + 0.644910i \(0.223105\pi\)
−0.938740 + 0.344625i \(0.888006\pi\)
\(462\) 0 0
\(463\) 20.2986 + 7.38809i 0.943356 + 0.343353i 0.767490 0.641061i \(-0.221505\pi\)
0.175866 + 0.984414i \(0.443728\pi\)
\(464\) −0.124485 + 0.104455i −0.00577908 + 0.00484922i
\(465\) 0 0
\(466\) −6.25877 + 2.27801i −0.289932 + 0.105527i
\(467\) 12.2622 21.2387i 0.567426 0.982810i −0.429394 0.903117i \(-0.641273\pi\)
0.996819 0.0796928i \(-0.0253939\pi\)
\(468\) 0 0
\(469\) 6.35117 + 11.0005i 0.293270 + 0.507958i
\(470\) 4.31908 + 3.62414i 0.199224 + 0.167169i
\(471\) 0 0
\(472\) 1.21301 + 6.87933i 0.0558334 + 0.316647i
\(473\) 6.71688 + 38.0933i 0.308843 + 1.75153i
\(474\) 0 0
\(475\) −13.5025 11.3300i −0.619538 0.519854i
\(476\) −11.0360 19.1148i −0.505832 0.876127i
\(477\) 0 0
\(478\) 3.89440 6.74530i 0.178126 0.308523i
\(479\) 13.4620 4.89976i 0.615094 0.223876i −0.0156369 0.999878i \(-0.504978\pi\)
0.630730 + 0.776002i \(0.282755\pi\)
\(480\) 0 0
\(481\) 21.8405 18.3263i 0.995841 0.835609i
\(482\) −20.5744 7.48849i −0.937140 0.341091i
\(483\) 0 0
\(484\) 0.307934 1.74638i 0.0139970 0.0793808i
\(485\) −9.92902 −0.450853
\(486\) 0 0
\(487\) 32.3114 1.46417 0.732084 0.681214i \(-0.238548\pi\)
0.732084 + 0.681214i \(0.238548\pi\)
\(488\) −0.220285 + 1.24930i −0.00997183 + 0.0565531i
\(489\) 0 0
\(490\) −4.52481 1.64690i −0.204410 0.0743993i
\(491\) −24.8576 + 20.8580i −1.12181 + 0.941307i −0.998694 0.0510857i \(-0.983732\pi\)
−0.123112 + 0.992393i \(0.539287\pi\)
\(492\) 0 0
\(493\) −0.954241 + 0.347315i −0.0429768 + 0.0156423i
\(494\) 7.70368 13.3432i 0.346605 0.600337i
\(495\) 0 0
\(496\) −0.819078 1.41868i −0.0367777 0.0637008i
\(497\) −36.6352 30.7406i −1.64331 1.37890i
\(498\) 0 0
\(499\) −4.31180 24.4535i −0.193023 1.09469i −0.915206 0.402985i \(-0.867973\pi\)
0.722184 0.691702i \(-0.243139\pi\)
\(500\) −1.40895 7.99054i −0.0630101 0.357348i
\(501\) 0 0
\(502\) −12.3216 10.3391i −0.549940 0.461455i
\(503\) −7.46198 12.9245i −0.332713 0.576276i 0.650330 0.759652i \(-0.274631\pi\)
−0.983043 + 0.183376i \(0.941297\pi\)
\(504\) 0 0
\(505\) 4.12196 7.13944i 0.183425 0.317701i
\(506\) −6.93242 + 2.52319i −0.308184 + 0.112170i
\(507\) 0 0
\(508\) −7.58899 + 6.36792i −0.336707 + 0.282531i
\(509\) 14.4595 + 5.26281i 0.640904 + 0.233270i 0.641970 0.766729i \(-0.278117\pi\)
−0.00106632 + 0.999999i \(0.500339\pi\)
\(510\) 0 0
\(511\) 1.42767 8.09672i 0.0631564 0.358178i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −25.8648 −1.14085
\(515\) −0.492726 + 2.79439i −0.0217121 + 0.123135i
\(516\) 0 0
\(517\) 21.5326 + 7.83721i 0.947001 + 0.344680i
\(518\) 20.8799 17.5203i 0.917408 0.769797i
\(519\) 0 0
\(520\) 3.05303 1.11121i 0.133884 0.0487299i
\(521\) 6.69207 11.5910i 0.293185 0.507811i −0.681376 0.731933i \(-0.738618\pi\)
0.974561 + 0.224122i \(0.0719516\pi\)
\(522\) 0 0
\(523\) 12.4402 + 21.5470i 0.543970 + 0.942184i 0.998671 + 0.0515397i \(0.0164129\pi\)
−0.454701 + 0.890644i \(0.650254\pi\)
\(524\) 6.91740 + 5.80439i 0.302188 + 0.253566i
\(525\) 0 0
\(526\) 5.46926 + 31.0177i 0.238471 + 1.35244i
\(527\) −1.77760 10.0813i −0.0774334 0.439147i
\(528\) 0 0
\(529\) −14.3550 12.0453i −0.624132 0.523709i
\(530\) 0.315207 + 0.545955i 0.0136917 + 0.0237148i
\(531\) 0 0
\(532\) 7.36484 12.7563i 0.319306 0.553055i
\(533\) 26.7408 9.73286i 1.15827 0.421577i
\(534\) 0 0
\(535\) 1.53802 1.29055i 0.0664943 0.0557954i
\(536\) −3.37939 1.23000i −0.145967 0.0531277i
\(537\) 0 0
\(538\) 0.800355 4.53904i 0.0345057 0.195692i
\(539\) −19.5699 −0.842934
\(540\) 0 0
\(541\) −9.09421 −0.390991 −0.195495 0.980705i \(-0.562631\pi\)
−0.195495 + 0.980705i \(0.562631\pi\)
\(542\) −0.228903 + 1.29817i −0.00983223 + 0.0557614i
\(543\) 0 0
\(544\) 5.87211 + 2.13727i 0.251765 + 0.0916349i
\(545\) 7.01889 5.88954i 0.300656 0.252280i
\(546\) 0 0
\(547\) −20.8701 + 7.59608i −0.892339 + 0.324785i −0.747179 0.664623i \(-0.768592\pi\)
−0.145160 + 0.989408i \(0.546370\pi\)
\(548\) 1.01367 1.75573i 0.0433019 0.0750010i
\(549\) 0 0
\(550\) −7.55303 13.0822i −0.322062 0.557828i
\(551\) −0.519134 0.435605i −0.0221158 0.0185574i
\(552\) 0 0
\(553\) 4.05943 + 23.0222i 0.172625 + 0.979002i
\(554\) 5.35204 + 30.3530i 0.227387 + 1.28957i
\(555\) 0 0
\(556\) 0.126545 + 0.106183i 0.00536668 + 0.00450318i
\(557\) −1.35369 2.34466i −0.0573578 0.0993466i 0.835921 0.548850i \(-0.184934\pi\)
−0.893279 + 0.449504i \(0.851601\pi\)
\(558\) 0 0
\(559\) −19.9932 + 34.6292i −0.845622 + 1.46466i
\(560\) 2.91875 1.06234i 0.123340 0.0448919i
\(561\) 0 0
\(562\) −16.4172 + 13.7756i −0.692516 + 0.581090i
\(563\) 6.60859 + 2.40533i 0.278519 + 0.101373i 0.477503 0.878630i \(-0.341542\pi\)
−0.198984 + 0.980003i \(0.563764\pi\)
\(564\) 0 0
\(565\) −1.70011 + 9.64181i −0.0715242 + 0.405634i
\(566\) −1.77332 −0.0745381
\(567\) 0 0
\(568\) 13.5398 0.568119
\(569\) −4.34507 + 24.6421i −0.182155 + 1.03305i 0.747401 + 0.664373i \(0.231301\pi\)
−0.929556 + 0.368680i \(0.879810\pi\)
\(570\) 0 0
\(571\) −6.43242 2.34121i −0.269188 0.0979765i 0.203899 0.978992i \(-0.434638\pi\)
−0.473088 + 0.881015i \(0.656861\pi\)
\(572\) 10.1152 8.48762i 0.422936 0.354885i
\(573\) 0 0
\(574\) 25.5646 9.30477i 1.06705 0.388374i
\(575\) −4.36231 + 7.55574i −0.181921 + 0.315096i
\(576\) 0 0
\(577\) −2.10014 3.63754i −0.0874298 0.151433i 0.818994 0.573802i \(-0.194532\pi\)
−0.906424 + 0.422369i \(0.861199\pi\)
\(578\) 16.8910 + 14.1732i 0.702573 + 0.589529i
\(579\) 0 0
\(580\) −0.0248149 0.140732i −0.00103038 0.00584360i
\(581\) −2.73143 15.4907i −0.113319 0.642663i
\(582\) 0 0
\(583\) 1.96270 + 1.64690i 0.0812866 + 0.0682075i
\(584\) 1.16385 + 2.01584i 0.0481604 + 0.0834162i
\(585\) 0 0
\(586\) −15.4795 + 26.8113i −0.639453 + 1.10757i
\(587\) −34.3491 + 12.5021i −1.41774 + 0.516015i −0.933391 0.358860i \(-0.883165\pi\)
−0.484348 + 0.874875i \(0.660943\pi\)
\(588\) 0 0
\(589\) 5.23324 4.39121i 0.215632 0.180937i
\(590\) −5.77244 2.10100i −0.237648 0.0864967i
\(591\) 0 0
\(592\) −1.34002 + 7.59964i −0.0550746 + 0.312343i
\(593\) 45.0660 1.85064 0.925320 0.379186i \(-0.123796\pi\)
0.925320 + 0.379186i \(0.123796\pi\)
\(594\) 0 0
\(595\) 19.4097 0.795721
\(596\) 1.00727 5.71253i 0.0412595 0.233995i
\(597\) 0 0
\(598\) −7.16637 2.60835i −0.293055 0.106663i
\(599\) −12.4531 + 10.4494i −0.508820 + 0.426951i −0.860714 0.509089i \(-0.829982\pi\)
0.351893 + 0.936040i \(0.385538\pi\)
\(600\) 0 0
\(601\) 39.0057 14.1969i 1.59107 0.579104i 0.613501 0.789694i \(-0.289761\pi\)
0.977574 + 0.210590i \(0.0675386\pi\)
\(602\) −19.1138 + 33.1061i −0.779021 + 1.34930i
\(603\) 0 0
\(604\) −7.02481 12.1673i −0.285836 0.495082i
\(605\) 1.19459 + 1.00238i 0.0485671 + 0.0407526i
\(606\) 0 0
\(607\) −7.34565 41.6592i −0.298151 1.69090i −0.654114 0.756396i \(-0.726958\pi\)
0.355963 0.934500i \(-0.384153\pi\)
\(608\) 0.724155 + 4.10689i 0.0293684 + 0.166556i
\(609\) 0 0
\(610\) −0.854570 0.717070i −0.0346005 0.0290333i
\(611\) 11.8439 + 20.5142i 0.479153 + 0.829917i
\(612\) 0 0
\(613\) −9.50686 + 16.4664i −0.383979 + 0.665070i −0.991627 0.129136i \(-0.958780\pi\)
0.607648 + 0.794206i \(0.292113\pi\)
\(614\) −8.02229 + 2.91987i −0.323753 + 0.117837i
\(615\) 0 0
\(616\) 9.67024 8.11430i 0.389625 0.326934i
\(617\) 34.7550 + 12.6498i 1.39918 + 0.509261i 0.927935 0.372741i \(-0.121582\pi\)
0.471246 + 0.882002i \(0.343804\pi\)
\(618\) 0 0
\(619\) −5.29648 + 30.0379i −0.212884 + 1.20732i 0.671658 + 0.740862i \(0.265583\pi\)
−0.884541 + 0.466462i \(0.845529\pi\)
\(620\) 1.44057 0.0578547
\(621\) 0 0
\(622\) 18.0128 0.722247
\(623\) 5.67277 32.1719i 0.227275 1.28894i
\(624\) 0 0
\(625\) −13.1540 4.78768i −0.526162 0.191507i
\(626\) 13.1800 11.0594i 0.526781 0.442021i
\(627\) 0 0
\(628\) 4.48545 1.63257i 0.178989 0.0651467i
\(629\) −24.1113 + 41.7620i −0.961380 + 1.66516i
\(630\) 0 0
\(631\) −6.86349 11.8879i −0.273231 0.473251i 0.696456 0.717599i \(-0.254759\pi\)
−0.969687 + 0.244349i \(0.921426\pi\)
\(632\) −5.07011 4.25433i −0.201678 0.169228i
\(633\) 0 0
\(634\) −4.32588 24.5333i −0.171803 0.974342i
\(635\) −1.51279 8.57948i −0.0600334 0.340466i
\(636\) 0 0
\(637\) −15.4973 13.0038i −0.614026 0.515229i
\(638\) −0.290393 0.502975i −0.0114968 0.0199130i
\(639\) 0 0
\(640\) −0.439693 + 0.761570i −0.0173804 + 0.0301037i
\(641\) 4.01367 1.46086i 0.158530 0.0577004i −0.261536 0.965194i \(-0.584229\pi\)
0.420066 + 0.907493i \(0.362007\pi\)
\(642\) 0 0
\(643\) −16.1511 + 13.5524i −0.636938 + 0.534454i −0.903076 0.429481i \(-0.858697\pi\)
0.266138 + 0.963935i \(0.414252\pi\)
\(644\) −6.85117 2.49362i −0.269974 0.0982624i
\(645\) 0 0
\(646\) −4.52523 + 25.6638i −0.178043 + 1.00973i
\(647\) 27.4023 1.07730 0.538648 0.842531i \(-0.318935\pi\)
0.538648 + 0.842531i \(0.318935\pi\)
\(648\) 0 0
\(649\) −24.9659 −0.979995
\(650\) 2.71167 15.3786i 0.106360 0.603199i
\(651\) 0 0
\(652\) 10.0706 + 3.66539i 0.394394 + 0.143548i
\(653\) −3.61540 + 3.03368i −0.141482 + 0.118717i −0.710782 0.703413i \(-0.751659\pi\)
0.569300 + 0.822130i \(0.307214\pi\)
\(654\) 0 0
\(655\) −7.46198 + 2.71594i −0.291564 + 0.106121i
\(656\) −3.85117 + 6.67042i −0.150363 + 0.260436i
\(657\) 0 0
\(658\) 11.3229 + 19.6119i 0.441414 + 0.764552i
\(659\) −16.1099 13.5178i −0.627554 0.526580i 0.272614 0.962124i \(-0.412112\pi\)
−0.900168 + 0.435543i \(0.856556\pi\)
\(660\) 0 0
\(661\) 4.40184 + 24.9641i 0.171212 + 0.970989i 0.942426 + 0.334414i \(0.108538\pi\)
−0.771215 + 0.636575i \(0.780351\pi\)
\(662\) 1.53849 + 8.72518i 0.0597949 + 0.339114i
\(663\) 0 0
\(664\) 3.41147 + 2.86257i 0.132391 + 0.111089i
\(665\) 6.47653 + 11.2177i 0.251149 + 0.435003i
\(666\) 0 0
\(667\) −0.167718 + 0.290497i −0.00649408 + 0.0112481i
\(668\) −12.1211 + 4.41171i −0.468979 + 0.170694i
\(669\) 0 0
\(670\) 2.42262 2.03282i 0.0935939 0.0785346i
\(671\) −4.26042 1.55067i −0.164472 0.0598628i
\(672\) 0 0
\(673\) 2.47090 14.0132i 0.0952464 0.540169i −0.899425 0.437075i \(-0.856015\pi\)
0.994672 0.103094i \(-0.0328743\pi\)
\(674\) 21.0719 0.811660
\(675\) 0 0
\(676\) 0.650015 0.0250006
\(677\) −8.07878 + 45.8170i −0.310493 + 1.76089i 0.285958 + 0.958242i \(0.407688\pi\)
−0.596450 + 0.802650i \(0.703423\pi\)
\(678\) 0 0
\(679\) −37.4752 13.6399i −1.43817 0.523450i
\(680\) −4.20961 + 3.53228i −0.161431 + 0.135457i
\(681\) 0 0
\(682\) 5.50165 2.00244i 0.210669 0.0766773i
\(683\) −5.10101 + 8.83522i −0.195185 + 0.338070i −0.946961 0.321348i \(-0.895864\pi\)
0.751776 + 0.659418i \(0.229197\pi\)
\(684\) 0 0
\(685\) 0.891407 + 1.54396i 0.0340589 + 0.0589918i
\(686\) 4.12449 + 3.46085i 0.157474 + 0.132136i
\(687\) 0 0
\(688\) −1.87939 10.6585i −0.0716509 0.406352i
\(689\) 0.459922 + 2.60835i 0.0175216 + 0.0993701i
\(690\) 0 0
\(691\) −0.269915 0.226485i −0.0102680 0.00861591i 0.637639 0.770335i \(-0.279911\pi\)
−0.647907 + 0.761719i \(0.724356\pi\)
\(692\) 6.43629 + 11.1480i 0.244671 + 0.423783i
\(693\) 0 0
\(694\) 11.0544 19.1467i 0.419618 0.726800i
\(695\) −0.136507 + 0.0496844i −0.00517800 + 0.00188464i
\(696\) 0 0
\(697\) −36.8710 + 30.9384i −1.39659 + 1.17188i
\(698\) −2.06670 0.752219i −0.0782259 0.0284719i
\(699\) 0 0
\(700\) 2.59240 14.7022i 0.0979834 0.555691i
\(701\) −39.9358 −1.50836 −0.754178 0.656671i \(-0.771964\pi\)
−0.754178 + 0.656671i \(0.771964\pi\)
\(702\) 0 0
\(703\) −32.1813 −1.21374
\(704\) −0.620615 + 3.51968i −0.0233903 + 0.132653i
\(705\) 0 0
\(706\) 4.47178 + 1.62760i 0.168298 + 0.0612554i
\(707\) 25.3653 21.2840i 0.953960 0.800468i
\(708\) 0 0
\(709\) 46.2789 16.8441i 1.73804 0.632595i 0.738891 0.673825i \(-0.235350\pi\)
0.999150 + 0.0412304i \(0.0131278\pi\)
\(710\) −5.95336 + 10.3115i −0.223426 + 0.386985i
\(711\) 0 0
\(712\) 4.62449 + 8.00984i 0.173310 + 0.300182i
\(713\) −2.59034 2.17355i −0.0970089 0.0814001i
\(714\) 0 0
\(715\) 2.01636 + 11.4353i 0.0754075 + 0.427657i
\(716\) 1.55644 + 8.82699i 0.0581668 + 0.329880i
\(717\) 0 0
\(718\) 1.99613 + 1.67495i 0.0744949 + 0.0625086i
\(719\) −25.8050 44.6956i −0.962364 1.66686i −0.716536 0.697550i \(-0.754274\pi\)
−0.245828 0.969314i \(-0.579060\pi\)
\(720\) 0 0
\(721\) −5.69846 + 9.87003i −0.212222 + 0.367579i
\(722\) 1.51202 0.550331i 0.0562716 0.0204812i
\(723\) 0 0
\(724\) −1.52094 + 1.27622i −0.0565255 + 0.0474305i
\(725\) −0.645430 0.234917i −0.0239707 0.00872461i
\(726\) 0 0
\(727\) −4.79932 + 27.2183i −0.177997 + 1.00947i 0.756631 + 0.653842i \(0.226844\pi\)
−0.934628 + 0.355628i \(0.884267\pi\)
\(728\) 13.0496 0.483651
\(729\) 0 0
\(730\) −2.04694 −0.0757607
\(731\) 11.7442 66.6048i 0.434376 2.46347i
\(732\) 0 0
\(733\) −25.9072 9.42945i −0.956904 0.348285i −0.184084 0.982910i \(-0.558932\pi\)
−0.772820 + 0.634626i \(0.781154\pi\)
\(734\) −10.9042 + 9.14971i −0.402481 + 0.337722i
\(735\) 0 0
\(736\) 1.93969 0.705990i 0.0714980 0.0260232i
\(737\) 6.42649 11.1310i 0.236723 0.410016i
\(738\) 0 0
\(739\) 2.01320 + 3.48697i 0.0740569 + 0.128270i 0.900676 0.434492i \(-0.143072\pi\)
−0.826619 + 0.562762i \(0.809739\pi\)
\(740\) −5.19846 4.36203i −0.191099 0.160351i
\(741\) 0 0
\(742\) 0.439693 + 2.49362i 0.0161416 + 0.0915437i
\(743\) −5.04979 28.6388i −0.185259 1.05066i −0.925622 0.378449i \(-0.876458\pi\)
0.740363 0.672207i \(-0.234653\pi\)
\(744\) 0 0
\(745\) 3.90760 + 3.27887i 0.143164 + 0.120128i
\(746\) 1.15405 + 1.99887i 0.0422527 + 0.0731838i
\(747\) 0 0
\(748\) −11.1668 + 19.3415i −0.408300 + 0.707197i
\(749\) 7.57785 2.75811i 0.276889 0.100779i
\(750\) 0 0
\(751\) 31.1962 26.1768i 1.13837 0.955203i 0.138983 0.990295i \(-0.455617\pi\)
0.999384 + 0.0350914i \(0.0111722\pi\)
\(752\) −6.02481 2.19285i −0.219702 0.0799651i
\(753\) 0 0
\(754\) 0.104256 0.591264i 0.00379677 0.0215326i
\(755\) 12.3550 0.449646
\(756\) 0 0
\(757\) 32.9486 1.19754 0.598769 0.800922i \(-0.295657\pi\)
0.598769 + 0.800922i \(0.295657\pi\)
\(758\) −1.04664 + 5.93577i −0.0380156 + 0.215597i
\(759\) 0 0
\(760\) −3.44609 1.25427i −0.125003 0.0454973i
\(761\) 0.773318 0.648891i 0.0280328 0.0235223i −0.628664 0.777677i \(-0.716398\pi\)
0.656696 + 0.754155i \(0.271953\pi\)
\(762\) 0 0
\(763\) 34.5822 12.5869i 1.25196 0.455676i
\(764\) 6.56077 11.3636i 0.237360 0.411120i
\(765\) 0 0
\(766\) 10.6395 + 18.4282i 0.384421 + 0.665836i
\(767\) −19.7704 16.5893i −0.713867 0.599006i
\(768\) 0 0
\(769\) −5.38831 30.5586i −0.194307 1.10197i −0.913402 0.407059i \(-0.866554\pi\)
0.719094 0.694912i \(-0.244557\pi\)
\(770\) 1.92767 + 10.9324i 0.0694684 + 0.393975i
\(771\) 0 0
\(772\) 4.40941 + 3.69994i 0.158698 + 0.133164i
\(773\) 8.32295 + 14.4158i 0.299356 + 0.518499i 0.975989 0.217821i \(-0.0698950\pi\)
−0.676633 + 0.736320i \(0.736562\pi\)
\(774\) 0 0
\(775\) 3.46198 5.99633i 0.124358 0.215394i
\(776\) 10.6099 3.86170i 0.380875 0.138627i
\(777\) 0 0
\(778\) 15.8248 13.2785i 0.567345 0.476059i
\(779\) −30.1835 10.9859i −1.08144 0.393611i
\(780\) 0 0
\(781\) −8.40302 + 47.6559i −0.300684 + 1.70526i
\(782\) 12.8990 0.461267
\(783\) 0 0
\(784\) 5.47565 0.195559
\(785\) −0.728903 + 4.13381i −0.0260157 + 0.147542i
\(786\) 0 0
\(787\) 1.93494 + 0.704262i 0.0689733 + 0.0251042i 0.376276 0.926507i \(-0.377204\pi\)
−0.307303 + 0.951612i \(0.599427\pi\)
\(788\) 20.4388 17.1502i 0.728103 0.610951i
\(789\) 0 0
\(790\) 5.46926 1.99065i 0.194587 0.0708240i
\(791\) −19.6621 + 34.0557i −0.699104 + 1.21088i
\(792\) 0 0
\(793\) −2.34343 4.05893i −0.0832175 0.144137i
\(794\) −18.7893 15.7661i −0.666806 0.559517i
\(795\) 0 0
\(796\) −1.84817 10.4815i −0.0655068 0.371507i
\(797\) −8.95336 50.7770i −0.317144 1.79862i −0.559935 0.828537i \(-0.689174\pi\)
0.242791 0.970079i \(-0.421937\pi\)
\(798\) 0 0
\(799\) −30.6917 25.7534i −1.08579 0.911088i
\(800\) 2.11334 + 3.66041i 0.0747179 + 0.129415i
\(801\) 0 0
\(802\) 7.31268 12.6659i 0.258220 0.447250i
\(803\) −7.81743 + 2.84531i −0.275871 + 0.100409i
\(804\) 0 0
\(805\) 4.91147 4.12122i 0.173107 0.145254i
\(806\) 5.68732 + 2.07001i 0.200327 + 0.0729132i
\(807\) 0 0
\(808\) −1.62789 + 9.23222i −0.0572689 + 0.324788i
\(809\) −25.9709 −0.913088 −0.456544 0.889701i \(-0.650913\pi\)
−0.456544 + 0.889701i \(0.650913\pi\)
\(810\) 0 0
\(811\) −14.4442 −0.507204 −0.253602 0.967309i \(-0.581615\pi\)
−0.253602 + 0.967309i \(0.581615\pi\)
\(812\) 0.0996702 0.565258i 0.00349774 0.0198367i
\(813\) 0 0
\(814\) −25.9167 9.43290i −0.908379 0.330623i
\(815\) −7.21941 + 6.05780i −0.252885 + 0.212196i
\(816\) 0 0
\(817\) 42.4124 15.4369i 1.48382 0.540067i
\(818\) 18.0633 31.2866i 0.631568 1.09391i
\(819\) 0 0
\(820\) −3.38666 5.86587i −0.118267 0.204845i
\(821\) 5.12061 + 4.29671i 0.178711 + 0.149956i 0.727755 0.685837i \(-0.240564\pi\)
−0.549044 + 0.835793i \(0.685008\pi\)
\(822\) 0 0
\(823\) −1.34343 7.61895i −0.0468289 0.265580i 0.952400 0.304852i \(-0.0986071\pi\)
−0.999229 + 0.0392725i \(0.987496\pi\)
\(824\) −0.560307 3.17766i −0.0195192 0.110699i
\(825\) 0 0
\(826\) −18.9008 15.8597i −0.657643 0.551828i
\(827\) 23.4038 + 40.5366i 0.813830 + 1.40959i 0.910165 + 0.414245i \(0.135954\pi\)
−0.0963358 + 0.995349i \(0.530712\pi\)
\(828\) 0 0
\(829\) 22.6648 39.2566i 0.787180 1.36344i −0.140507 0.990080i \(-0.544873\pi\)
0.927688 0.373357i \(-0.121793\pi\)
\(830\) −3.68004 + 1.33943i −0.127736 + 0.0464922i
\(831\) 0 0
\(832\) −2.83022 + 2.37484i −0.0981203 + 0.0823327i
\(833\) 32.1536 + 11.7030i 1.11406 + 0.405484i
\(834\) 0 0
\(835\) 1.96972 11.1708i 0.0681650 0.386583i
\(836\) −14.9044 −0.515478
\(837\) 0 0
\(838\) −19.7128 −0.680966
\(839\) −1.81924 + 10.3174i −0.0628071 + 0.356197i 0.937166 + 0.348883i \(0.113439\pi\)
−0.999973 + 0.00731353i \(0.997672\pi\)
\(840\) 0 0
\(841\) 27.2263 + 9.90955i 0.938837 + 0.341709i
\(842\) 2.63041 2.20718i 0.0906501 0.0760645i
\(843\) 0 0
\(844\) 5.01842 1.82655i 0.172741 0.0628726i
\(845\) −0.285807 + 0.495032i −0.00983206 + 0.0170296i
\(846\) 0 0
\(847\) 3.13176 + 5.42437i 0.107609 + 0.186383i
\(848\) −0.549163 0.460802i −0.0188583 0.0158240i
\(849\) 0 0
\(850\) 4.58647 + 26.0111i 0.157315 + 0.892175i
\(851\) 2.76604 + 15.6870i 0.0948188 + 0.537744i
\(852\) 0 0
\(853\) 27.4932 + 23.0695i 0.941349 + 0.789886i 0.977820 0.209449i \(-0.0671671\pi\)
−0.0364705 + 0.999335i \(0.511612\pi\)
\(854\) −2.24035 3.88040i −0.0766633 0.132785i
\(855\) 0 0
\(856\) −1.14156 + 1.97724i −0.0390177 + 0.0675806i
\(857\) −15.5488 + 5.65928i −0.531135 + 0.193317i −0.593645 0.804727i \(-0.702312\pi\)
0.0625099 + 0.998044i \(0.480089\pi\)
\(858\) 0 0
\(859\) 10.8369 9.09321i 0.369749 0.310256i −0.438913 0.898529i \(-0.644636\pi\)
0.808662 + 0.588273i \(0.200192\pi\)
\(860\) 8.94356 + 3.25519i 0.304973 + 0.111001i
\(861\) 0 0
\(862\) 4.98633 28.2789i 0.169835 0.963182i
\(863\) 32.8939 1.11972 0.559861 0.828586i \(-0.310854\pi\)
0.559861 + 0.828586i \(0.310854\pi\)
\(864\) 0 0
\(865\) −11.3200 −0.384890
\(866\) −2.45155 + 13.9034i −0.0833071 + 0.472458i
\(867\) 0 0
\(868\) 5.43717 + 1.97897i 0.184549 + 0.0671705i
\(869\) 18.1205 15.2049i 0.614694 0.515790i
\(870\) 0 0
\(871\) 12.4855 4.54433i 0.423053 0.153979i
\(872\) −5.20961 + 9.02330i −0.176420 + 0.305568i
\(873\) 0 0
\(874\) 4.30406 + 7.45486i 0.145587 + 0.252164i
\(875\) 21.9538 + 18.4215i 0.742175 + 0.622759i
\(876\) 0 0
\(877\) 4.15627 + 23.5714i 0.140347 + 0.795949i 0.970986 + 0.239137i \(0.0768645\pi\)
−0.830639 + 0.556812i \(0.812024\pi\)
\(878\) 2.69506 + 15.2844i 0.0909539 + 0.515825i
\(879\) 0 0
\(880\) −2.40760 2.02022i −0.0811603 0.0681016i
\(881\) −9.34183 16.1805i −0.314734 0.545136i 0.664647 0.747158i \(-0.268582\pi\)
−0.979381 + 0.202022i \(0.935249\pi\)
\(882\) 0 0
\(883\) 2.99407 5.18588i 0.100758 0.174519i −0.811239 0.584715i \(-0.801206\pi\)
0.911997 + 0.410196i \(0.134540\pi\)
\(884\) −21.6951 + 7.89636i −0.729684 + 0.265583i
\(885\) 0 0
\(886\) 27.3897 22.9826i 0.920173 0.772117i
\(887\) 7.36231 + 2.67966i 0.247202 + 0.0899742i 0.462650 0.886541i \(-0.346899\pi\)
−0.215447 + 0.976515i \(0.569121\pi\)
\(888\) 0 0
\(889\) 6.07620 34.4598i 0.203789 1.15575i
\(890\) −8.13341 −0.272632
\(891\) 0 0
\(892\) −19.0496 −0.637829
\(893\) 4.64290 26.3312i 0.155369 0.881140i
\(894\) 0 0
\(895\) −7.40673 2.69583i −0.247580 0.0901116i
\(896\) −2.70574 + 2.27038i −0.0903923 + 0.0758482i
\(897\) 0 0
\(898\) −24.1621 + 8.79428i −0.806299 + 0.293469i
\(899\) 0.133103 0.230542i 0.00443924 0.00768899i
\(900\) 0 0
\(901\) −2.23989 3.87960i −0.0746214 0.129248i
\(902\) −21.0876 17.6946i −0.702142 0.589167i
\(903\) 0 0
\(904\) −1.93330 10.9643i −0.0643005 0.364666i
\(905\) −0.303186 1.71945i −0.0100782 0.0571565i
\(906\) 0 0
\(907\) −8.30928 6.97231i −0.275905 0.231512i 0.494326 0.869276i \(-0.335415\pi\)
−0.770231 + 0.637765i \(0.779859\pi\)
\(908\) −1.73055 2.99740i −0.0574304 0.0994723i
\(909\) 0 0
\(910\) −5.73783 + 9.93821i −0.190207 + 0.329448i
\(911\) 28.4402 10.3514i 0.942265 0.342956i 0.175205 0.984532i \(-0.443941\pi\)
0.767060 + 0.641576i \(0.221719\pi\)
\(912\) 0 0
\(913\) −12.1925 + 10.2308i −0.403514 + 0.338588i
\(914\) −1.90983 0.695120i −0.0631714 0.0229925i
\(915\) 0 0
\(916\) −5.02528 + 28.4998i −0.166040 + 0.941660i
\(917\) −31.8949 −1.05326
\(918\) 0 0
\(919\) 16.3492 0.539309 0.269655 0.962957i \(-0.413090\pi\)
0.269655 + 0.962957i \(0.413090\pi\)
\(920\) −0.315207 + 1.78763i −0.0103921 + 0.0589364i
\(921\) 0 0
\(922\) 20.2729 + 7.37874i 0.667653 + 0.243006i
\(923\) −38.3207 + 32.1549i −1.26134 + 1.05839i
\(924\) 0 0
\(925\) −30.6498 + 11.1556i −1.00776 + 0.366794i
\(926\) 10.8007 18.7073i 0.354932 0.614760i
\(927\) 0 0
\(928\) 0.0812519 + 0.140732i 0.00266722 + 0.00461977i
\(929\) 30.5107 + 25.6015i 1.00102 + 0.839959i 0.987126 0.159944i \(-0.0511313\pi\)
0.0138986 + 0.999903i \(0.495576\pi\)
\(930\) 0 0
\(931\) 3.96522 + 22.4879i 0.129955 + 0.737011i
\(932\) 1.15657 + 6.55926i 0.0378848 + 0.214856i
\(933\) 0 0
\(934\) −18.7867 15.7639i −0.614721 0.515812i
\(935\) −9.81996 17.0087i −0.321147 0.556243i
\(936\) 0 0
\(937\) −24.4124 + 42.2835i −0.797519 + 1.38134i 0.123709 + 0.992319i \(0.460521\pi\)
−0.921228 + 0.389024i \(0.872812\pi\)
\(938\) 11.9363 4.34445i 0.389734 0.141851i
\(939\) 0 0
\(940\) 4.31908 3.62414i 0.140873 0.118206i
\(941\) 11.8751 + 4.32218i 0.387117 + 0.140899i 0.528245 0.849092i \(-0.322850\pi\)
−0.141127 + 0.989991i \(0.545073\pi\)
\(942\) 0 0
\(943\) −2.76083 + 15.6574i −0.0899050 + 0.509877i
\(944\) 6.98545 0.227357
\(945\) 0 0
\(946\) 38.6810 1.25763
\(947\) −6.60261 + 37.4452i −0.214556 + 1.21681i 0.667120 + 0.744951i \(0.267527\pi\)
−0.881675 + 0.471856i \(0.843584\pi\)
\(948\) 0 0
\(949\) −8.08125 2.94134i −0.262329 0.0954798i
\(950\) −13.5025 + 11.3300i −0.438080 + 0.367593i
\(951\) 0 0
\(952\) −20.7408 + 7.54904i −0.672214 + 0.244666i
\(953\) 7.95353 13.7759i 0.257640 0.446245i −0.707969 0.706243i \(-0.750388\pi\)
0.965609 + 0.259998i \(0.0837218\pi\)
\(954\) 0 0
\(955\) 5.76945 + 9.99298i 0.186695 + 0.323365i
\(956\) −5.96657 5.00654i −0.192973 0.161923i
\(957\) 0 0
\(958\) −2.48767 14.1083i −0.0803731 0.455818i
\(959\) 1.24345 + 7.05196i 0.0401531 + 0.227720i
\(960\) 0 0
\(961\) −21.6917 18.2015i −0.699731 0.587144i
\(962\) −14.2554 24.6910i −0.459611 0.796070i
\(963\) 0 0
\(964\) −10.9474 + 18.9615i −0.352593 + 0.610709i
\(965\) −4.75655 + 1.73124i −0.153119 + 0.0557307i
\(966\) 0 0
\(967\) −45.3023 + 38.0132i −1.45682 + 1.22242i −0.529420 + 0.848360i \(0.677590\pi\)
−0.927404 + 0.374060i \(0.877965\pi\)
\(968\) −1.66637 0.606511i −0.0535593 0.0194940i
\(969\) 0 0
\(970\) −1.72416 + 9.77817i −0.0553593 + 0.313958i
\(971\) 9.68004 0.310647 0.155324 0.987864i \(-0.450358\pi\)
0.155324 + 0.987864i \(0.450358\pi\)
\(972\) 0 0
\(973\) −0.583473 −0.0187053
\(974\) 5.61081 31.8205i 0.179782 1.01959i
\(975\) 0 0
\(976\) 1.19207 + 0.433877i 0.0381571 + 0.0138881i
\(977\) −2.64955 + 2.22324i −0.0847666 + 0.0711276i −0.684186 0.729307i \(-0.739842\pi\)
0.599420 + 0.800435i \(0.295398\pi\)
\(978\) 0 0
\(979\) −31.0621 + 11.3057i −0.992750 + 0.361331i
\(980\) −2.40760 + 4.17009i −0.0769081 + 0.133209i
\(981\) 0 0
\(982\) 16.2246 + 28.1019i 0.517748 + 0.896767i
\(983\) 32.2649 + 27.0735i 1.02909 + 0.863510i 0.990743 0.135754i \(-0.0433458\pi\)
0.0383486 + 0.999264i \(0.487790\pi\)
\(984\) 0 0
\(985\) 4.07428 + 23.1064i 0.129817 + 0.736231i
\(986\) 0.176337 + 1.00005i 0.00561570 + 0.0318482i
\(987\) 0 0
\(988\) −11.8027 9.90366i −0.375495 0.315077i
\(989\) −11.1702 19.3474i −0.355193 0.615213i
\(990\) 0 0
\(991\) 9.26786 16.0524i 0.294403 0.509921i −0.680443 0.732801i \(-0.738213\pi\)
0.974846 + 0.222880i \(0.0715458\pi\)
\(992\) −1.53936 + 0.560282i −0.0488748 + 0.0177890i
\(993\) 0 0
\(994\) −36.6352 + 30.7406i −1.16200 + 0.975033i
\(995\) 8.79503 + 3.20113i 0.278821 + 0.101483i
\(996\) 0 0
\(997\) −1.90879 + 10.8253i −0.0604519 + 0.342839i 0.939548 + 0.342417i \(0.111246\pi\)
−1.00000 0.000422427i \(0.999866\pi\)
\(998\) −24.8307 −0.786002
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.2.e.a.73.1 6
3.2 odd 2 54.2.e.a.25.1 yes 6
9.2 odd 6 486.2.e.b.55.1 6
9.4 even 3 486.2.e.a.379.1 6
9.5 odd 6 486.2.e.d.379.1 6
9.7 even 3 486.2.e.c.55.1 6
12.11 even 2 432.2.u.a.241.1 6
27.2 odd 18 1458.2.c.d.487.3 6
27.4 even 9 486.2.e.a.109.1 6
27.5 odd 18 486.2.e.b.433.1 6
27.7 even 9 1458.2.c.a.973.1 6
27.11 odd 18 1458.2.a.a.1.1 3
27.13 even 9 inner 162.2.e.a.91.1 6
27.14 odd 18 54.2.e.a.13.1 6
27.16 even 9 1458.2.a.d.1.3 3
27.20 odd 18 1458.2.c.d.973.3 6
27.22 even 9 486.2.e.c.433.1 6
27.23 odd 18 486.2.e.d.109.1 6
27.25 even 9 1458.2.c.a.487.1 6
108.95 even 18 432.2.u.a.337.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.2.e.a.13.1 6 27.14 odd 18
54.2.e.a.25.1 yes 6 3.2 odd 2
162.2.e.a.73.1 6 1.1 even 1 trivial
162.2.e.a.91.1 6 27.13 even 9 inner
432.2.u.a.241.1 6 12.11 even 2
432.2.u.a.337.1 6 108.95 even 18
486.2.e.a.109.1 6 27.4 even 9
486.2.e.a.379.1 6 9.4 even 3
486.2.e.b.55.1 6 9.2 odd 6
486.2.e.b.433.1 6 27.5 odd 18
486.2.e.c.55.1 6 9.7 even 3
486.2.e.c.433.1 6 27.22 even 9
486.2.e.d.109.1 6 27.23 odd 18
486.2.e.d.379.1 6 9.5 odd 6
1458.2.a.a.1.1 3 27.11 odd 18
1458.2.a.d.1.3 3 27.16 even 9
1458.2.c.a.487.1 6 27.25 even 9
1458.2.c.a.973.1 6 27.7 even 9
1458.2.c.d.487.3 6 27.2 odd 18
1458.2.c.d.973.3 6 27.20 odd 18