Defining parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.e (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(162, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 198 | 18 | 180 |
Cusp forms | 126 | 18 | 108 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(162, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
162.2.e.a | $6$ | $1.294$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(3\) | \(3\) | \(q+(\zeta_{18}-\zeta_{18}^{4})q^{2}-\zeta_{18}^{5}q^{4}+(\zeta_{18}^{2}+\cdots)q^{5}+\cdots\) |
162.2.e.b | $12$ | $1.294$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(3\) | \(-3\) | \(q+(\beta _{4}+\beta _{8})q^{2}-\beta _{6}q^{4}+(1-\beta _{2}+\beta _{7}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(162, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)