Properties

Label 162.2.e.a.145.1
Level $162$
Weight $2$
Character 162.145
Analytic conductor $1.294$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(19,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 145.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 162.145
Dual form 162.2.e.a.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 - 0.342020i) q^{2} +(0.766044 + 0.642788i) q^{4} +(-0.439693 + 2.49362i) q^{5} +(-1.79813 + 1.50881i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(1.26604 - 2.19285i) q^{10} +(0.745100 + 4.22567i) q^{11} +(-0.713011 + 0.259515i) q^{13} +(2.20574 - 0.802823i) q^{14} +(0.173648 + 0.984808i) q^{16} +(2.46064 - 4.26195i) q^{17} +(3.62449 + 6.27779i) q^{19} +(-1.93969 + 1.62760i) q^{20} +(0.745100 - 4.22567i) q^{22} +(0.233956 + 0.196312i) q^{23} +(-1.32635 - 0.482753i) q^{25} +0.758770 q^{26} -2.34730 q^{28} +(-2.91875 - 1.06234i) q^{29} +(-6.58512 - 5.52557i) q^{31} +(0.173648 - 0.984808i) q^{32} +(-3.76991 + 3.16333i) q^{34} +(-2.97178 - 5.14728i) q^{35} +(3.78699 - 6.55926i) q^{37} +(-1.25877 - 7.13884i) q^{38} +(2.37939 - 0.866025i) q^{40} +(4.60607 - 1.67647i) q^{41} +(-0.283119 - 1.60565i) q^{43} +(-2.14543 + 3.71599i) q^{44} +(-0.152704 - 0.264490i) q^{46} +(1.39053 - 1.16679i) q^{47} +(-0.258770 + 1.46756i) q^{49} +(1.08125 + 0.907278i) q^{50} +(-0.713011 - 0.259515i) q^{52} -0.573978 q^{53} -10.8648 q^{55} +(2.20574 + 0.802823i) q^{56} +(2.37939 + 1.99654i) q^{58} +(-0.950837 + 5.39246i) q^{59} +(8.46451 - 7.10257i) q^{61} +(4.29813 + 7.44459i) q^{62} +(-0.500000 + 0.866025i) q^{64} +(-0.333626 - 1.89209i) q^{65} +(-0.0393628 + 0.0143269i) q^{67} +(4.62449 - 1.68317i) q^{68} +(1.03209 + 5.85327i) q^{70} +(-2.10220 + 3.64111i) q^{71} +(5.54576 + 9.60554i) q^{73} +(-5.80200 + 4.86846i) q^{74} +(-1.25877 + 7.13884i) q^{76} +(-7.71554 - 6.47410i) q^{77} +(6.92989 + 2.52227i) q^{79} -2.53209 q^{80} -4.90167 q^{82} +(6.41147 + 2.33359i) q^{83} +(9.54576 + 8.00984i) q^{85} +(-0.283119 + 1.60565i) q^{86} +(3.28699 - 2.75811i) q^{88} +(3.96064 + 6.86002i) q^{89} +(0.890530 - 1.54244i) q^{91} +(0.0530334 + 0.300767i) q^{92} +(-1.70574 + 0.620838i) q^{94} +(-17.2481 + 6.27779i) q^{95} +(-0.570108 - 3.23324i) q^{97} +(0.745100 - 1.29055i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} - 3 q^{8} + 3 q^{10} + 3 q^{11} - 12 q^{13} + 3 q^{14} + 6 q^{17} + 9 q^{19} - 6 q^{20} + 3 q^{22} + 6 q^{23} - 9 q^{25} - 18 q^{26} - 12 q^{28} - 15 q^{29} - 18 q^{31} + 6 q^{34}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 0.342020i −0.664463 0.241845i
\(3\) 0 0
\(4\) 0.766044 + 0.642788i 0.383022 + 0.321394i
\(5\) −0.439693 + 2.49362i −0.196637 + 1.11518i 0.713432 + 0.700724i \(0.247140\pi\)
−0.910069 + 0.414457i \(0.863972\pi\)
\(6\) 0 0
\(7\) −1.79813 + 1.50881i −0.679631 + 0.570278i −0.915898 0.401410i \(-0.868520\pi\)
0.236268 + 0.971688i \(0.424076\pi\)
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) 0 0
\(10\) 1.26604 2.19285i 0.400358 0.693441i
\(11\) 0.745100 + 4.22567i 0.224656 + 1.27409i 0.863342 + 0.504620i \(0.168367\pi\)
−0.638685 + 0.769468i \(0.720521\pi\)
\(12\) 0 0
\(13\) −0.713011 + 0.259515i −0.197754 + 0.0719765i −0.438998 0.898488i \(-0.644667\pi\)
0.241245 + 0.970464i \(0.422444\pi\)
\(14\) 2.20574 0.802823i 0.589508 0.214563i
\(15\) 0 0
\(16\) 0.173648 + 0.984808i 0.0434120 + 0.246202i
\(17\) 2.46064 4.26195i 0.596792 1.03367i −0.396499 0.918035i \(-0.629775\pi\)
0.993291 0.115639i \(-0.0368917\pi\)
\(18\) 0 0
\(19\) 3.62449 + 6.27779i 0.831514 + 1.44022i 0.896837 + 0.442360i \(0.145859\pi\)
−0.0653235 + 0.997864i \(0.520808\pi\)
\(20\) −1.93969 + 1.62760i −0.433728 + 0.363941i
\(21\) 0 0
\(22\) 0.745100 4.22567i 0.158856 0.900916i
\(23\) 0.233956 + 0.196312i 0.0487831 + 0.0409339i 0.666853 0.745189i \(-0.267641\pi\)
−0.618070 + 0.786123i \(0.712085\pi\)
\(24\) 0 0
\(25\) −1.32635 0.482753i −0.265270 0.0965505i
\(26\) 0.758770 0.148807
\(27\) 0 0
\(28\) −2.34730 −0.443597
\(29\) −2.91875 1.06234i −0.541998 0.197271i 0.0564897 0.998403i \(-0.482009\pi\)
−0.598488 + 0.801132i \(0.704231\pi\)
\(30\) 0 0
\(31\) −6.58512 5.52557i −1.18272 0.992422i −0.999957 0.00926586i \(-0.997051\pi\)
−0.182766 0.983156i \(-0.558505\pi\)
\(32\) 0.173648 0.984808i 0.0306970 0.174091i
\(33\) 0 0
\(34\) −3.76991 + 3.16333i −0.646535 + 0.542507i
\(35\) −2.97178 5.14728i −0.502323 0.870049i
\(36\) 0 0
\(37\) 3.78699 6.55926i 0.622577 1.07834i −0.366427 0.930447i \(-0.619419\pi\)
0.989004 0.147888i \(-0.0472477\pi\)
\(38\) −1.25877 7.13884i −0.204200 1.15807i
\(39\) 0 0
\(40\) 2.37939 0.866025i 0.376214 0.136931i
\(41\) 4.60607 1.67647i 0.719347 0.261821i 0.0436983 0.999045i \(-0.486086\pi\)
0.675648 + 0.737224i \(0.263864\pi\)
\(42\) 0 0
\(43\) −0.283119 1.60565i −0.0431752 0.244859i 0.955580 0.294730i \(-0.0952298\pi\)
−0.998756 + 0.0498718i \(0.984119\pi\)
\(44\) −2.14543 + 3.71599i −0.323436 + 0.560207i
\(45\) 0 0
\(46\) −0.152704 0.264490i −0.0225149 0.0389970i
\(47\) 1.39053 1.16679i 0.202830 0.170194i −0.535715 0.844399i \(-0.679958\pi\)
0.738545 + 0.674205i \(0.235513\pi\)
\(48\) 0 0
\(49\) −0.258770 + 1.46756i −0.0369672 + 0.209651i
\(50\) 1.08125 + 0.907278i 0.152912 + 0.128308i
\(51\) 0 0
\(52\) −0.713011 0.259515i −0.0988768 0.0359882i
\(53\) −0.573978 −0.0788419 −0.0394210 0.999223i \(-0.512551\pi\)
−0.0394210 + 0.999223i \(0.512551\pi\)
\(54\) 0 0
\(55\) −10.8648 −1.46501
\(56\) 2.20574 + 0.802823i 0.294754 + 0.107282i
\(57\) 0 0
\(58\) 2.37939 + 1.99654i 0.312429 + 0.262159i
\(59\) −0.950837 + 5.39246i −0.123788 + 0.702039i 0.858232 + 0.513263i \(0.171563\pi\)
−0.982020 + 0.188777i \(0.939548\pi\)
\(60\) 0 0
\(61\) 8.46451 7.10257i 1.08377 0.909390i 0.0875408 0.996161i \(-0.472099\pi\)
0.996228 + 0.0867707i \(0.0276547\pi\)
\(62\) 4.29813 + 7.44459i 0.545863 + 0.945463i
\(63\) 0 0
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −0.333626 1.89209i −0.0413812 0.234684i
\(66\) 0 0
\(67\) −0.0393628 + 0.0143269i −0.00480894 + 0.00175031i −0.344423 0.938814i \(-0.611926\pi\)
0.339615 + 0.940565i \(0.389703\pi\)
\(68\) 4.62449 1.68317i 0.560801 0.204115i
\(69\) 0 0
\(70\) 1.03209 + 5.85327i 0.123358 + 0.699599i
\(71\) −2.10220 + 3.64111i −0.249485 + 0.432120i −0.963383 0.268129i \(-0.913595\pi\)
0.713898 + 0.700250i \(0.246928\pi\)
\(72\) 0 0
\(73\) 5.54576 + 9.60554i 0.649082 + 1.12424i 0.983342 + 0.181762i \(0.0581802\pi\)
−0.334260 + 0.942481i \(0.608487\pi\)
\(74\) −5.80200 + 4.86846i −0.674469 + 0.565947i
\(75\) 0 0
\(76\) −1.25877 + 7.13884i −0.144391 + 0.818881i
\(77\) −7.71554 6.47410i −0.879267 0.737793i
\(78\) 0 0
\(79\) 6.92989 + 2.52227i 0.779674 + 0.283778i 0.701037 0.713125i \(-0.252721\pi\)
0.0786372 + 0.996903i \(0.474943\pi\)
\(80\) −2.53209 −0.283096
\(81\) 0 0
\(82\) −4.90167 −0.541299
\(83\) 6.41147 + 2.33359i 0.703751 + 0.256144i 0.669011 0.743252i \(-0.266718\pi\)
0.0347393 + 0.999396i \(0.488940\pi\)
\(84\) 0 0
\(85\) 9.54576 + 8.00984i 1.03538 + 0.868789i
\(86\) −0.283119 + 1.60565i −0.0305295 + 0.173141i
\(87\) 0 0
\(88\) 3.28699 2.75811i 0.350394 0.294016i
\(89\) 3.96064 + 6.86002i 0.419827 + 0.727161i 0.995922 0.0902216i \(-0.0287575\pi\)
−0.576095 + 0.817383i \(0.695424\pi\)
\(90\) 0 0
\(91\) 0.890530 1.54244i 0.0933529 0.161692i
\(92\) 0.0530334 + 0.300767i 0.00552912 + 0.0313572i
\(93\) 0 0
\(94\) −1.70574 + 0.620838i −0.175933 + 0.0640345i
\(95\) −17.2481 + 6.27779i −1.76962 + 0.644088i
\(96\) 0 0
\(97\) −0.570108 3.23324i −0.0578857 0.328286i 0.942089 0.335362i \(-0.108859\pi\)
−0.999975 + 0.00707624i \(0.997748\pi\)
\(98\) 0.745100 1.29055i 0.0752665 0.130365i
\(99\) 0 0
\(100\) −0.705737 1.22237i −0.0705737 0.122237i
\(101\) 9.18732 7.70908i 0.914172 0.767082i −0.0587358 0.998274i \(-0.518707\pi\)
0.972908 + 0.231192i \(0.0742625\pi\)
\(102\) 0 0
\(103\) 0.418748 2.37484i 0.0412605 0.234000i −0.957203 0.289418i \(-0.906538\pi\)
0.998463 + 0.0554184i \(0.0176493\pi\)
\(104\) 0.581252 + 0.487728i 0.0569964 + 0.0478257i
\(105\) 0 0
\(106\) 0.539363 + 0.196312i 0.0523876 + 0.0190675i
\(107\) 2.42602 0.234532 0.117266 0.993101i \(-0.462587\pi\)
0.117266 + 0.993101i \(0.462587\pi\)
\(108\) 0 0
\(109\) −2.32770 −0.222953 −0.111476 0.993767i \(-0.535558\pi\)
−0.111476 + 0.993767i \(0.535558\pi\)
\(110\) 10.2096 + 3.71599i 0.973448 + 0.354306i
\(111\) 0 0
\(112\) −1.79813 1.50881i −0.169908 0.142569i
\(113\) 2.96198 16.7982i 0.278640 1.58024i −0.448518 0.893774i \(-0.648048\pi\)
0.727157 0.686471i \(-0.240841\pi\)
\(114\) 0 0
\(115\) −0.592396 + 0.497079i −0.0552412 + 0.0463529i
\(116\) −1.55303 2.68993i −0.144196 0.249754i
\(117\) 0 0
\(118\) 2.73783 4.74205i 0.252037 0.436541i
\(119\) 2.00593 + 11.3762i 0.183883 + 1.04285i
\(120\) 0 0
\(121\) −6.96451 + 2.53487i −0.633137 + 0.230443i
\(122\) −10.3833 + 3.77920i −0.940056 + 0.342152i
\(123\) 0 0
\(124\) −1.49273 8.46567i −0.134051 0.760240i
\(125\) −4.54323 + 7.86911i −0.406359 + 0.703835i
\(126\) 0 0
\(127\) −6.32295 10.9517i −0.561071 0.971803i −0.997403 0.0720178i \(-0.977056\pi\)
0.436332 0.899786i \(-0.356277\pi\)
\(128\) 0.766044 0.642788i 0.0677094 0.0568149i
\(129\) 0 0
\(130\) −0.333626 + 1.89209i −0.0292609 + 0.165947i
\(131\) 3.97565 + 3.33597i 0.347354 + 0.291465i 0.799727 0.600364i \(-0.204978\pi\)
−0.452372 + 0.891829i \(0.649422\pi\)
\(132\) 0 0
\(133\) −15.9893 5.81964i −1.38645 0.504627i
\(134\) 0.0418891 0.00361866
\(135\) 0 0
\(136\) −4.92127 −0.421996
\(137\) −16.0817 5.85327i −1.37395 0.500078i −0.453614 0.891198i \(-0.649866\pi\)
−0.920340 + 0.391120i \(0.872088\pi\)
\(138\) 0 0
\(139\) 9.34389 + 7.84046i 0.792539 + 0.665019i 0.946372 0.323078i \(-0.104718\pi\)
−0.153834 + 0.988097i \(0.549162\pi\)
\(140\) 1.03209 5.85327i 0.0872274 0.494691i
\(141\) 0 0
\(142\) 3.22075 2.70253i 0.270279 0.226791i
\(143\) −1.62789 2.81959i −0.136131 0.235786i
\(144\) 0 0
\(145\) 3.93242 6.81115i 0.326570 0.565635i
\(146\) −1.92602 10.9230i −0.159399 0.903995i
\(147\) 0 0
\(148\) 7.11721 2.59045i 0.585031 0.212934i
\(149\) 7.23783 2.63435i 0.592946 0.215815i −0.0280788 0.999606i \(-0.508939\pi\)
0.621025 + 0.783791i \(0.286717\pi\)
\(150\) 0 0
\(151\) −0.135630 0.769193i −0.0110374 0.0625961i 0.978792 0.204858i \(-0.0656734\pi\)
−0.989829 + 0.142262i \(0.954562\pi\)
\(152\) 3.62449 6.27779i 0.293985 0.509196i
\(153\) 0 0
\(154\) 5.03596 + 8.72254i 0.405809 + 0.702882i
\(155\) 16.6741 13.9912i 1.33930 1.12380i
\(156\) 0 0
\(157\) −1.80793 + 10.2533i −0.144289 + 0.818302i 0.823647 + 0.567103i \(0.191936\pi\)
−0.967935 + 0.251199i \(0.919175\pi\)
\(158\) −5.64930 4.74033i −0.449434 0.377120i
\(159\) 0 0
\(160\) 2.37939 + 0.866025i 0.188107 + 0.0684653i
\(161\) −0.716881 −0.0564982
\(162\) 0 0
\(163\) −10.5740 −0.828218 −0.414109 0.910227i \(-0.635907\pi\)
−0.414109 + 0.910227i \(0.635907\pi\)
\(164\) 4.60607 + 1.67647i 0.359673 + 0.130910i
\(165\) 0 0
\(166\) −5.22668 4.38571i −0.405669 0.340397i
\(167\) −0.260992 + 1.48016i −0.0201962 + 0.114538i −0.993239 0.116085i \(-0.962965\pi\)
0.973043 + 0.230623i \(0.0740765\pi\)
\(168\) 0 0
\(169\) −9.51754 + 7.98617i −0.732119 + 0.614320i
\(170\) −6.23055 10.7916i −0.477862 0.827680i
\(171\) 0 0
\(172\) 0.815207 1.41198i 0.0621590 0.107663i
\(173\) 1.93629 + 10.9812i 0.147213 + 0.834888i 0.965563 + 0.260168i \(0.0837780\pi\)
−0.818350 + 0.574720i \(0.805111\pi\)
\(174\) 0 0
\(175\) 3.11334 1.13316i 0.235346 0.0856591i
\(176\) −4.03209 + 1.46756i −0.303930 + 0.110622i
\(177\) 0 0
\(178\) −1.37551 7.80093i −0.103099 0.584705i
\(179\) 3.90420 6.76227i 0.291814 0.505436i −0.682425 0.730956i \(-0.739075\pi\)
0.974239 + 0.225520i \(0.0724080\pi\)
\(180\) 0 0
\(181\) −5.23783 9.07218i −0.389325 0.674330i 0.603034 0.797715i \(-0.293958\pi\)
−0.992359 + 0.123385i \(0.960625\pi\)
\(182\) −1.36437 + 1.14484i −0.101134 + 0.0848614i
\(183\) 0 0
\(184\) 0.0530334 0.300767i 0.00390968 0.0221729i
\(185\) 14.6912 + 12.3274i 1.08012 + 0.906326i
\(186\) 0 0
\(187\) 19.8430 + 7.22227i 1.45107 + 0.528144i
\(188\) 1.81521 0.132388
\(189\) 0 0
\(190\) 18.3550 1.33161
\(191\) −11.4918 4.18269i −0.831521 0.302649i −0.109038 0.994038i \(-0.534777\pi\)
−0.722483 + 0.691389i \(0.756999\pi\)
\(192\) 0 0
\(193\) −12.5385 10.5210i −0.902540 0.757321i 0.0681452 0.997675i \(-0.478292\pi\)
−0.970685 + 0.240354i \(0.922736\pi\)
\(194\) −0.570108 + 3.23324i −0.0409313 + 0.232133i
\(195\) 0 0
\(196\) −1.14156 + 0.957882i −0.0815399 + 0.0684201i
\(197\) 9.49794 + 16.4509i 0.676700 + 1.17208i 0.975969 + 0.217910i \(0.0699240\pi\)
−0.299269 + 0.954169i \(0.596743\pi\)
\(198\) 0 0
\(199\) −11.5214 + 19.9557i −0.816731 + 1.41462i 0.0913469 + 0.995819i \(0.470883\pi\)
−0.908078 + 0.418801i \(0.862451\pi\)
\(200\) 0.245100 + 1.39003i 0.0173312 + 0.0982900i
\(201\) 0 0
\(202\) −11.2699 + 4.10191i −0.792948 + 0.288610i
\(203\) 6.85117 2.49362i 0.480858 0.175018i
\(204\) 0 0
\(205\) 2.15523 + 12.2229i 0.150528 + 0.853685i
\(206\) −1.20574 + 2.08840i −0.0840077 + 0.145506i
\(207\) 0 0
\(208\) −0.379385 0.657115i −0.0263056 0.0455627i
\(209\) −23.8273 + 19.9935i −1.64817 + 1.38298i
\(210\) 0 0
\(211\) 3.03849 17.2321i 0.209178 1.18631i −0.681550 0.731771i \(-0.738694\pi\)
0.890728 0.454536i \(-0.150195\pi\)
\(212\) −0.439693 0.368946i −0.0301982 0.0253393i
\(213\) 0 0
\(214\) −2.27972 0.829748i −0.155838 0.0567204i
\(215\) 4.12836 0.281552
\(216\) 0 0
\(217\) 20.1780 1.36977
\(218\) 2.18732 + 0.796119i 0.148144 + 0.0539200i
\(219\) 0 0
\(220\) −8.32295 6.98378i −0.561133 0.470847i
\(221\) −0.648423 + 3.67739i −0.0436176 + 0.247368i
\(222\) 0 0
\(223\) −3.23190 + 2.71188i −0.216424 + 0.181601i −0.744554 0.667562i \(-0.767338\pi\)
0.528130 + 0.849163i \(0.322893\pi\)
\(224\) 1.17365 + 2.03282i 0.0784177 + 0.135823i
\(225\) 0 0
\(226\) −8.52869 + 14.7721i −0.567320 + 0.982627i
\(227\) −2.77244 15.7233i −0.184013 1.04359i −0.927216 0.374526i \(-0.877806\pi\)
0.743203 0.669066i \(-0.233306\pi\)
\(228\) 0 0
\(229\) 16.7713 6.10424i 1.10828 0.403379i 0.277915 0.960606i \(-0.410357\pi\)
0.830361 + 0.557226i \(0.188134\pi\)
\(230\) 0.726682 0.264490i 0.0479160 0.0174400i
\(231\) 0 0
\(232\) 0.539363 + 3.05888i 0.0354109 + 0.200825i
\(233\) −0.368241 + 0.637812i −0.0241243 + 0.0417844i −0.877835 0.478962i \(-0.841013\pi\)
0.853711 + 0.520747i \(0.174346\pi\)
\(234\) 0 0
\(235\) 2.29813 + 3.98048i 0.149914 + 0.259658i
\(236\) −4.19459 + 3.51968i −0.273045 + 0.229112i
\(237\) 0 0
\(238\) 2.00593 11.3762i 0.130025 0.737409i
\(239\) 2.20187 + 1.84759i 0.142427 + 0.119510i 0.711218 0.702972i \(-0.248144\pi\)
−0.568791 + 0.822482i \(0.692589\pi\)
\(240\) 0 0
\(241\) −2.05051 0.746324i −0.132085 0.0480749i 0.275132 0.961406i \(-0.411278\pi\)
−0.407217 + 0.913332i \(0.633501\pi\)
\(242\) 7.41147 0.476428
\(243\) 0 0
\(244\) 11.0496 0.707380
\(245\) −3.54576 1.29055i −0.226530 0.0824503i
\(246\) 0 0
\(247\) −4.21348 3.53553i −0.268097 0.224960i
\(248\) −1.49273 + 8.46567i −0.0947882 + 0.537571i
\(249\) 0 0
\(250\) 6.96064 5.84067i 0.440229 0.369396i
\(251\) −13.0189 22.5494i −0.821745 1.42330i −0.904382 0.426724i \(-0.859668\pi\)
0.0826372 0.996580i \(-0.473666\pi\)
\(252\) 0 0
\(253\) −0.655230 + 1.13489i −0.0411939 + 0.0713500i
\(254\) 2.19594 + 12.4538i 0.137785 + 0.781419i
\(255\) 0 0
\(256\) −0.939693 + 0.342020i −0.0587308 + 0.0213763i
\(257\) 9.38965 3.41755i 0.585710 0.213181i −0.0321313 0.999484i \(-0.510229\pi\)
0.617842 + 0.786302i \(0.288007\pi\)
\(258\) 0 0
\(259\) 3.08718 + 17.5083i 0.191828 + 1.08791i
\(260\) 0.960637 1.66387i 0.0595762 0.103189i
\(261\) 0 0
\(262\) −2.59492 4.49454i −0.160315 0.277673i
\(263\) −11.6612 + 9.78487i −0.719058 + 0.603361i −0.927125 0.374753i \(-0.877727\pi\)
0.208067 + 0.978115i \(0.433283\pi\)
\(264\) 0 0
\(265\) 0.252374 1.43128i 0.0155032 0.0879230i
\(266\) 13.0346 + 10.9373i 0.799204 + 0.670611i
\(267\) 0 0
\(268\) −0.0393628 0.0143269i −0.00240447 0.000875155i
\(269\) −30.5476 −1.86252 −0.931259 0.364358i \(-0.881289\pi\)
−0.931259 + 0.364358i \(0.881289\pi\)
\(270\) 0 0
\(271\) 25.8307 1.56910 0.784551 0.620064i \(-0.212893\pi\)
0.784551 + 0.620064i \(0.212893\pi\)
\(272\) 4.62449 + 1.68317i 0.280401 + 0.102057i
\(273\) 0 0
\(274\) 13.1099 + 11.0005i 0.792000 + 0.664567i
\(275\) 1.05169 5.96443i 0.0634192 0.359668i
\(276\) 0 0
\(277\) −17.1860 + 14.4207i −1.03261 + 0.866459i −0.991159 0.132682i \(-0.957641\pi\)
−0.0414465 + 0.999141i \(0.513197\pi\)
\(278\) −6.09879 10.5634i −0.365781 0.633552i
\(279\) 0 0
\(280\) −2.97178 + 5.14728i −0.177598 + 0.307609i
\(281\) −1.01485 5.75552i −0.0605410 0.343345i −1.00000 0.000683195i \(-0.999783\pi\)
0.939459 0.342662i \(-0.111329\pi\)
\(282\) 0 0
\(283\) 6.96451 2.53487i 0.413997 0.150683i −0.126620 0.991951i \(-0.540413\pi\)
0.540617 + 0.841269i \(0.318191\pi\)
\(284\) −3.95084 + 1.43799i −0.234439 + 0.0853288i
\(285\) 0 0
\(286\) 0.565360 + 3.20631i 0.0334304 + 0.189593i
\(287\) −5.75284 + 9.96421i −0.339579 + 0.588169i
\(288\) 0 0
\(289\) −3.60947 6.25179i −0.212322 0.367752i
\(290\) −6.02481 + 5.05542i −0.353789 + 0.296864i
\(291\) 0 0
\(292\) −1.92602 + 10.9230i −0.112712 + 0.639221i
\(293\) 6.79994 + 5.70583i 0.397257 + 0.333338i 0.819432 0.573176i \(-0.194289\pi\)
−0.422175 + 0.906514i \(0.638733\pi\)
\(294\) 0 0
\(295\) −13.0287 4.74205i −0.758559 0.276093i
\(296\) −7.57398 −0.440229
\(297\) 0 0
\(298\) −7.70233 −0.446184
\(299\) −0.217759 0.0792577i −0.0125933 0.00458359i
\(300\) 0 0
\(301\) 2.93170 + 2.45999i 0.168981 + 0.141792i
\(302\) −0.135630 + 0.769193i −0.00780460 + 0.0442621i
\(303\) 0 0
\(304\) −5.55303 + 4.65955i −0.318488 + 0.267243i
\(305\) 13.9893 + 24.2302i 0.801026 + 1.38742i
\(306\) 0 0
\(307\) 8.04963 13.9424i 0.459417 0.795733i −0.539514 0.841977i \(-0.681392\pi\)
0.998930 + 0.0462440i \(0.0147252\pi\)
\(308\) −1.74897 9.91890i −0.0996568 0.565182i
\(309\) 0 0
\(310\) −20.4538 + 7.44459i −1.16170 + 0.422824i
\(311\) 12.7699 4.64787i 0.724115 0.263556i 0.0464436 0.998921i \(-0.485211\pi\)
0.677672 + 0.735364i \(0.262989\pi\)
\(312\) 0 0
\(313\) −3.73442 21.1790i −0.211082 1.19711i −0.887577 0.460659i \(-0.847613\pi\)
0.676495 0.736447i \(-0.263498\pi\)
\(314\) 5.20574 9.01660i 0.293777 0.508836i
\(315\) 0 0
\(316\) 3.68732 + 6.38662i 0.207428 + 0.359276i
\(317\) 16.1578 13.5580i 0.907510 0.761491i −0.0641337 0.997941i \(-0.520428\pi\)
0.971644 + 0.236450i \(0.0759840\pi\)
\(318\) 0 0
\(319\) 2.31433 13.1252i 0.129578 0.734871i
\(320\) −1.93969 1.62760i −0.108432 0.0909853i
\(321\) 0 0
\(322\) 0.673648 + 0.245188i 0.0375409 + 0.0136638i
\(323\) 35.6742 1.98496
\(324\) 0 0
\(325\) 1.07098 0.0594076
\(326\) 9.93629 + 3.61651i 0.550320 + 0.200300i
\(327\) 0 0
\(328\) −3.75490 3.15074i −0.207330 0.173970i
\(329\) −0.739885 + 4.19610i −0.0407912 + 0.231338i
\(330\) 0 0
\(331\) 12.5929 10.5667i 0.692166 0.580797i −0.227367 0.973809i \(-0.573012\pi\)
0.919533 + 0.393013i \(0.128567\pi\)
\(332\) 3.41147 + 5.90885i 0.187229 + 0.324290i
\(333\) 0 0
\(334\) 0.751497 1.30163i 0.0411201 0.0712220i
\(335\) −0.0184183 0.104455i −0.00100630 0.00570701i
\(336\) 0 0
\(337\) −9.91534 + 3.60889i −0.540123 + 0.196589i −0.597653 0.801755i \(-0.703900\pi\)
0.0575296 + 0.998344i \(0.481678\pi\)
\(338\) 11.6750 4.24935i 0.635036 0.231134i
\(339\) 0 0
\(340\) 2.16385 + 12.2718i 0.117351 + 0.665531i
\(341\) 18.4427 31.9437i 0.998727 1.72985i
\(342\) 0 0
\(343\) −9.96451 17.2590i −0.538033 0.931900i
\(344\) −1.24897 + 1.04801i −0.0673400 + 0.0565049i
\(345\) 0 0
\(346\) 1.93629 10.9812i 0.104096 0.590355i
\(347\) −21.7251 18.2295i −1.16626 0.978612i −0.166292 0.986077i \(-0.553179\pi\)
−0.999972 + 0.00746500i \(0.997624\pi\)
\(348\) 0 0
\(349\) −14.7554 5.37051i −0.789837 0.287477i −0.0845685 0.996418i \(-0.526951\pi\)
−0.705268 + 0.708941i \(0.749173\pi\)
\(350\) −3.31315 −0.177095
\(351\) 0 0
\(352\) 4.29086 0.228704
\(353\) −1.93969 0.705990i −0.103239 0.0375761i 0.289884 0.957062i \(-0.406383\pi\)
−0.393123 + 0.919486i \(0.628605\pi\)
\(354\) 0 0
\(355\) −8.15523 6.84305i −0.432835 0.363191i
\(356\) −1.37551 + 7.80093i −0.0729021 + 0.413449i
\(357\) 0 0
\(358\) −5.98158 + 5.01914i −0.316136 + 0.265270i
\(359\) −17.4820 30.2798i −0.922667 1.59811i −0.795271 0.606255i \(-0.792671\pi\)
−0.127397 0.991852i \(-0.540662\pi\)
\(360\) 0 0
\(361\) −16.7738 + 29.0530i −0.882831 + 1.52911i
\(362\) 1.81908 + 10.3165i 0.0956086 + 0.542223i
\(363\) 0 0
\(364\) 1.67365 0.609158i 0.0877230 0.0319286i
\(365\) −26.3910 + 9.60554i −1.38137 + 0.502777i
\(366\) 0 0
\(367\) −0.0773815 0.438852i −0.00403928 0.0229079i 0.982722 0.185090i \(-0.0592578\pi\)
−0.986761 + 0.162182i \(0.948147\pi\)
\(368\) −0.152704 + 0.264490i −0.00796023 + 0.0137875i
\(369\) 0 0
\(370\) −9.58899 16.6086i −0.498508 0.863441i
\(371\) 1.03209 0.866025i 0.0535834 0.0449618i
\(372\) 0 0
\(373\) −3.83110 + 21.7272i −0.198367 + 1.12499i 0.709175 + 0.705032i \(0.249068\pi\)
−0.907542 + 0.419962i \(0.862044\pi\)
\(374\) −16.1762 13.5734i −0.836450 0.701865i
\(375\) 0 0
\(376\) −1.70574 0.620838i −0.0879667 0.0320173i
\(377\) 2.35679 0.121381
\(378\) 0 0
\(379\) 13.1138 0.673611 0.336806 0.941574i \(-0.390654\pi\)
0.336806 + 0.941574i \(0.390654\pi\)
\(380\) −17.2481 6.27779i −0.884808 0.322044i
\(381\) 0 0
\(382\) 9.36824 + 7.86089i 0.479321 + 0.402198i
\(383\) −2.79767 + 15.8664i −0.142954 + 0.810733i 0.826033 + 0.563622i \(0.190592\pi\)
−0.968987 + 0.247111i \(0.920519\pi\)
\(384\) 0 0
\(385\) 19.5364 16.3930i 0.995668 0.835465i
\(386\) 8.18392 + 14.1750i 0.416550 + 0.721486i
\(387\) 0 0
\(388\) 1.64156 2.84326i 0.0833375 0.144345i
\(389\) −0.0984882 0.558554i −0.00499355 0.0283198i 0.982209 0.187790i \(-0.0601325\pi\)
−0.987203 + 0.159470i \(0.949021\pi\)
\(390\) 0 0
\(391\) 1.41235 0.514054i 0.0714257 0.0259968i
\(392\) 1.40033 0.509678i 0.0707273 0.0257426i
\(393\) 0 0
\(394\) −3.29860 18.7073i −0.166181 0.942460i
\(395\) −9.33662 + 16.1715i −0.469776 + 0.813676i
\(396\) 0 0
\(397\) −18.0107 31.1955i −0.903933 1.56566i −0.822343 0.568992i \(-0.807334\pi\)
−0.0815894 0.996666i \(-0.526000\pi\)
\(398\) 17.6518 14.8116i 0.884806 0.742440i
\(399\) 0 0
\(400\) 0.245100 1.39003i 0.0122550 0.0695015i
\(401\) −27.5724 23.1360i −1.37690 1.15536i −0.970344 0.241730i \(-0.922285\pi\)
−0.406556 0.913626i \(-0.633270\pi\)
\(402\) 0 0
\(403\) 6.12923 + 2.23086i 0.305319 + 0.111127i
\(404\) 11.9932 0.596684
\(405\) 0 0
\(406\) −7.29086 −0.361839
\(407\) 30.5390 + 11.1153i 1.51376 + 0.550963i
\(408\) 0 0
\(409\) 9.71032 + 8.14793i 0.480145 + 0.402889i 0.850479 0.526009i \(-0.176312\pi\)
−0.370334 + 0.928899i \(0.620757\pi\)
\(410\) 2.15523 12.2229i 0.106439 0.603647i
\(411\) 0 0
\(412\) 1.84730 1.55007i 0.0910098 0.0763663i
\(413\) −6.42649 11.1310i −0.316227 0.547721i
\(414\) 0 0
\(415\) −8.63816 + 14.9617i −0.424030 + 0.734442i
\(416\) 0.131759 + 0.747243i 0.00646002 + 0.0366366i
\(417\) 0 0
\(418\) 29.2285 10.6383i 1.42961 0.520336i
\(419\) 13.3991 4.87689i 0.654591 0.238252i 0.00669178 0.999978i \(-0.497870\pi\)
0.647899 + 0.761726i \(0.275648\pi\)
\(420\) 0 0
\(421\) 0.546637 + 3.10013i 0.0266414 + 0.151091i 0.995227 0.0975909i \(-0.0311137\pi\)
−0.968585 + 0.248682i \(0.920003\pi\)
\(422\) −8.74897 + 15.1537i −0.425893 + 0.737669i
\(423\) 0 0
\(424\) 0.286989 + 0.497079i 0.0139374 + 0.0241403i
\(425\) −5.32114 + 4.46496i −0.258113 + 0.216583i
\(426\) 0 0
\(427\) −4.50387 + 25.5427i −0.217958 + 1.23610i
\(428\) 1.85844 + 1.55942i 0.0898311 + 0.0753773i
\(429\) 0 0
\(430\) −3.87939 1.41198i −0.187081 0.0680918i
\(431\) −15.4911 −0.746182 −0.373091 0.927795i \(-0.621702\pi\)
−0.373091 + 0.927795i \(0.621702\pi\)
\(432\) 0 0
\(433\) −2.22844 −0.107092 −0.0535459 0.998565i \(-0.517052\pi\)
−0.0535459 + 0.998565i \(0.517052\pi\)
\(434\) −18.9611 6.90128i −0.910162 0.331272i
\(435\) 0 0
\(436\) −1.78312 1.49621i −0.0853959 0.0716557i
\(437\) −0.384438 + 2.18025i −0.0183901 + 0.104296i
\(438\) 0 0
\(439\) 13.1570 11.0401i 0.627951 0.526914i −0.272340 0.962201i \(-0.587798\pi\)
0.900292 + 0.435287i \(0.143353\pi\)
\(440\) 5.43242 + 9.40923i 0.258980 + 0.448567i
\(441\) 0 0
\(442\) 1.86706 3.23384i 0.0888069 0.153818i
\(443\) 4.10173 + 23.2621i 0.194879 + 1.10521i 0.912591 + 0.408874i \(0.134078\pi\)
−0.717712 + 0.696340i \(0.754810\pi\)
\(444\) 0 0
\(445\) −18.8478 + 6.86002i −0.893470 + 0.325196i
\(446\) 3.96451 1.44296i 0.187725 0.0683263i
\(447\) 0 0
\(448\) −0.407604 2.31164i −0.0192575 0.109215i
\(449\) −10.1295 + 17.5449i −0.478042 + 0.827994i −0.999683 0.0251715i \(-0.991987\pi\)
0.521641 + 0.853165i \(0.325320\pi\)
\(450\) 0 0
\(451\) 10.5162 + 18.2146i 0.495188 + 0.857691i
\(452\) 13.0667 10.9643i 0.614606 0.515716i
\(453\) 0 0
\(454\) −2.77244 + 15.7233i −0.130117 + 0.737931i
\(455\) 3.45471 + 2.89884i 0.161959 + 0.135900i
\(456\) 0 0
\(457\) 38.1143 + 13.8725i 1.78291 + 0.648926i 0.999628 + 0.0272600i \(0.00867822\pi\)
0.783282 + 0.621666i \(0.213544\pi\)
\(458\) −17.8476 −0.833964
\(459\) 0 0
\(460\) −0.773318 −0.0360562
\(461\) 12.8824 + 4.68880i 0.599992 + 0.218379i 0.624119 0.781330i \(-0.285458\pi\)
−0.0241264 + 0.999709i \(0.507680\pi\)
\(462\) 0 0
\(463\) 4.14022 + 3.47405i 0.192412 + 0.161453i 0.733904 0.679253i \(-0.237696\pi\)
−0.541492 + 0.840706i \(0.682140\pi\)
\(464\) 0.539363 3.05888i 0.0250393 0.142005i
\(465\) 0 0
\(466\) 0.564178 0.473401i 0.0261350 0.0219299i
\(467\) 15.7451 + 27.2713i 0.728596 + 1.26197i 0.957477 + 0.288511i \(0.0931603\pi\)
−0.228880 + 0.973455i \(0.573506\pi\)
\(468\) 0 0
\(469\) 0.0491630 0.0851529i 0.00227014 0.00393199i
\(470\) −0.798133 4.52644i −0.0368151 0.208789i
\(471\) 0 0
\(472\) 5.14543 1.87278i 0.236838 0.0862018i
\(473\) 6.57398 2.39273i 0.302272 0.110018i
\(474\) 0 0
\(475\) −1.77672 10.0763i −0.0815216 0.462332i
\(476\) −5.77584 + 10.0041i −0.264735 + 0.458535i
\(477\) 0 0
\(478\) −1.43717 2.48925i −0.0657345 0.113855i
\(479\) 16.0667 13.4816i 0.734106 0.615988i −0.197141 0.980375i \(-0.563166\pi\)
0.931248 + 0.364387i \(0.118721\pi\)
\(480\) 0 0
\(481\) −0.997941 + 5.65960i −0.0455022 + 0.258056i
\(482\) 1.67159 + 1.40263i 0.0761388 + 0.0638880i
\(483\) 0 0
\(484\) −6.96451 2.53487i −0.316569 0.115222i
\(485\) 8.31315 0.377481
\(486\) 0 0
\(487\) −15.4492 −0.700072 −0.350036 0.936736i \(-0.613831\pi\)
−0.350036 + 0.936736i \(0.613831\pi\)
\(488\) −10.3833 3.77920i −0.470028 0.171076i
\(489\) 0 0
\(490\) 2.89053 + 2.42544i 0.130581 + 0.109570i
\(491\) −2.75443 + 15.6212i −0.124306 + 0.704973i 0.857412 + 0.514631i \(0.172071\pi\)
−0.981718 + 0.190343i \(0.939040\pi\)
\(492\) 0 0
\(493\) −11.7096 + 9.82553i −0.527374 + 0.442519i
\(494\) 2.75015 + 4.76340i 0.123735 + 0.214316i
\(495\) 0 0
\(496\) 4.29813 7.44459i 0.192992 0.334272i
\(497\) −1.71373 9.71902i −0.0768711 0.435958i
\(498\) 0 0
\(499\) 7.03596 2.56088i 0.314973 0.114641i −0.179696 0.983722i \(-0.557511\pi\)
0.494669 + 0.869081i \(0.335289\pi\)
\(500\) −8.53849 + 3.10775i −0.381853 + 0.138983i
\(501\) 0 0
\(502\) 4.52141 + 25.6422i 0.201800 + 1.14447i
\(503\) −10.0667 + 17.4360i −0.448852 + 0.777435i −0.998312 0.0580857i \(-0.981500\pi\)
0.549459 + 0.835520i \(0.314834\pi\)
\(504\) 0 0
\(505\) 15.1839 + 26.2993i 0.675675 + 1.17030i
\(506\) 1.00387 0.842347i 0.0446275 0.0374469i
\(507\) 0 0
\(508\) 2.19594 12.4538i 0.0974289 0.552547i
\(509\) 28.7900 + 24.1577i 1.27609 + 1.07077i 0.993770 + 0.111450i \(0.0355496\pi\)
0.282324 + 0.959319i \(0.408895\pi\)
\(510\) 0 0
\(511\) −24.4650 8.90452i −1.08227 0.393913i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −9.99226 −0.440740
\(515\) 5.73783 + 2.08840i 0.252839 + 0.0920258i
\(516\) 0 0
\(517\) 5.96657 + 5.00654i 0.262409 + 0.220188i
\(518\) 3.08718 17.5083i 0.135643 0.769270i
\(519\) 0 0
\(520\) −1.47178 + 1.23497i −0.0645419 + 0.0541571i
\(521\) 13.9645 + 24.1872i 0.611796 + 1.05966i 0.990938 + 0.134323i \(0.0428861\pi\)
−0.379141 + 0.925339i \(0.623781\pi\)
\(522\) 0 0
\(523\) −3.64677 + 6.31640i −0.159462 + 0.276197i −0.934675 0.355504i \(-0.884309\pi\)
0.775213 + 0.631700i \(0.217643\pi\)
\(524\) 0.901207 + 5.11100i 0.0393694 + 0.223275i
\(525\) 0 0
\(526\) 14.3045 5.20642i 0.623707 0.227011i
\(527\) −39.7533 + 14.4690i −1.73168 + 0.630280i
\(528\) 0 0
\(529\) −3.97771 22.5587i −0.172944 0.980814i
\(530\) −0.726682 + 1.25865i −0.0315650 + 0.0546722i
\(531\) 0 0
\(532\) −8.50774 14.7358i −0.368857 0.638880i
\(533\) −2.84911 + 2.39068i −0.123409 + 0.103552i
\(534\) 0 0
\(535\) −1.06670 + 6.04958i −0.0461176 + 0.261546i
\(536\) 0.0320889 + 0.0269258i 0.00138603 + 0.00116302i
\(537\) 0 0
\(538\) 28.7053 + 10.4479i 1.23757 + 0.450440i
\(539\) −6.39424 −0.275419
\(540\) 0 0
\(541\) −2.88444 −0.124012 −0.0620058 0.998076i \(-0.519750\pi\)
−0.0620058 + 0.998076i \(0.519750\pi\)
\(542\) −24.2729 8.83462i −1.04261 0.379479i
\(543\) 0 0
\(544\) −3.76991 3.16333i −0.161634 0.135627i
\(545\) 1.02347 5.80439i 0.0438407 0.248633i
\(546\) 0 0
\(547\) −8.57263 + 7.19329i −0.366539 + 0.307563i −0.807391 0.590017i \(-0.799121\pi\)
0.440851 + 0.897580i \(0.354677\pi\)
\(548\) −8.55690 14.8210i −0.365533 0.633121i
\(549\) 0 0
\(550\) −3.02822 + 5.24503i −0.129124 + 0.223649i
\(551\) −3.90983 22.1737i −0.166564 0.944632i
\(552\) 0 0
\(553\) −16.2665 + 5.92053i −0.691722 + 0.251766i
\(554\) 21.0817 7.67312i 0.895676 0.326000i
\(555\) 0 0
\(556\) 2.11809 + 12.0123i 0.0898270 + 0.509434i
\(557\) 16.6741 28.8804i 0.706505 1.22370i −0.259641 0.965705i \(-0.583604\pi\)
0.966146 0.257997i \(-0.0830625\pi\)
\(558\) 0 0
\(559\) 0.618555 + 1.07137i 0.0261621 + 0.0453141i
\(560\) 4.55303 3.82045i 0.192401 0.161443i
\(561\) 0 0
\(562\) −1.01485 + 5.75552i −0.0428090 + 0.242782i
\(563\) −14.1668 11.8874i −0.597061 0.500994i 0.293438 0.955978i \(-0.405200\pi\)
−0.890500 + 0.454984i \(0.849645\pi\)
\(564\) 0 0
\(565\) 40.5861 + 14.7721i 1.70747 + 0.621468i
\(566\) −7.41147 −0.311527
\(567\) 0 0
\(568\) 4.20439 0.176412
\(569\) 27.5638 + 10.0324i 1.15553 + 0.420580i 0.847500 0.530796i \(-0.178107\pi\)
0.308033 + 0.951376i \(0.400329\pi\)
\(570\) 0 0
\(571\) 1.50387 + 1.26190i 0.0629350 + 0.0528087i 0.673713 0.738993i \(-0.264699\pi\)
−0.610778 + 0.791802i \(0.709143\pi\)
\(572\) 0.565360 3.20631i 0.0236389 0.134063i
\(573\) 0 0
\(574\) 8.81386 7.39571i 0.367884 0.308691i
\(575\) −0.215537 0.373321i −0.00898852 0.0155686i
\(576\) 0 0
\(577\) 5.52956 9.57748i 0.230199 0.398716i −0.727668 0.685930i \(-0.759396\pi\)
0.957866 + 0.287214i \(0.0927291\pi\)
\(578\) 1.25356 + 7.10927i 0.0521411 + 0.295707i
\(579\) 0 0
\(580\) 7.39053 2.68993i 0.306875 0.111693i
\(581\) −15.0496 + 5.47762i −0.624364 + 0.227250i
\(582\) 0 0
\(583\) −0.427671 2.42544i −0.0177123 0.100452i
\(584\) 5.54576 9.60554i 0.229485 0.397480i
\(585\) 0 0
\(586\) −4.43835 7.68745i −0.183346 0.317565i
\(587\) −25.3917 + 21.3062i −1.04803 + 0.879400i −0.992885 0.119078i \(-0.962006\pi\)
−0.0551433 + 0.998478i \(0.517562\pi\)
\(588\) 0 0
\(589\) 10.8207 61.3674i 0.445860 2.52860i
\(590\) 10.6211 + 8.91215i 0.437263 + 0.366907i
\(591\) 0 0
\(592\) 7.11721 + 2.59045i 0.292516 + 0.106467i
\(593\) −14.8283 −0.608926 −0.304463 0.952524i \(-0.598477\pi\)
−0.304463 + 0.952524i \(0.598477\pi\)
\(594\) 0 0
\(595\) −29.2499 −1.19913
\(596\) 7.23783 + 2.63435i 0.296473 + 0.107907i
\(597\) 0 0
\(598\) 0.177519 + 0.148956i 0.00725927 + 0.00609125i
\(599\) 8.20930 46.5573i 0.335423 1.90228i −0.0875932 0.996156i \(-0.527918\pi\)
0.423016 0.906122i \(-0.360971\pi\)
\(600\) 0 0
\(601\) 28.1996 23.6623i 1.15029 0.965206i 0.150561 0.988601i \(-0.451892\pi\)
0.999726 + 0.0233949i \(0.00744749\pi\)
\(602\) −1.91353 3.31434i −0.0779898 0.135082i
\(603\) 0 0
\(604\) 0.390530 0.676417i 0.0158904 0.0275230i
\(605\) −3.25877 18.4814i −0.132488 0.751376i
\(606\) 0 0
\(607\) −38.8764 + 14.1499i −1.57795 + 0.574326i −0.974756 0.223272i \(-0.928326\pi\)
−0.603190 + 0.797597i \(0.706104\pi\)
\(608\) 6.81180 2.47929i 0.276255 0.100549i
\(609\) 0 0
\(610\) −4.85844 27.5536i −0.196713 1.11561i
\(611\) −0.688663 + 1.19280i −0.0278603 + 0.0482555i
\(612\) 0 0
\(613\) 20.6755 + 35.8109i 0.835074 + 1.44639i 0.893970 + 0.448126i \(0.147909\pi\)
−0.0588963 + 0.998264i \(0.518758\pi\)
\(614\) −12.3327 + 10.3484i −0.497709 + 0.417628i
\(615\) 0 0
\(616\) −1.74897 + 9.91890i −0.0704680 + 0.399644i
\(617\) −18.7867 15.7639i −0.756326 0.634633i 0.180842 0.983512i \(-0.442118\pi\)
−0.937168 + 0.348880i \(0.886562\pi\)
\(618\) 0 0
\(619\) −37.2768 13.5676i −1.49828 0.545329i −0.542666 0.839949i \(-0.682585\pi\)
−0.955615 + 0.294619i \(0.904807\pi\)
\(620\) 21.7665 0.874164
\(621\) 0 0
\(622\) −13.5895 −0.544888
\(623\) −17.4722 6.35938i −0.700011 0.254783i
\(624\) 0 0
\(625\) −23.0312 19.3255i −0.921248 0.773019i
\(626\) −3.73442 + 21.1790i −0.149258 + 0.846482i
\(627\) 0 0
\(628\) −7.97565 + 6.69237i −0.318263 + 0.267054i
\(629\) −18.6368 32.2799i −0.743098 1.28708i
\(630\) 0 0
\(631\) 16.6596 28.8552i 0.663207 1.14871i −0.316561 0.948572i \(-0.602528\pi\)
0.979768 0.200136i \(-0.0641384\pi\)
\(632\) −1.28059 7.26260i −0.0509392 0.288891i
\(633\) 0 0
\(634\) −19.8204 + 7.21404i −0.787170 + 0.286506i
\(635\) 30.0895 10.9517i 1.19406 0.434604i
\(636\) 0 0
\(637\) −0.196347 1.11354i −0.00777957 0.0441201i
\(638\) −6.66385 + 11.5421i −0.263824 + 0.456957i
\(639\) 0 0
\(640\) 1.26604 + 2.19285i 0.0500448 + 0.0866801i
\(641\) −5.55690 + 4.66280i −0.219485 + 0.184169i −0.745900 0.666058i \(-0.767980\pi\)
0.526415 + 0.850228i \(0.323536\pi\)
\(642\) 0 0
\(643\) −1.34120 + 7.60635i −0.0528919 + 0.299965i −0.999766 0.0216400i \(-0.993111\pi\)
0.946874 + 0.321605i \(0.104222\pi\)
\(644\) −0.549163 0.460802i −0.0216401 0.0181582i
\(645\) 0 0
\(646\) −33.5228 12.2013i −1.31894 0.480053i
\(647\) 40.9469 1.60979 0.804894 0.593419i \(-0.202222\pi\)
0.804894 + 0.593419i \(0.202222\pi\)
\(648\) 0 0
\(649\) −23.4953 −0.922269
\(650\) −1.00640 0.366298i −0.0394741 0.0143674i
\(651\) 0 0
\(652\) −8.10014 6.79682i −0.317226 0.266184i
\(653\) −3.45171 + 19.5756i −0.135076 + 0.766054i 0.839731 + 0.543003i \(0.182713\pi\)
−0.974807 + 0.223051i \(0.928398\pi\)
\(654\) 0 0
\(655\) −10.0667 + 8.44697i −0.393339 + 0.330050i
\(656\) 2.45084 + 4.24497i 0.0956891 + 0.165738i
\(657\) 0 0
\(658\) 2.13041 3.68999i 0.0830522 0.143851i
\(659\) −2.98499 16.9287i −0.116279 0.659448i −0.986109 0.166098i \(-0.946883\pi\)
0.869831 0.493350i \(-0.164228\pi\)
\(660\) 0 0
\(661\) 32.3276 11.7663i 1.25740 0.457655i 0.374503 0.927226i \(-0.377813\pi\)
0.882895 + 0.469571i \(0.155591\pi\)
\(662\) −15.4474 + 5.62241i −0.600382 + 0.218521i
\(663\) 0 0
\(664\) −1.18479 6.71929i −0.0459789 0.260759i
\(665\) 21.5424 37.3125i 0.835377 1.44691i
\(666\) 0 0
\(667\) −0.474308 0.821525i −0.0183653 0.0318096i
\(668\) −1.15136 + 0.966105i −0.0445474 + 0.0373797i
\(669\) 0 0
\(670\) −0.0184183 + 0.104455i −0.000711562 + 0.00403547i
\(671\) 36.3200 + 30.4761i 1.40212 + 1.17652i
\(672\) 0 0
\(673\) −22.4513 8.17161i −0.865434 0.314992i −0.129117 0.991629i \(-0.541214\pi\)
−0.736317 + 0.676637i \(0.763437\pi\)
\(674\) 10.5517 0.406436
\(675\) 0 0
\(676\) −12.4243 −0.477856
\(677\) 32.6238 + 11.8741i 1.25383 + 0.456358i 0.881695 0.471819i \(-0.156403\pi\)
0.372138 + 0.928177i \(0.378625\pi\)
\(678\) 0 0
\(679\) 5.90348 + 4.95361i 0.226555 + 0.190102i
\(680\) 2.16385 12.2718i 0.0829798 0.470602i
\(681\) 0 0
\(682\) −28.2558 + 23.7095i −1.08197 + 0.907882i
\(683\) −19.5030 33.7802i −0.746261 1.29256i −0.949603 0.313455i \(-0.898514\pi\)
0.203342 0.979108i \(-0.434820\pi\)
\(684\) 0 0
\(685\) 21.6668 37.5281i 0.827847 1.43387i
\(686\) 3.46064 + 19.6262i 0.132128 + 0.749334i
\(687\) 0 0
\(688\) 1.53209 0.557635i 0.0584103 0.0212596i
\(689\) 0.409253 0.148956i 0.0155913 0.00567476i
\(690\) 0 0
\(691\) 4.39780 + 24.9412i 0.167300 + 0.948807i 0.946661 + 0.322232i \(0.104433\pi\)
−0.779361 + 0.626576i \(0.784456\pi\)
\(692\) −5.57532 + 9.65674i −0.211942 + 0.367094i
\(693\) 0 0
\(694\) 14.1800 + 24.5606i 0.538267 + 0.932306i
\(695\) −23.6596 + 19.8527i −0.897459 + 0.753057i
\(696\) 0 0
\(697\) 4.18883 23.7560i 0.158663 0.899823i
\(698\) 12.0287 + 10.0933i 0.455292 + 0.382036i
\(699\) 0 0
\(700\) 3.11334 + 1.13316i 0.117673 + 0.0428295i
\(701\) −42.3054 −1.59785 −0.798927 0.601429i \(-0.794598\pi\)
−0.798927 + 0.601429i \(0.794598\pi\)
\(702\) 0 0
\(703\) 54.9035 2.07073
\(704\) −4.03209 1.46756i −0.151965 0.0553108i
\(705\) 0 0
\(706\) 1.58125 + 1.32683i 0.0595112 + 0.0499358i
\(707\) −4.88847 + 27.7239i −0.183850 + 1.04266i
\(708\) 0 0
\(709\) −36.7098 + 30.8032i −1.37867 + 1.15684i −0.408964 + 0.912551i \(0.634110\pi\)
−0.969703 + 0.244288i \(0.921446\pi\)
\(710\) 5.32295 + 9.21962i 0.199767 + 0.346006i
\(711\) 0 0
\(712\) 3.96064 6.86002i 0.148431 0.257090i
\(713\) −0.455889 2.58548i −0.0170732 0.0968269i
\(714\) 0 0
\(715\) 7.74675 2.81959i 0.289712 0.105447i
\(716\) 7.33750 2.67063i 0.274215 0.0998061i
\(717\) 0 0
\(718\) 6.07145 + 34.4329i 0.226585 + 1.28502i
\(719\) 6.15451 10.6599i 0.229525 0.397548i −0.728143 0.685426i \(-0.759616\pi\)
0.957667 + 0.287877i \(0.0929495\pi\)
\(720\) 0 0
\(721\) 2.83022 + 4.90209i 0.105403 + 0.182563i
\(722\) 25.6989 21.5640i 0.956415 0.802528i
\(723\) 0 0
\(724\) 1.81908 10.3165i 0.0676055 0.383410i
\(725\) 3.35844 + 2.81807i 0.124729 + 0.104660i
\(726\) 0 0
\(727\) 16.3542 + 5.95243i 0.606542 + 0.220763i 0.626990 0.779028i \(-0.284287\pi\)
−0.0204474 + 0.999791i \(0.506509\pi\)
\(728\) −1.78106 −0.0660104
\(729\) 0 0
\(730\) 28.0847 1.03946
\(731\) −7.53983 2.74427i −0.278871 0.101501i
\(732\) 0 0
\(733\) 11.0266 + 9.25244i 0.407278 + 0.341747i 0.823299 0.567608i \(-0.192131\pi\)
−0.416021 + 0.909355i \(0.636576\pi\)
\(734\) −0.0773815 + 0.438852i −0.00285620 + 0.0161983i
\(735\) 0 0
\(736\) 0.233956 0.196312i 0.00862372 0.00723616i
\(737\) −0.0898700 0.155659i −0.00331041 0.00573379i
\(738\) 0 0
\(739\) 6.82383 11.8192i 0.251018 0.434777i −0.712788 0.701380i \(-0.752568\pi\)
0.963806 + 0.266603i \(0.0859012\pi\)
\(740\) 3.33022 + 18.8866i 0.122421 + 0.694286i
\(741\) 0 0
\(742\) −1.26604 + 0.460802i −0.0464780 + 0.0169166i
\(743\) −17.2459 + 6.27698i −0.632690 + 0.230280i −0.638402 0.769703i \(-0.720404\pi\)
0.00571190 + 0.999984i \(0.498182\pi\)
\(744\) 0 0
\(745\) 3.38666 + 19.2067i 0.124078 + 0.703679i
\(746\) 11.0312 19.1066i 0.403881 0.699543i
\(747\) 0 0
\(748\) 10.5582 + 18.2874i 0.386048 + 0.668654i
\(749\) −4.36231 + 3.66041i −0.159395 + 0.133749i
\(750\) 0 0
\(751\) −7.01460 + 39.7818i −0.255967 + 1.45166i 0.537613 + 0.843192i \(0.319326\pi\)
−0.793579 + 0.608467i \(0.791785\pi\)
\(752\) 1.39053 + 1.16679i 0.0507074 + 0.0425486i
\(753\) 0 0
\(754\) −2.21466 0.806070i −0.0806532 0.0293553i
\(755\) 1.97771 0.0719763
\(756\) 0 0
\(757\) 3.71595 0.135058 0.0675292 0.997717i \(-0.478488\pi\)
0.0675292 + 0.997717i \(0.478488\pi\)
\(758\) −12.3229 4.48519i −0.447590 0.162909i
\(759\) 0 0
\(760\) 14.0608 + 11.7984i 0.510038 + 0.427973i
\(761\) 6.41147 36.3613i 0.232416 1.31810i −0.615573 0.788080i \(-0.711075\pi\)
0.847988 0.530015i \(-0.177814\pi\)
\(762\) 0 0
\(763\) 4.18551 3.51206i 0.151526 0.127145i
\(764\) −6.11468 10.5909i −0.221222 0.383167i
\(765\) 0 0
\(766\) 8.05556 13.9526i 0.291059 0.504129i
\(767\) −0.721467 4.09164i −0.0260507 0.147741i
\(768\) 0 0
\(769\) 25.5501 9.29947i 0.921360 0.335348i 0.162581 0.986695i \(-0.448018\pi\)
0.758779 + 0.651348i \(0.225796\pi\)
\(770\) −23.9650 + 8.72254i −0.863638 + 0.314338i
\(771\) 0 0
\(772\) −2.84224 16.1192i −0.102295 0.580141i
\(773\) −0.869585 + 1.50617i −0.0312768 + 0.0541730i −0.881240 0.472669i \(-0.843291\pi\)
0.849963 + 0.526842i \(0.176624\pi\)
\(774\) 0 0
\(775\) 6.06670 + 10.5078i 0.217922 + 0.377453i
\(776\) −2.51501 + 2.11035i −0.0902838 + 0.0757571i
\(777\) 0 0
\(778\) −0.0984882 + 0.558554i −0.00353097 + 0.0200251i
\(779\) 27.2192 + 22.8396i 0.975228 + 0.818313i
\(780\) 0 0
\(781\) −16.9525 6.17020i −0.606608 0.220787i