Properties

Label 162.2.e.a.127.1
Level $162$
Weight $2$
Character 162.127
Analytic conductor $1.294$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(19,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 127.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 162.127
Dual form 162.2.e.a.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 + 0.642788i) q^{2} +(0.173648 + 0.984808i) q^{4} +(1.26604 + 0.460802i) q^{5} +(-0.0209445 + 0.118782i) q^{7} +(-0.500000 + 0.866025i) q^{8} +O(q^{10})\) \(q+(0.766044 + 0.642788i) q^{2} +(0.173648 + 0.984808i) q^{4} +(1.26604 + 0.460802i) q^{5} +(-0.0209445 + 0.118782i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(0.673648 + 1.16679i) q^{10} +(3.49273 - 1.27125i) q^{11} +(-4.64543 + 3.89798i) q^{13} +(-0.0923963 + 0.0775297i) q^{14} +(-0.939693 + 0.342020i) q^{16} +(-2.58512 - 4.47756i) q^{17} +(2.96064 - 5.12797i) q^{19} +(-0.233956 + 1.32683i) q^{20} +(3.49273 + 1.27125i) q^{22} +(0.826352 + 4.68647i) q^{23} +(-2.43969 - 2.04715i) q^{25} -6.06418 q^{26} -0.120615 q^{28} +(-4.55303 - 3.82045i) q^{29} +(-0.875515 - 4.96529i) q^{31} +(-0.939693 - 0.342020i) q^{32} +(0.897804 - 5.09170i) q^{34} +(-0.0812519 + 0.140732i) q^{35} +(-0.145430 - 0.251892i) q^{37} +(5.56418 - 2.02520i) q^{38} +(-1.03209 + 0.866025i) q^{40} +(-4.44356 + 3.72859i) q^{41} +(-0.426022 + 0.155059i) q^{43} +(1.85844 + 3.21891i) q^{44} +(-2.37939 + 4.12122i) q^{46} +(0.134285 - 0.761570i) q^{47} +(6.56418 + 2.38917i) q^{49} +(-0.553033 - 3.13641i) q^{50} +(-4.64543 - 3.89798i) q^{52} +7.29086 q^{53} +5.00774 q^{55} +(-0.0923963 - 0.0775297i) q^{56} +(-1.03209 - 5.85327i) q^{58} +(-1.40033 - 0.509678i) q^{59} +(-0.656574 + 3.72362i) q^{61} +(2.52094 - 4.36640i) q^{62} +(-0.500000 - 0.866025i) q^{64} +(-7.67752 + 2.79439i) q^{65} +(-5.08512 + 4.26692i) q^{67} +(3.96064 - 3.32337i) q^{68} +(-0.152704 + 0.0555796i) q^{70} +(2.87211 + 4.97464i) q^{71} +(-5.20961 + 9.02330i) q^{73} +(0.0505072 - 0.286441i) q^{74} +(5.56418 + 2.02520i) q^{76} +(0.0778483 + 0.441500i) q^{77} +(10.7194 + 8.99465i) q^{79} -1.34730 q^{80} -5.80066 q^{82} +(1.81521 + 1.52314i) q^{83} +(-1.20961 - 6.86002i) q^{85} +(-0.426022 - 0.155059i) q^{86} +(-0.645430 + 3.66041i) q^{88} +(-1.08512 + 1.87949i) q^{89} +(-0.365715 - 0.633436i) q^{91} +(-4.47178 + 1.62760i) q^{92} +(0.592396 - 0.497079i) q^{94} +(6.11128 - 5.12797i) q^{95} +(3.21941 - 1.17177i) q^{97} +(3.49273 + 6.04958i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{5} + 3 q^{7} - 3 q^{8} + 3 q^{10} + 3 q^{11} - 12 q^{13} + 3 q^{14} + 6 q^{17} + 9 q^{19} - 6 q^{20} + 3 q^{22} + 6 q^{23} - 9 q^{25} - 18 q^{26} - 12 q^{28} - 15 q^{29} - 18 q^{31} + 6 q^{34} - 3 q^{35} + 15 q^{37} + 15 q^{38} + 3 q^{40} + 3 q^{41} - 18 q^{43} + 3 q^{44} - 3 q^{46} - 9 q^{47} + 21 q^{49} + 9 q^{50} - 12 q^{52} + 12 q^{53} - 18 q^{55} + 3 q^{56} + 3 q^{58} + 6 q^{59} + 18 q^{61} + 12 q^{62} - 3 q^{64} - 21 q^{65} - 9 q^{67} + 15 q^{68} - 3 q^{70} - 12 q^{71} + 3 q^{73} + 3 q^{74} + 15 q^{76} - 39 q^{77} + 33 q^{79} - 6 q^{80} - 6 q^{82} + 18 q^{83} + 27 q^{85} - 18 q^{86} + 12 q^{88} + 15 q^{89} - 12 q^{91} - 12 q^{92} - 21 q^{95} - 12 q^{97} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 + 0.642788i 0.541675 + 0.454519i
\(3\) 0 0
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) 1.26604 + 0.460802i 0.566192 + 0.206077i 0.609226 0.792996i \(-0.291480\pi\)
−0.0430339 + 0.999074i \(0.513702\pi\)
\(6\) 0 0
\(7\) −0.0209445 + 0.118782i −0.00791629 + 0.0448955i −0.988510 0.151155i \(-0.951701\pi\)
0.980594 + 0.196051i \(0.0628118\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 0 0
\(10\) 0.673648 + 1.16679i 0.213026 + 0.368972i
\(11\) 3.49273 1.27125i 1.05310 0.383296i 0.243266 0.969960i \(-0.421781\pi\)
0.809831 + 0.586664i \(0.199559\pi\)
\(12\) 0 0
\(13\) −4.64543 + 3.89798i −1.28841 + 1.08110i −0.296385 + 0.955069i \(0.595781\pi\)
−0.992026 + 0.126036i \(0.959775\pi\)
\(14\) −0.0923963 + 0.0775297i −0.0246939 + 0.0207207i
\(15\) 0 0
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) −2.58512 4.47756i −0.626984 1.08597i −0.988154 0.153468i \(-0.950956\pi\)
0.361169 0.932500i \(-0.382378\pi\)
\(18\) 0 0
\(19\) 2.96064 5.12797i 0.679217 1.17644i −0.296000 0.955188i \(-0.595653\pi\)
0.975217 0.221250i \(-0.0710137\pi\)
\(20\) −0.233956 + 1.32683i −0.0523141 + 0.296688i
\(21\) 0 0
\(22\) 3.49273 + 1.27125i 0.744652 + 0.271031i
\(23\) 0.826352 + 4.68647i 0.172306 + 0.977197i 0.941207 + 0.337830i \(0.109693\pi\)
−0.768901 + 0.639368i \(0.779196\pi\)
\(24\) 0 0
\(25\) −2.43969 2.04715i −0.487939 0.409429i
\(26\) −6.06418 −1.18928
\(27\) 0 0
\(28\) −0.120615 −0.0227940
\(29\) −4.55303 3.82045i −0.845477 0.709440i 0.113312 0.993559i \(-0.463854\pi\)
−0.958789 + 0.284120i \(0.908299\pi\)
\(30\) 0 0
\(31\) −0.875515 4.96529i −0.157247 0.891793i −0.956703 0.291067i \(-0.905990\pi\)
0.799455 0.600725i \(-0.205121\pi\)
\(32\) −0.939693 0.342020i −0.166116 0.0604612i
\(33\) 0 0
\(34\) 0.897804 5.09170i 0.153972 0.873219i
\(35\) −0.0812519 + 0.140732i −0.0137341 + 0.0237881i
\(36\) 0 0
\(37\) −0.145430 0.251892i −0.0239085 0.0414107i 0.853824 0.520562i \(-0.174278\pi\)
−0.877732 + 0.479152i \(0.840944\pi\)
\(38\) 5.56418 2.02520i 0.902629 0.328530i
\(39\) 0 0
\(40\) −1.03209 + 0.866025i −0.163188 + 0.136931i
\(41\) −4.44356 + 3.72859i −0.693968 + 0.582308i −0.920050 0.391800i \(-0.871853\pi\)
0.226082 + 0.974108i \(0.427408\pi\)
\(42\) 0 0
\(43\) −0.426022 + 0.155059i −0.0649678 + 0.0236463i −0.374300 0.927308i \(-0.622117\pi\)
0.309332 + 0.950954i \(0.399895\pi\)
\(44\) 1.85844 + 3.21891i 0.280170 + 0.485270i
\(45\) 0 0
\(46\) −2.37939 + 4.12122i −0.350821 + 0.607640i
\(47\) 0.134285 0.761570i 0.0195875 0.111086i −0.973446 0.228915i \(-0.926482\pi\)
0.993034 + 0.117829i \(0.0375933\pi\)
\(48\) 0 0
\(49\) 6.56418 + 2.38917i 0.937740 + 0.341309i
\(50\) −0.553033 3.13641i −0.0782107 0.443555i
\(51\) 0 0
\(52\) −4.64543 3.89798i −0.644205 0.540552i
\(53\) 7.29086 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(54\) 0 0
\(55\) 5.00774 0.675244
\(56\) −0.0923963 0.0775297i −0.0123470 0.0103603i
\(57\) 0 0
\(58\) −1.03209 5.85327i −0.135520 0.768572i
\(59\) −1.40033 0.509678i −0.182307 0.0663545i 0.249253 0.968438i \(-0.419815\pi\)
−0.431561 + 0.902084i \(0.642037\pi\)
\(60\) 0 0
\(61\) −0.656574 + 3.72362i −0.0840657 + 0.476760i 0.913489 + 0.406864i \(0.133378\pi\)
−0.997554 + 0.0698959i \(0.977733\pi\)
\(62\) 2.52094 4.36640i 0.320160 0.554534i
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −7.67752 + 2.79439i −0.952279 + 0.346601i
\(66\) 0 0
\(67\) −5.08512 + 4.26692i −0.621247 + 0.521288i −0.898195 0.439597i \(-0.855121\pi\)
0.276949 + 0.960885i \(0.410677\pi\)
\(68\) 3.96064 3.32337i 0.480298 0.403018i
\(69\) 0 0
\(70\) −0.152704 + 0.0555796i −0.0182516 + 0.00664303i
\(71\) 2.87211 + 4.97464i 0.340857 + 0.590381i 0.984592 0.174867i \(-0.0559495\pi\)
−0.643735 + 0.765248i \(0.722616\pi\)
\(72\) 0 0
\(73\) −5.20961 + 9.02330i −0.609738 + 1.05610i 0.381545 + 0.924350i \(0.375392\pi\)
−0.991283 + 0.131748i \(0.957941\pi\)
\(74\) 0.0505072 0.286441i 0.00587134 0.0332980i
\(75\) 0 0
\(76\) 5.56418 + 2.02520i 0.638255 + 0.232306i
\(77\) 0.0778483 + 0.441500i 0.00887164 + 0.0503136i
\(78\) 0 0
\(79\) 10.7194 + 8.99465i 1.20603 + 1.01198i 0.999437 + 0.0335498i \(0.0106812\pi\)
0.206591 + 0.978427i \(0.433763\pi\)
\(80\) −1.34730 −0.150632
\(81\) 0 0
\(82\) −5.80066 −0.640576
\(83\) 1.81521 + 1.52314i 0.199245 + 0.167186i 0.736951 0.675946i \(-0.236265\pi\)
−0.537706 + 0.843132i \(0.680709\pi\)
\(84\) 0 0
\(85\) −1.20961 6.86002i −0.131200 0.744074i
\(86\) −0.426022 0.155059i −0.0459391 0.0167205i
\(87\) 0 0
\(88\) −0.645430 + 3.66041i −0.0688030 + 0.390201i
\(89\) −1.08512 + 1.87949i −0.115023 + 0.199225i −0.917789 0.397069i \(-0.870027\pi\)
0.802766 + 0.596294i \(0.203361\pi\)
\(90\) 0 0
\(91\) −0.365715 0.633436i −0.0383373 0.0664022i
\(92\) −4.47178 + 1.62760i −0.466215 + 0.169689i
\(93\) 0 0
\(94\) 0.592396 0.497079i 0.0611010 0.0512698i
\(95\) 6.11128 5.12797i 0.627004 0.526119i
\(96\) 0 0
\(97\) 3.21941 1.17177i 0.326881 0.118975i −0.173366 0.984857i \(-0.555464\pi\)
0.500248 + 0.865882i \(0.333242\pi\)
\(98\) 3.49273 + 6.04958i 0.352819 + 0.611100i
\(99\) 0 0
\(100\) 1.59240 2.75811i 0.159240 0.275811i
\(101\) −1.49660 + 8.48762i −0.148917 + 0.844550i 0.815221 + 0.579149i \(0.196615\pi\)
−0.964138 + 0.265400i \(0.914496\pi\)
\(102\) 0 0
\(103\) 2.05303 + 0.747243i 0.202291 + 0.0736280i 0.441179 0.897419i \(-0.354560\pi\)
−0.238887 + 0.971047i \(0.576783\pi\)
\(104\) −1.05303 5.97205i −0.103258 0.585608i
\(105\) 0 0
\(106\) 5.58512 + 4.68647i 0.542475 + 0.455191i
\(107\) 10.2909 0.994855 0.497427 0.867506i \(-0.334278\pi\)
0.497427 + 0.867506i \(0.334278\pi\)
\(108\) 0 0
\(109\) −11.0915 −1.06237 −0.531187 0.847254i \(-0.678254\pi\)
−0.531187 + 0.847254i \(0.678254\pi\)
\(110\) 3.83615 + 3.21891i 0.365763 + 0.306911i
\(111\) 0 0
\(112\) −0.0209445 0.118782i −0.00197907 0.0112239i
\(113\) 5.56670 + 2.02611i 0.523671 + 0.190601i 0.590310 0.807176i \(-0.299005\pi\)
−0.0666389 + 0.997777i \(0.521228\pi\)
\(114\) 0 0
\(115\) −1.11334 + 6.31407i −0.103820 + 0.588790i
\(116\) 2.97178 5.14728i 0.275923 0.477913i
\(117\) 0 0
\(118\) −0.745100 1.29055i −0.0685920 0.118805i
\(119\) 0.586000 0.213286i 0.0537185 0.0195519i
\(120\) 0 0
\(121\) 2.15657 1.80958i 0.196052 0.164507i
\(122\) −2.89646 + 2.43042i −0.262233 + 0.220040i
\(123\) 0 0
\(124\) 4.73783 1.72443i 0.425469 0.154858i
\(125\) −5.51367 9.54996i −0.493158 0.854174i
\(126\) 0 0
\(127\) 2.86959 4.97027i 0.254634 0.441040i −0.710162 0.704039i \(-0.751378\pi\)
0.964796 + 0.262999i \(0.0847115\pi\)
\(128\) 0.173648 0.984808i 0.0153485 0.0870455i
\(129\) 0 0
\(130\) −7.67752 2.79439i −0.673363 0.245084i
\(131\) −2.99020 16.9583i −0.261255 1.48165i −0.779491 0.626413i \(-0.784522\pi\)
0.518236 0.855237i \(-0.326589\pi\)
\(132\) 0 0
\(133\) 0.547104 + 0.459074i 0.0474399 + 0.0398068i
\(134\) −6.63816 −0.573449
\(135\) 0 0
\(136\) 5.17024 0.443345
\(137\) −0.0662372 0.0555796i −0.00565902 0.00474848i 0.639954 0.768413i \(-0.278954\pi\)
−0.645613 + 0.763665i \(0.723398\pi\)
\(138\) 0 0
\(139\) −3.18866 18.0838i −0.270459 1.53385i −0.753027 0.657990i \(-0.771407\pi\)
0.482568 0.875859i \(-0.339704\pi\)
\(140\) −0.152704 0.0555796i −0.0129058 0.00469733i
\(141\) 0 0
\(142\) −0.997474 + 5.65695i −0.0837061 + 0.474721i
\(143\) −11.2699 + 19.5201i −0.942438 + 1.63235i
\(144\) 0 0
\(145\) −4.00387 6.93491i −0.332503 0.575913i
\(146\) −9.79086 + 3.56358i −0.810297 + 0.294924i
\(147\) 0 0
\(148\) 0.222811 0.186961i 0.0183150 0.0153681i
\(149\) 3.75490 3.15074i 0.307613 0.258118i −0.475891 0.879504i \(-0.657874\pi\)
0.783505 + 0.621386i \(0.213430\pi\)
\(150\) 0 0
\(151\) −1.62701 + 0.592184i −0.132404 + 0.0481912i −0.407372 0.913262i \(-0.633555\pi\)
0.274968 + 0.961453i \(0.411333\pi\)
\(152\) 2.96064 + 5.12797i 0.240139 + 0.415934i
\(153\) 0 0
\(154\) −0.224155 + 0.388249i −0.0180630 + 0.0312860i
\(155\) 1.17958 6.68972i 0.0947460 0.537331i
\(156\) 0 0
\(157\) 5.46451 + 1.98892i 0.436115 + 0.158733i 0.550742 0.834676i \(-0.314345\pi\)
−0.114627 + 0.993409i \(0.536567\pi\)
\(158\) 2.42989 + 13.7806i 0.193312 + 1.09633i
\(159\) 0 0
\(160\) −1.03209 0.866025i −0.0815938 0.0684653i
\(161\) −0.573978 −0.0452358
\(162\) 0 0
\(163\) −2.70914 −0.212196 −0.106098 0.994356i \(-0.533836\pi\)
−0.106098 + 0.994356i \(0.533836\pi\)
\(164\) −4.44356 3.72859i −0.346984 0.291154i
\(165\) 0 0
\(166\) 0.411474 + 2.33359i 0.0319366 + 0.181121i
\(167\) −23.1202 8.41507i −1.78910 0.651177i −0.999284 0.0378268i \(-0.987956\pi\)
−0.789811 0.613351i \(-0.789821\pi\)
\(168\) 0 0
\(169\) 4.12836 23.4131i 0.317566 1.80101i
\(170\) 3.48293 6.03260i 0.267128 0.462680i
\(171\) 0 0
\(172\) −0.226682 0.392624i −0.0172843 0.0299373i
\(173\) −10.0753 + 3.66712i −0.766013 + 0.278806i −0.695328 0.718693i \(-0.744741\pi\)
−0.0706849 + 0.997499i \(0.522518\pi\)
\(174\) 0 0
\(175\) 0.294263 0.246916i 0.0222442 0.0186651i
\(176\) −2.84730 + 2.38917i −0.214623 + 0.180090i
\(177\) 0 0
\(178\) −2.03936 + 0.742267i −0.152857 + 0.0556353i
\(179\) −6.92262 11.9903i −0.517421 0.896199i −0.999795 0.0202340i \(-0.993559\pi\)
0.482374 0.875965i \(-0.339774\pi\)
\(180\) 0 0
\(181\) −1.75490 + 3.03958i −0.130441 + 0.225930i −0.923847 0.382763i \(-0.874973\pi\)
0.793406 + 0.608693i \(0.208306\pi\)
\(182\) 0.127011 0.720317i 0.00941471 0.0533935i
\(183\) 0 0
\(184\) −4.47178 1.62760i −0.329664 0.119988i
\(185\) −0.0680482 0.385920i −0.00500300 0.0283734i
\(186\) 0 0
\(187\) −14.7212 12.3526i −1.07652 0.903309i
\(188\) 0.773318 0.0564000
\(189\) 0 0
\(190\) 7.97771 0.578764
\(191\) 16.7704 + 14.0720i 1.21346 + 1.01822i 0.999140 + 0.0414526i \(0.0131986\pi\)
0.214322 + 0.976763i \(0.431246\pi\)
\(192\) 0 0
\(193\) 4.44743 + 25.2226i 0.320133 + 1.81557i 0.541873 + 0.840460i \(0.317715\pi\)
−0.221740 + 0.975106i \(0.571174\pi\)
\(194\) 3.21941 + 1.17177i 0.231140 + 0.0841281i
\(195\) 0 0
\(196\) −1.21301 + 6.87933i −0.0866436 + 0.491381i
\(197\) 6.84255 11.8516i 0.487511 0.844395i −0.512385 0.858756i \(-0.671238\pi\)
0.999897 + 0.0143611i \(0.00457142\pi\)
\(198\) 0 0
\(199\) 6.19981 + 10.7384i 0.439493 + 0.761224i 0.997650 0.0685113i \(-0.0218249\pi\)
−0.558158 + 0.829735i \(0.688492\pi\)
\(200\) 2.99273 1.08926i 0.211618 0.0770225i
\(201\) 0 0
\(202\) −6.60220 + 5.53990i −0.464529 + 0.389786i
\(203\) 0.549163 0.460802i 0.0385437 0.0323420i
\(204\) 0 0
\(205\) −7.34389 + 2.67296i −0.512920 + 0.186688i
\(206\) 1.09240 + 1.89209i 0.0761109 + 0.131828i
\(207\) 0 0
\(208\) 3.03209 5.25173i 0.210238 0.364142i
\(209\) 3.82177 21.6743i 0.264357 1.49924i
\(210\) 0 0
\(211\) −13.9474 5.07645i −0.960181 0.349477i −0.186077 0.982535i \(-0.559577\pi\)
−0.774104 + 0.633058i \(0.781799\pi\)
\(212\) 1.26604 + 7.18009i 0.0869523 + 0.493131i
\(213\) 0 0
\(214\) 7.88326 + 6.61484i 0.538888 + 0.452181i
\(215\) −0.610815 −0.0416572
\(216\) 0 0
\(217\) 0.608126 0.0412823
\(218\) −8.49660 7.12949i −0.575462 0.482870i
\(219\) 0 0
\(220\) 0.869585 + 4.93166i 0.0586274 + 0.332493i
\(221\) 29.4624 + 10.7235i 1.98186 + 0.721338i
\(222\) 0 0
\(223\) −1.16890 + 6.62916i −0.0782754 + 0.443922i 0.920331 + 0.391141i \(0.127920\pi\)
−0.998606 + 0.0527806i \(0.983192\pi\)
\(224\) 0.0603074 0.104455i 0.00402946 0.00697922i
\(225\) 0 0
\(226\) 2.96198 + 5.13030i 0.197028 + 0.341263i
\(227\) 13.6211 4.95767i 0.904063 0.329052i 0.152183 0.988352i \(-0.451370\pi\)
0.751880 + 0.659300i \(0.229147\pi\)
\(228\) 0 0
\(229\) 19.7540 16.5756i 1.30538 1.09535i 0.316194 0.948694i \(-0.397595\pi\)
0.989188 0.146652i \(-0.0468496\pi\)
\(230\) −4.91147 + 4.12122i −0.323853 + 0.271745i
\(231\) 0 0
\(232\) 5.58512 2.03282i 0.366681 0.133461i
\(233\) 5.19846 + 9.00400i 0.340563 + 0.589872i 0.984537 0.175175i \(-0.0560491\pi\)
−0.643975 + 0.765047i \(0.722716\pi\)
\(234\) 0 0
\(235\) 0.520945 0.902302i 0.0339827 0.0588597i
\(236\) 0.258770 1.46756i 0.0168445 0.0955300i
\(237\) 0 0
\(238\) 0.586000 + 0.213286i 0.0379847 + 0.0138253i
\(239\) 3.97906 + 22.5663i 0.257384 + 1.45970i 0.789879 + 0.613263i \(0.210143\pi\)
−0.532495 + 0.846433i \(0.678746\pi\)
\(240\) 0 0
\(241\) −9.25150 7.76293i −0.595941 0.500054i 0.294197 0.955745i \(-0.404948\pi\)
−0.890138 + 0.455691i \(0.849392\pi\)
\(242\) 2.81521 0.180968
\(243\) 0 0
\(244\) −3.78106 −0.242058
\(245\) 7.20961 + 6.04958i 0.460605 + 0.386493i
\(246\) 0 0
\(247\) 6.23530 + 35.3621i 0.396743 + 2.25004i
\(248\) 4.73783 + 1.72443i 0.300852 + 0.109501i
\(249\) 0 0
\(250\) 1.91488 10.8598i 0.121107 0.686835i
\(251\) −7.02347 + 12.1650i −0.443318 + 0.767849i −0.997933 0.0642581i \(-0.979532\pi\)
0.554616 + 0.832107i \(0.312865\pi\)
\(252\) 0 0
\(253\) 8.84389 + 15.3181i 0.556011 + 0.963039i
\(254\) 5.39306 1.96291i 0.338390 0.123164i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) −13.8983 + 11.6620i −0.866950 + 0.727458i −0.963454 0.267875i \(-0.913679\pi\)
0.0965034 + 0.995333i \(0.469234\pi\)
\(258\) 0 0
\(259\) 0.0329662 0.0119987i 0.00204842 0.000745565i
\(260\) −4.08512 7.07564i −0.253349 0.438813i
\(261\) 0 0
\(262\) 8.60994 14.9128i 0.531924 0.921319i
\(263\) −0.742107 + 4.20870i −0.0457603 + 0.259519i −0.999102 0.0423745i \(-0.986508\pi\)
0.953342 + 0.301894i \(0.0976188\pi\)
\(264\) 0 0
\(265\) 9.23055 + 3.35965i 0.567028 + 0.206381i
\(266\) 0.124018 + 0.703343i 0.00760405 + 0.0431247i
\(267\) 0 0
\(268\) −5.08512 4.26692i −0.310623 0.260644i
\(269\) −13.0615 −0.796373 −0.398187 0.917304i \(-0.630360\pi\)
−0.398187 + 0.917304i \(0.630360\pi\)
\(270\) 0 0
\(271\) 8.48751 0.515580 0.257790 0.966201i \(-0.417006\pi\)
0.257790 + 0.966201i \(0.417006\pi\)
\(272\) 3.96064 + 3.32337i 0.240149 + 0.201509i
\(273\) 0 0
\(274\) −0.0150147 0.0851529i −0.000907074 0.00514427i
\(275\) −11.1236 4.04866i −0.670779 0.244144i
\(276\) 0 0
\(277\) 1.14842 6.51303i 0.0690020 0.391330i −0.930673 0.365851i \(-0.880778\pi\)
0.999675 0.0254787i \(-0.00811100\pi\)
\(278\) 9.18139 15.9026i 0.550663 0.953776i
\(279\) 0 0
\(280\) −0.0812519 0.140732i −0.00485573 0.00841037i
\(281\) 27.9320 10.1664i 1.66628 0.606478i 0.674952 0.737861i \(-0.264164\pi\)
0.991332 + 0.131384i \(0.0419420\pi\)
\(282\) 0 0
\(283\) −2.15657 + 1.80958i −0.128195 + 0.107568i −0.704631 0.709574i \(-0.748887\pi\)
0.576436 + 0.817142i \(0.304443\pi\)
\(284\) −4.40033 + 3.69232i −0.261112 + 0.219099i
\(285\) 0 0
\(286\) −21.1805 + 7.70908i −1.25243 + 0.455847i
\(287\) −0.349823 0.605910i −0.0206494 0.0357658i
\(288\) 0 0
\(289\) −4.86571 + 8.42767i −0.286219 + 0.495745i
\(290\) 1.39053 7.88609i 0.0816547 0.463087i
\(291\) 0 0
\(292\) −9.79086 3.56358i −0.572967 0.208543i
\(293\) −1.70796 9.68631i −0.0997800 0.565881i −0.993177 0.116613i \(-0.962796\pi\)
0.893397 0.449267i \(-0.148315\pi\)
\(294\) 0 0
\(295\) −1.53802 1.29055i −0.0895469 0.0751388i
\(296\) 0.290859 0.0169059
\(297\) 0 0
\(298\) 4.90167 0.283946
\(299\) −22.1065 18.5496i −1.27845 1.07275i
\(300\) 0 0
\(301\) −0.00949548 0.0538515i −0.000547310 0.00310395i
\(302\) −1.62701 0.592184i −0.0936240 0.0340763i
\(303\) 0 0
\(304\) −1.02822 + 5.83132i −0.0589724 + 0.334449i
\(305\) −2.54710 + 4.41171i −0.145847 + 0.252614i
\(306\) 0 0
\(307\) −6.78106 11.7451i −0.387015 0.670330i 0.605031 0.796202i \(-0.293161\pi\)
−0.992047 + 0.125871i \(0.959827\pi\)
\(308\) −0.421274 + 0.153331i −0.0240043 + 0.00873686i
\(309\) 0 0
\(310\) 5.20368 4.36640i 0.295549 0.247995i
\(311\) 8.10220 6.79855i 0.459433 0.385510i −0.383489 0.923545i \(-0.625278\pi\)
0.842922 + 0.538035i \(0.180833\pi\)
\(312\) 0 0
\(313\) 10.0544 3.65949i 0.568307 0.206847i −0.0418547 0.999124i \(-0.513327\pi\)
0.610162 + 0.792277i \(0.291104\pi\)
\(314\) 2.90760 + 5.03612i 0.164086 + 0.284205i
\(315\) 0 0
\(316\) −6.99660 + 12.1185i −0.393589 + 0.681717i
\(317\) −5.06717 + 28.7374i −0.284601 + 1.61405i 0.422108 + 0.906546i \(0.361290\pi\)
−0.706708 + 0.707505i \(0.749821\pi\)
\(318\) 0 0
\(319\) −20.7592 7.55574i −1.16229 0.423040i
\(320\) −0.233956 1.32683i −0.0130785 0.0741719i
\(321\) 0 0
\(322\) −0.439693 0.368946i −0.0245031 0.0205606i
\(323\) −30.6144 −1.70343
\(324\) 0 0
\(325\) 19.3131 1.07130
\(326\) −2.07532 1.74140i −0.114941 0.0964473i
\(327\) 0 0
\(328\) −1.00727 5.71253i −0.0556174 0.315422i
\(329\) 0.0876485 + 0.0319015i 0.00483222 + 0.00175878i
\(330\) 0 0
\(331\) −1.26739 + 7.18772i −0.0696620 + 0.395073i 0.929962 + 0.367655i \(0.119839\pi\)
−0.999624 + 0.0274173i \(0.991272\pi\)
\(332\) −1.18479 + 2.05212i −0.0650239 + 0.112625i
\(333\) 0 0
\(334\) −12.3020 21.3077i −0.673136 1.16591i
\(335\) −8.40420 + 3.05888i −0.459171 + 0.167124i
\(336\) 0 0
\(337\) −1.24376 + 1.04363i −0.0677517 + 0.0568504i −0.676035 0.736870i \(-0.736303\pi\)
0.608283 + 0.793720i \(0.291859\pi\)
\(338\) 18.2121 15.2818i 0.990609 0.831220i
\(339\) 0 0
\(340\) 6.54576 2.38246i 0.354994 0.129207i
\(341\) −9.37005 16.2294i −0.507417 0.878872i
\(342\) 0 0
\(343\) −0.843426 + 1.46086i −0.0455407 + 0.0788788i
\(344\) 0.0787257 0.446476i 0.00424460 0.0240724i
\(345\) 0 0
\(346\) −10.0753 3.66712i −0.541653 0.197145i
\(347\) 0.949655 + 5.38576i 0.0509801 + 0.289123i 0.999630 0.0272057i \(-0.00866092\pi\)
−0.948650 + 0.316329i \(0.897550\pi\)
\(348\) 0 0
\(349\) 2.37346 + 1.99157i 0.127048 + 0.106606i 0.704098 0.710103i \(-0.251352\pi\)
−0.577050 + 0.816709i \(0.695796\pi\)
\(350\) 0.384133 0.0205328
\(351\) 0 0
\(352\) −3.71688 −0.198110
\(353\) −0.233956 0.196312i −0.0124522 0.0104486i 0.636540 0.771243i \(-0.280365\pi\)
−0.648992 + 0.760795i \(0.724809\pi\)
\(354\) 0 0
\(355\) 1.34389 + 7.62159i 0.0713264 + 0.404512i
\(356\) −2.03936 0.742267i −0.108086 0.0393401i
\(357\) 0 0
\(358\) 2.40420 13.6349i 0.127066 0.720627i
\(359\) 5.28493 9.15377i 0.278928 0.483117i −0.692191 0.721715i \(-0.743354\pi\)
0.971119 + 0.238597i \(0.0766876\pi\)
\(360\) 0 0
\(361\) −8.03074 13.9097i −0.422671 0.732087i
\(362\) −3.29813 + 1.20042i −0.173346 + 0.0630928i
\(363\) 0 0
\(364\) 0.560307 0.470154i 0.0293681 0.0246428i
\(365\) −10.7536 + 9.02330i −0.562867 + 0.472301i
\(366\) 0 0
\(367\) −2.51842 + 0.916629i −0.131460 + 0.0478477i −0.406913 0.913467i \(-0.633395\pi\)
0.275452 + 0.961315i \(0.411172\pi\)
\(368\) −2.37939 4.12122i −0.124034 0.214833i
\(369\) 0 0
\(370\) 0.195937 0.339373i 0.0101863 0.0176431i
\(371\) −0.152704 + 0.866025i −0.00792798 + 0.0449618i
\(372\) 0 0
\(373\) −22.9008 8.33521i −1.18576 0.431581i −0.327526 0.944842i \(-0.606215\pi\)
−0.858232 + 0.513261i \(0.828437\pi\)
\(374\) −3.33703 18.9252i −0.172554 0.978601i
\(375\) 0 0
\(376\) 0.592396 + 0.497079i 0.0305505 + 0.0256349i
\(377\) 36.0428 1.85630
\(378\) 0 0
\(379\) −4.08647 −0.209908 −0.104954 0.994477i \(-0.533469\pi\)
−0.104954 + 0.994477i \(0.533469\pi\)
\(380\) 6.11128 + 5.12797i 0.313502 + 0.263060i
\(381\) 0 0
\(382\) 3.80154 + 21.5596i 0.194504 + 1.10308i
\(383\) −15.4017 5.60575i −0.786989 0.286440i −0.0829050 0.996557i \(-0.526420\pi\)
−0.704084 + 0.710117i \(0.748642\pi\)
\(384\) 0 0
\(385\) −0.104885 + 0.594831i −0.00534542 + 0.0303154i
\(386\) −12.8059 + 22.1804i −0.651802 + 1.12895i
\(387\) 0 0
\(388\) 1.71301 + 2.96702i 0.0869650 + 0.150628i
\(389\) −26.2263 + 9.54558i −1.32972 + 0.483980i −0.906562 0.422073i \(-0.861302\pi\)
−0.423163 + 0.906054i \(0.639080\pi\)
\(390\) 0 0
\(391\) 18.8478 15.8152i 0.953172 0.799807i
\(392\) −5.35117 + 4.49016i −0.270275 + 0.226787i
\(393\) 0 0
\(394\) 12.8598 4.68058i 0.647867 0.235804i
\(395\) 9.42649 + 16.3272i 0.474298 + 0.821508i
\(396\) 0 0
\(397\) 16.2469 28.1405i 0.815409 1.41233i −0.0936247 0.995608i \(-0.529845\pi\)
0.909034 0.416722i \(-0.136821\pi\)
\(398\) −2.15317 + 12.2112i −0.107929 + 0.612094i
\(399\) 0 0
\(400\) 2.99273 + 1.08926i 0.149636 + 0.0544632i
\(401\) −2.67096 15.1478i −0.133381 0.756443i −0.975973 0.217891i \(-0.930082\pi\)
0.842592 0.538553i \(-0.181029\pi\)
\(402\) 0 0
\(403\) 23.4217 + 19.6532i 1.16672 + 0.978994i
\(404\) −8.61856 −0.428789
\(405\) 0 0
\(406\) 0.716881 0.0355782
\(407\) −0.828163 0.694911i −0.0410505 0.0344455i
\(408\) 0 0
\(409\) −1.65822 9.40425i −0.0819938 0.465010i −0.997965 0.0637658i \(-0.979689\pi\)
0.915971 0.401244i \(-0.131422\pi\)
\(410\) −7.34389 2.67296i −0.362689 0.132008i
\(411\) 0 0
\(412\) −0.379385 + 2.15160i −0.0186910 + 0.106002i
\(413\) 0.0898700 0.155659i 0.00442222 0.00765950i
\(414\) 0 0
\(415\) 1.59627 + 2.76481i 0.0783576 + 0.135719i
\(416\) 5.69846 2.07407i 0.279390 0.101690i
\(417\) 0 0
\(418\) 16.8596 14.1469i 0.824631 0.691948i
\(419\) 26.0239 21.8367i 1.27135 1.06679i 0.276977 0.960876i \(-0.410667\pi\)
0.994375 0.105915i \(-0.0337771\pi\)
\(420\) 0 0
\(421\) 11.8229 4.30320i 0.576215 0.209725i −0.0374406 0.999299i \(-0.511920\pi\)
0.613656 + 0.789574i \(0.289698\pi\)
\(422\) −7.42127 12.8540i −0.361262 0.625724i
\(423\) 0 0
\(424\) −3.64543 + 6.31407i −0.177038 + 0.306638i
\(425\) −2.85932 + 16.2160i −0.138697 + 0.786591i
\(426\) 0 0
\(427\) −0.428548 0.155979i −0.0207389 0.00754834i
\(428\) 1.78699 + 10.1345i 0.0863774 + 0.489870i
\(429\) 0 0
\(430\) −0.467911 0.392624i −0.0225647 0.0189340i
\(431\) 7.77601 0.374557 0.187279 0.982307i \(-0.440033\pi\)
0.187279 + 0.982307i \(0.440033\pi\)
\(432\) 0 0
\(433\) −40.6536 −1.95369 −0.976845 0.213950i \(-0.931367\pi\)
−0.976845 + 0.213950i \(0.931367\pi\)
\(434\) 0.465852 + 0.390896i 0.0223616 + 0.0187636i
\(435\) 0 0
\(436\) −1.92602 10.9230i −0.0922397 0.523117i
\(437\) 26.4786 + 9.63744i 1.26665 + 0.461021i
\(438\) 0 0
\(439\) −3.07280 + 17.4267i −0.146657 + 0.831731i 0.819366 + 0.573271i \(0.194326\pi\)
−0.966022 + 0.258459i \(0.916785\pi\)
\(440\) −2.50387 + 4.33683i −0.119367 + 0.206750i
\(441\) 0 0
\(442\) 15.6766 + 27.1527i 0.745662 + 1.29152i
\(443\) 13.5086 4.91673i 0.641814 0.233601i −0.000551343 1.00000i \(-0.500175\pi\)
0.642365 + 0.766399i \(0.277953\pi\)
\(444\) 0 0
\(445\) −2.23989 + 1.87949i −0.106181 + 0.0890962i
\(446\) −5.15657 + 4.32688i −0.244171 + 0.204884i
\(447\) 0 0
\(448\) 0.113341 0.0412527i 0.00535485 0.00194901i
\(449\) 13.9859 + 24.2243i 0.660036 + 1.14322i 0.980606 + 0.195991i \(0.0627925\pi\)
−0.320569 + 0.947225i \(0.603874\pi\)
\(450\) 0 0
\(451\) −10.7802 + 18.6718i −0.507619 + 0.879222i
\(452\) −1.02869 + 5.83396i −0.0483853 + 0.274407i
\(453\) 0 0
\(454\) 13.6211 + 4.95767i 0.639269 + 0.232675i
\(455\) −0.171122 0.970481i −0.00802232 0.0454968i
\(456\) 0 0
\(457\) 6.53280 + 5.48167i 0.305592 + 0.256422i 0.782667 0.622440i \(-0.213859\pi\)
−0.477075 + 0.878862i \(0.658303\pi\)
\(458\) 25.7870 1.20495
\(459\) 0 0
\(460\) −6.41147 −0.298937
\(461\) −16.6361 13.9593i −0.774820 0.650151i 0.167118 0.985937i \(-0.446554\pi\)
−0.941938 + 0.335785i \(0.890998\pi\)
\(462\) 0 0
\(463\) −3.43882 19.5025i −0.159815 0.906358i −0.954250 0.299009i \(-0.903344\pi\)
0.794435 0.607349i \(-0.207767\pi\)
\(464\) 5.58512 + 2.03282i 0.259283 + 0.0943712i
\(465\) 0 0
\(466\) −1.80541 + 10.2390i −0.0836339 + 0.474311i
\(467\) 18.4927 32.0303i 0.855741 1.48219i −0.0202143 0.999796i \(-0.506435\pi\)
0.875956 0.482392i \(-0.160232\pi\)
\(468\) 0 0
\(469\) −0.400330 0.693392i −0.0184855 0.0320178i
\(470\) 0.979055 0.356347i 0.0451605 0.0164371i
\(471\) 0 0
\(472\) 1.14156 0.957882i 0.0525445 0.0440901i
\(473\) −1.29086 + 1.08316i −0.0593538 + 0.0498037i
\(474\) 0 0
\(475\) −17.7208 + 6.44983i −0.813084 + 0.295938i
\(476\) 0.311804 + 0.540060i 0.0142915 + 0.0247536i
\(477\) 0 0
\(478\) −11.4572 + 19.8445i −0.524042 + 0.907667i
\(479\) 1.97131 11.1799i 0.0900717 0.510822i −0.906075 0.423117i \(-0.860936\pi\)
0.996147 0.0877044i \(-0.0279531\pi\)
\(480\) 0 0
\(481\) 1.65745 + 0.603263i 0.0755733 + 0.0275064i
\(482\) −2.09714 11.8935i −0.0955223 0.541734i
\(483\) 0 0
\(484\) 2.15657 + 1.80958i 0.0980261 + 0.0822537i
\(485\) 4.61587 0.209596
\(486\) 0 0
\(487\) 1.13785 0.0515610 0.0257805 0.999668i \(-0.491793\pi\)
0.0257805 + 0.999668i \(0.491793\pi\)
\(488\) −2.89646 2.43042i −0.131117 0.110020i
\(489\) 0 0
\(490\) 1.63429 + 9.26849i 0.0738295 + 0.418708i
\(491\) −14.3880 5.23680i −0.649322 0.236334i −0.00370223 0.999993i \(-0.501178\pi\)
−0.645619 + 0.763659i \(0.723401\pi\)
\(492\) 0 0
\(493\) −5.33615 + 30.2628i −0.240328 + 1.36297i
\(494\) −17.9538 + 31.0969i −0.807781 + 1.39912i
\(495\) 0 0
\(496\) 2.52094 + 4.36640i 0.113194 + 0.196057i
\(497\) −0.651055 + 0.236965i −0.0292038 + 0.0106293i
\(498\) 0 0
\(499\) 1.77584 1.49011i 0.0794977 0.0667065i −0.602173 0.798366i \(-0.705698\pi\)
0.681671 + 0.731659i \(0.261254\pi\)
\(500\) 8.44743 7.08824i 0.377781 0.316996i
\(501\) 0 0
\(502\) −13.1998 + 4.80434i −0.589136 + 0.214428i
\(503\) 4.02869 + 6.97789i 0.179630 + 0.311129i 0.941754 0.336303i \(-0.109177\pi\)
−0.762124 + 0.647431i \(0.775843\pi\)
\(504\) 0 0
\(505\) −5.80587 + 10.0561i −0.258358 + 0.447489i
\(506\) −3.07145 + 17.4191i −0.136543 + 0.774372i
\(507\) 0 0
\(508\) 5.39306 + 1.96291i 0.239278 + 0.0870901i
\(509\) −1.24944 7.08591i −0.0553803 0.314077i 0.944516 0.328465i \(-0.106531\pi\)
−0.999896 + 0.0143875i \(0.995420\pi\)
\(510\) 0 0
\(511\) −0.962697 0.807798i −0.0425872 0.0357349i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −18.1429 −0.800249
\(515\) 2.25490 + 1.89209i 0.0993628 + 0.0833753i
\(516\) 0 0
\(517\) −0.499123 2.83067i −0.0219514 0.124493i
\(518\) 0.0329662 + 0.0119987i 0.00144845 + 0.000527194i
\(519\) 0 0
\(520\) 1.41875 8.04612i 0.0622162 0.352846i
\(521\) 4.84343 8.38906i 0.212194 0.367531i −0.740207 0.672379i \(-0.765272\pi\)
0.952401 + 0.304848i \(0.0986057\pi\)
\(522\) 0 0
\(523\) −7.29339 12.6325i −0.318917 0.552381i 0.661345 0.750082i \(-0.269986\pi\)
−0.980262 + 0.197701i \(0.936653\pi\)
\(524\) 16.1814 5.88954i 0.706887 0.257286i
\(525\) 0 0
\(526\) −3.27379 + 2.74703i −0.142744 + 0.119776i
\(527\) −19.9691 + 16.7561i −0.869867 + 0.729905i
\(528\) 0 0
\(529\) 0.332748 0.121111i 0.0144673 0.00526568i
\(530\) 4.91147 + 8.50692i 0.213341 + 0.369517i
\(531\) 0 0
\(532\) −0.357097 + 0.618509i −0.0154821 + 0.0268158i
\(533\) 6.10829 34.6418i 0.264579 1.50050i
\(534\) 0 0
\(535\) 13.0287 + 4.74205i 0.563279 + 0.205017i
\(536\) −1.15270 6.53731i −0.0497892 0.282369i
\(537\) 0 0
\(538\) −10.0057 8.39576i −0.431376 0.361967i
\(539\) 25.9641 1.11835
\(540\) 0 0
\(541\) 23.9786 1.03092 0.515461 0.856913i \(-0.327621\pi\)
0.515461 + 0.856913i \(0.327621\pi\)
\(542\) 6.50181 + 5.45567i 0.279277 + 0.234341i
\(543\) 0 0
\(544\) 0.897804 + 5.09170i 0.0384930 + 0.218305i
\(545\) −14.0424 5.11100i −0.601508 0.218931i
\(546\) 0 0
\(547\) 6.94269 39.3739i 0.296848 1.68351i −0.362748 0.931887i \(-0.618161\pi\)
0.659596 0.751620i \(-0.270727\pi\)
\(548\) 0.0432332 0.0748822i 0.00184683 0.00319881i
\(549\) 0 0
\(550\) −5.91875 10.2516i −0.252376 0.437129i
\(551\) −33.0710 + 12.0369i −1.40887 + 0.512788i
\(552\) 0 0
\(553\) −1.29292 + 1.08489i −0.0549805 + 0.0461341i
\(554\) 5.06624 4.25108i 0.215244 0.180611i
\(555\) 0 0
\(556\) 17.2554 6.28044i 0.731791 0.266350i
\(557\) 1.17958 + 2.04309i 0.0499803 + 0.0865685i 0.889933 0.456091i \(-0.150751\pi\)
−0.839953 + 0.542659i \(0.817417\pi\)
\(558\) 0 0
\(559\) 1.37464 2.38094i 0.0581410 0.100703i
\(560\) 0.0282185 0.160035i 0.00119245 0.00676271i
\(561\) 0 0
\(562\) 27.9320 + 10.1664i 1.17824 + 0.428845i
\(563\) 7.55825 + 42.8650i 0.318542 + 1.80654i 0.551632 + 0.834087i \(0.314005\pi\)
−0.233090 + 0.972455i \(0.574884\pi\)
\(564\) 0 0
\(565\) 6.11406 + 5.13030i 0.257220 + 0.215833i
\(566\) −2.81521 −0.118332
\(567\) 0 0
\(568\) −5.74422 −0.241022
\(569\) −11.2187 9.41360i −0.470312 0.394639i 0.376596 0.926377i \(-0.377094\pi\)
−0.846908 + 0.531739i \(0.821539\pi\)
\(570\) 0 0
\(571\) −2.57145 14.5834i −0.107612 0.610297i −0.990145 0.140047i \(-0.955275\pi\)
0.882533 0.470251i \(-0.155836\pi\)
\(572\) −21.1805 7.70908i −0.885602 0.322333i
\(573\) 0 0
\(574\) 0.121492 0.689016i 0.00507098 0.0287590i
\(575\) 7.57785 13.1252i 0.316018 0.547359i
\(576\) 0 0
\(577\) 16.0706 + 27.8351i 0.669027 + 1.15879i 0.978177 + 0.207775i \(0.0666222\pi\)
−0.309150 + 0.951013i \(0.600044\pi\)
\(578\) −9.14455 + 3.32834i −0.380363 + 0.138441i
\(579\) 0 0
\(580\) 6.13429 5.14728i 0.254712 0.213729i
\(581\) −0.218941 + 0.183713i −0.00908320 + 0.00762171i
\(582\) 0 0
\(583\) 25.4650 9.26849i 1.05465 0.383862i
\(584\) −5.20961 9.02330i −0.215575 0.373387i
\(585\) 0 0
\(586\) 4.91787 8.51800i 0.203155 0.351875i
\(587\) −4.75918 + 26.9907i −0.196432 + 1.11402i 0.713932 + 0.700215i \(0.246913\pi\)
−0.910364 + 0.413808i \(0.864198\pi\)
\(588\) 0 0
\(589\) −28.0540 10.2108i −1.15594 0.420729i
\(590\) −0.348641 1.97724i −0.0143533 0.0814016i
\(591\) 0 0
\(592\) 0.222811 + 0.186961i 0.00915748 + 0.00768404i
\(593\) −36.2377 −1.48810 −0.744052 0.668121i \(-0.767099\pi\)
−0.744052 + 0.668121i \(0.767099\pi\)
\(594\) 0 0
\(595\) 0.840185 0.0344442
\(596\) 3.75490 + 3.15074i 0.153807 + 0.129059i
\(597\) 0 0
\(598\) −5.01114 28.4196i −0.204921 1.16216i
\(599\) 43.2438 + 15.7395i 1.76689 + 0.643097i 0.999999 + 0.00132449i \(0.000421598\pi\)
0.766895 + 0.641772i \(0.221801\pi\)
\(600\) 0 0
\(601\) 0.294673 1.67118i 0.0120200 0.0681687i −0.978208 0.207628i \(-0.933425\pi\)
0.990228 + 0.139460i \(0.0445366\pi\)
\(602\) 0.0273411 0.0473563i 0.00111434 0.00193010i
\(603\) 0 0
\(604\) −0.865715 1.49946i −0.0352254 0.0610122i
\(605\) 3.56418 1.29725i 0.144904 0.0527409i
\(606\) 0 0
\(607\) −10.7779 + 9.04374i −0.437462 + 0.367074i −0.834758 0.550616i \(-0.814393\pi\)
0.397297 + 0.917690i \(0.369948\pi\)
\(608\) −4.53596 + 3.80612i −0.183957 + 0.154359i
\(609\) 0 0
\(610\) −4.78699 + 1.74232i −0.193820 + 0.0705445i
\(611\) 2.34477 + 4.06126i 0.0948592 + 0.164301i
\(612\) 0 0
\(613\) 12.8314 22.2246i 0.518256 0.897645i −0.481520 0.876435i \(-0.659915\pi\)
0.999775 0.0212096i \(-0.00675172\pi\)
\(614\) 2.35504 13.3561i 0.0950416 0.539007i
\(615\) 0 0
\(616\) −0.421274 0.153331i −0.0169736 0.00617789i
\(617\) −5.46822 31.0118i −0.220142 1.24849i −0.871757 0.489938i \(-0.837019\pi\)
0.651615 0.758550i \(-0.274092\pi\)
\(618\) 0 0
\(619\) −2.42674 2.03627i −0.0975388 0.0818448i 0.592714 0.805413i \(-0.298056\pi\)
−0.690253 + 0.723568i \(0.742501\pi\)
\(620\) 6.79292 0.272810
\(621\) 0 0
\(622\) 10.5767 0.424086
\(623\) −0.200522 0.168258i −0.00803376 0.00674113i
\(624\) 0 0
\(625\) 0.185259 + 1.05066i 0.00741037 + 0.0420263i
\(626\) 10.0544 + 3.65949i 0.401854 + 0.146263i
\(627\) 0 0
\(628\) −1.00980 + 5.72686i −0.0402954 + 0.228527i
\(629\) −0.751907 + 1.30234i −0.0299805 + 0.0519277i
\(630\) 0 0
\(631\) −11.2961 19.5654i −0.449690 0.778885i 0.548676 0.836035i \(-0.315132\pi\)
−0.998366 + 0.0571498i \(0.981799\pi\)
\(632\) −13.1493 + 4.78595i −0.523051 + 0.190375i
\(633\) 0 0
\(634\) −22.3537 + 18.7570i −0.887779 + 0.744935i
\(635\) 5.92333 4.97027i 0.235060 0.197239i
\(636\) 0 0
\(637\) −39.8063 + 14.4883i −1.57718 + 0.574048i
\(638\) −11.0458 19.1318i −0.437306 0.757436i
\(639\) 0 0
\(640\) 0.673648 1.16679i 0.0266283 0.0461215i
\(641\) 3.04323 17.2590i 0.120200 0.681691i −0.863843 0.503761i \(-0.831949\pi\)
0.984043 0.177929i \(-0.0569398\pi\)
\(642\) 0 0
\(643\) 26.4923 + 9.64241i 1.04475 + 0.380260i 0.806681 0.590987i \(-0.201262\pi\)
0.238074 + 0.971247i \(0.423484\pi\)
\(644\) −0.0996702 0.565258i −0.00392756 0.0222743i
\(645\) 0 0
\(646\) −23.4520 19.6786i −0.922707 0.774243i
\(647\) −32.3492 −1.27178 −0.635888 0.771781i \(-0.719366\pi\)
−0.635888 + 0.771781i \(0.719366\pi\)
\(648\) 0 0
\(649\) −5.53890 −0.217421
\(650\) 14.7947 + 12.4143i 0.580297 + 0.486927i
\(651\) 0 0
\(652\) −0.470437 2.66798i −0.0184237 0.104486i
\(653\) −25.9329 9.43880i −1.01483 0.369369i −0.219546 0.975602i \(-0.570457\pi\)
−0.795287 + 0.606234i \(0.792680\pi\)
\(654\) 0 0
\(655\) 4.02869 22.8478i 0.157414 0.892738i
\(656\) 2.90033 5.02352i 0.113239 0.196135i
\(657\) 0 0
\(658\) 0.0466368 + 0.0807773i 0.00181809 + 0.00314903i
\(659\) −4.90508 + 1.78530i −0.191075 + 0.0695455i −0.435785 0.900051i \(-0.643529\pi\)
0.244711 + 0.969596i \(0.421307\pi\)
\(660\) 0 0
\(661\) −36.7294 + 30.8196i −1.42861 + 1.19875i −0.482080 + 0.876127i \(0.660119\pi\)
−0.946529 + 0.322618i \(0.895437\pi\)
\(662\) −5.59105 + 4.69145i −0.217302 + 0.182338i
\(663\) 0 0
\(664\) −2.22668 + 0.810446i −0.0864120 + 0.0314514i
\(665\) 0.481115 + 0.833315i 0.0186568 + 0.0323146i
\(666\) 0 0
\(667\) 14.1420 24.4947i 0.547581 0.948439i
\(668\) 4.27244 24.2302i 0.165306 0.937495i
\(669\) 0 0
\(670\) −8.40420 3.05888i −0.324683 0.118175i
\(671\) 2.44041 + 13.8402i 0.0942109 + 0.534297i
\(672\) 0 0
\(673\) −8.51960 7.14879i −0.328406 0.275566i 0.463644 0.886022i \(-0.346542\pi\)
−0.792050 + 0.610456i \(0.790986\pi\)
\(674\) −1.62361 −0.0625390
\(675\) 0 0
\(676\) 23.7743 0.914394
\(677\) 36.9550 + 31.0089i 1.42030 + 1.19177i 0.951181 + 0.308633i \(0.0998716\pi\)
0.469115 + 0.883137i \(0.344573\pi\)
\(678\) 0 0
\(679\) 0.0717564 + 0.406951i 0.00275376 + 0.0156173i
\(680\) 6.54576 + 2.38246i 0.251018 + 0.0913632i
\(681\) 0 0
\(682\) 3.25418 18.4554i 0.124609 0.706694i
\(683\) 6.60401 11.4385i 0.252695 0.437681i −0.711572 0.702614i \(-0.752016\pi\)
0.964267 + 0.264932i \(0.0853496\pi\)
\(684\) 0 0
\(685\) −0.0582480 0.100888i −0.00222554 0.00385475i
\(686\) −1.58512 + 0.576937i −0.0605203 + 0.0220276i
\(687\) 0 0
\(688\) 0.347296 0.291416i 0.0132405 0.0111101i
\(689\) −33.8692 + 28.4196i −1.29031 + 1.08270i
\(690\) 0 0
\(691\) 9.37211 3.41117i 0.356532 0.129767i −0.157543 0.987512i \(-0.550357\pi\)
0.514075 + 0.857745i \(0.328135\pi\)
\(692\) −5.36097 9.28547i −0.203793 0.352980i
\(693\) 0 0
\(694\) −2.73442 + 4.73616i −0.103797 + 0.179782i
\(695\) 4.29607 24.3642i 0.162959 0.924189i
\(696\) 0 0
\(697\) 28.1822 + 10.2575i 1.06748 + 0.388529i
\(698\) 0.538019 + 3.05126i 0.0203643 + 0.115492i
\(699\) 0 0
\(700\) 0.294263 + 0.246916i 0.0111221 + 0.00933254i
\(701\) −46.7588 −1.76605 −0.883027 0.469322i \(-0.844498\pi\)
−0.883027 + 0.469322i \(0.844498\pi\)
\(702\) 0 0
\(703\) −1.72226 −0.0649562
\(704\) −2.84730 2.38917i −0.107312 0.0900451i
\(705\) 0 0
\(706\) −0.0530334 0.300767i −0.00199594 0.0113195i
\(707\) −0.976834 0.355538i −0.0367376 0.0133714i
\(708\) 0 0
\(709\) −6.56907 + 37.2550i −0.246707 + 1.39914i 0.569789 + 0.821791i \(0.307025\pi\)
−0.816496 + 0.577351i \(0.804086\pi\)
\(710\) −3.86959 + 6.70232i −0.145223 + 0.251534i
\(711\) 0 0
\(712\) −1.08512 1.87949i −0.0406667 0.0704368i
\(713\) 22.5462 8.20616i 0.844363 0.307323i
\(714\) 0 0
\(715\) −23.2631 + 19.5201i −0.869991 + 0.730009i
\(716\) 10.6061 8.89955i 0.396367 0.332592i
\(717\) 0 0
\(718\) 9.93242 3.61510i 0.370675 0.134915i
\(719\) 1.65048 + 2.85872i 0.0615526 + 0.106612i 0.895160 0.445746i \(-0.147061\pi\)
−0.833607 + 0.552358i \(0.813728\pi\)
\(720\) 0 0
\(721\) −0.131759 + 0.228213i −0.00490697 + 0.00849911i
\(722\) 2.78905 15.8175i 0.103798 0.588666i
\(723\) 0 0
\(724\) −3.29813 1.20042i −0.122574 0.0446133i
\(725\) 3.28699 + 18.6414i 0.122076 + 0.692326i
\(726\) 0 0
\(727\) −16.0548 13.4716i −0.595441 0.499635i 0.294535 0.955641i \(-0.404835\pi\)
−0.889977 + 0.456006i \(0.849280\pi\)
\(728\) 0.731429 0.0271086
\(729\) 0 0
\(730\) −14.0378 −0.519561
\(731\) 1.79561 + 1.50669i 0.0664129 + 0.0557271i
\(732\) 0 0
\(733\) −3.11943 17.6912i −0.115219 0.653439i −0.986642 0.162906i \(-0.947913\pi\)
0.871423 0.490533i \(-0.163198\pi\)
\(734\) −2.51842 0.916629i −0.0929565 0.0338334i
\(735\) 0 0
\(736\) 0.826352 4.68647i 0.0304597 0.172746i
\(737\) −12.3366 + 21.3677i −0.454425 + 0.787088i
\(738\) 0 0
\(739\) 19.6630 + 34.0573i 0.723314 + 1.25282i 0.959664 + 0.281149i \(0.0907154\pi\)
−0.236350 + 0.971668i \(0.575951\pi\)
\(740\) 0.368241 0.134029i 0.0135368 0.00492699i
\(741\) 0 0
\(742\) −0.673648 + 0.565258i −0.0247304 + 0.0207513i
\(743\) 35.7957 30.0361i 1.31322 1.10192i 0.325519 0.945535i \(-0.394461\pi\)
0.987696 0.156383i \(-0.0499835\pi\)
\(744\) 0 0
\(745\) 6.20574 2.25870i 0.227361 0.0827525i
\(746\) −12.1853 21.1055i −0.446134 0.772727i
\(747\) 0 0
\(748\) 9.60859 16.6426i 0.351325 0.608513i
\(749\) −0.215537 + 1.22237i −0.00787556 + 0.0446645i
\(750\) 0 0
\(751\) 31.3184 + 11.3990i 1.14282 + 0.415954i 0.842932 0.538020i \(-0.180827\pi\)
0.299891 + 0.953973i \(0.403050\pi\)
\(752\) 0.134285 + 0.761570i 0.00489688 + 0.0277716i
\(753\) 0 0
\(754\) 27.6104 + 23.1679i 1.00551 + 0.843724i
\(755\) −2.33275 −0.0848974
\(756\) 0 0
\(757\) 32.3354 1.17525 0.587626 0.809133i \(-0.300063\pi\)
0.587626 + 0.809133i \(0.300063\pi\)
\(758\) −3.13041 2.62673i −0.113702 0.0954071i
\(759\) 0 0
\(760\) 1.38532 + 7.85651i 0.0502507 + 0.284986i
\(761\) 1.81521 + 0.660681i 0.0658012 + 0.0239497i 0.374711 0.927142i \(-0.377742\pi\)
−0.308910 + 0.951091i \(0.599964\pi\)
\(762\) 0 0
\(763\) 0.232307 1.31748i 0.00841007 0.0476959i
\(764\) −10.9461 + 18.9592i −0.396016 + 0.685919i
\(765\) 0 0
\(766\) −8.19506 14.1943i −0.296100 0.512859i
\(767\) 8.49185 3.09078i 0.306623 0.111602i
\(768\) 0 0
\(769\) −3.66179 + 3.07261i −0.132047 + 0.110801i −0.706419 0.707793i \(-0.749691\pi\)
0.574372 + 0.818594i \(0.305246\pi\)
\(770\) −0.462697 + 0.388249i −0.0166744 + 0.0139915i
\(771\) 0 0
\(772\) −24.0672 + 8.75973i −0.866196 + 0.315270i
\(773\) −2.95336 5.11538i −0.106225 0.183987i 0.808013 0.589165i \(-0.200543\pi\)
−0.914238 + 0.405177i \(0.867210\pi\)
\(774\) 0 0
\(775\) −8.02869 + 13.9061i −0.288399 + 0.499522i
\(776\) −0.594922 + 3.37397i −0.0213565 + 0.121119i
\(777\) 0 0
\(778\) −26.2263 9.54558i −0.940257 0.342226i
\(779\) 5.96435 + 33.8255i 0.213695 + 1.21192i