Properties

Label 162.2.e.a
Level $162$
Weight $2$
Character orbit 162.e
Analytic conductor $1.294$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,2,Mod(19,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{18}^{4} + \zeta_{18}) q^{2} - \zeta_{18}^{5} q^{4} + ( - \zeta_{18}^{5} + \cdots + \zeta_{18}^{2}) q^{5} + (\zeta_{18}^{5} + \cdots + \zeta_{18}^{3}) q^{7} - \zeta_{18}^{3} q^{8} + ( - \zeta_{18}^{3} - \zeta_{18}^{2} + \cdots + 1) q^{10} + \cdots + ( - 3 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + \cdots + 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} - 3 q^{8} + 3 q^{10} + 3 q^{11} - 12 q^{13} + 3 q^{14} + 6 q^{17} + 9 q^{19} - 6 q^{20} + 3 q^{22} + 6 q^{23} - 9 q^{25} - 18 q^{26} - 12 q^{28} - 15 q^{29} - 18 q^{31} + 6 q^{34}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\zeta_{18}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.173648 + 0.984808i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
0.939693 0.342020i
−0.173648 0.984808i
−0.939693 + 0.342020i 0 0.766044 0.642788i −0.439693 2.49362i 0 −1.79813 1.50881i −0.500000 + 0.866025i 0 1.26604 + 2.19285i
37.1 0.766044 0.642788i 0 0.173648 0.984808i 1.26604 0.460802i 0 −0.0209445 0.118782i −0.500000 0.866025i 0 0.673648 1.16679i
73.1 0.173648 0.984808i 0 −0.939693 0.342020i 0.673648 0.565258i 0 3.31908 1.20805i −0.500000 + 0.866025i 0 −0.439693 0.761570i
91.1 0.173648 + 0.984808i 0 −0.939693 + 0.342020i 0.673648 + 0.565258i 0 3.31908 + 1.20805i −0.500000 0.866025i 0 −0.439693 + 0.761570i
127.1 0.766044 + 0.642788i 0 0.173648 + 0.984808i 1.26604 + 0.460802i 0 −0.0209445 + 0.118782i −0.500000 + 0.866025i 0 0.673648 + 1.16679i
145.1 −0.939693 0.342020i 0 0.766044 + 0.642788i −0.439693 + 2.49362i 0 −1.79813 + 1.50881i −0.500000 0.866025i 0 1.26604 2.19285i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.2.e.a 6
3.b odd 2 1 54.2.e.a 6
9.c even 3 1 486.2.e.a 6
9.c even 3 1 486.2.e.c 6
9.d odd 6 1 486.2.e.b 6
9.d odd 6 1 486.2.e.d 6
12.b even 2 1 432.2.u.a 6
27.e even 9 1 inner 162.2.e.a 6
27.e even 9 1 486.2.e.a 6
27.e even 9 1 486.2.e.c 6
27.e even 9 1 1458.2.a.d 3
27.e even 9 2 1458.2.c.a 6
27.f odd 18 1 54.2.e.a 6
27.f odd 18 1 486.2.e.b 6
27.f odd 18 1 486.2.e.d 6
27.f odd 18 1 1458.2.a.a 3
27.f odd 18 2 1458.2.c.d 6
108.l even 18 1 432.2.u.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.2.e.a 6 3.b odd 2 1
54.2.e.a 6 27.f odd 18 1
162.2.e.a 6 1.a even 1 1 trivial
162.2.e.a 6 27.e even 9 1 inner
432.2.u.a 6 12.b even 2 1
432.2.u.a 6 108.l even 18 1
486.2.e.a 6 9.c even 3 1
486.2.e.a 6 27.e even 9 1
486.2.e.b 6 9.d odd 6 1
486.2.e.b 6 27.f odd 18 1
486.2.e.c 6 9.c even 3 1
486.2.e.c 6 27.e even 9 1
486.2.e.d 6 9.d odd 6 1
486.2.e.d 6 27.f odd 18 1
1458.2.a.a 3 27.f odd 18 1
1458.2.a.d 3 27.e even 9 1
1458.2.c.a 6 27.e even 9 2
1458.2.c.d 6 27.f odd 18 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 3T_{5}^{5} + 9T_{5}^{4} - 24T_{5}^{3} + 36T_{5}^{2} - 27T_{5} + 9 \) acting on \(S_{2}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots + 3249 \) Copy content Toggle raw display
$13$ \( T^{6} + 12 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$17$ \( T^{6} - 6 T^{5} + \cdots + 25281 \) Copy content Toggle raw display
$19$ \( T^{6} - 9 T^{5} + \cdots + 32041 \) Copy content Toggle raw display
$23$ \( T^{6} - 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{6} + 15 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$31$ \( T^{6} + 18 T^{5} + \cdots + 5041 \) Copy content Toggle raw display
$37$ \( T^{6} - 15 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$41$ \( T^{6} - 3 T^{5} + \cdots + 47961 \) Copy content Toggle raw display
$43$ \( T^{6} + 18 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$47$ \( T^{6} + 9 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$53$ \( (T^{3} - 6 T^{2} - 9 T - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} - 6 T^{5} + \cdots + 3249 \) Copy content Toggle raw display
$61$ \( T^{6} - 18 T^{5} + \cdots + 2809 \) Copy content Toggle raw display
$67$ \( T^{6} + 9 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{6} + 12 T^{5} + \cdots + 106929 \) Copy content Toggle raw display
$73$ \( T^{6} - 3 T^{5} + \cdots + 72361 \) Copy content Toggle raw display
$79$ \( T^{6} - 33 T^{5} + \cdots + 466489 \) Copy content Toggle raw display
$83$ \( T^{6} - 18 T^{5} + \cdots + 5184 \) Copy content Toggle raw display
$89$ \( T^{6} - 15 T^{5} + \cdots + 25281 \) Copy content Toggle raw display
$97$ \( T^{6} + 12 T^{5} + \cdots + 16129 \) Copy content Toggle raw display
show more
show less