# Properties

 Label 162.2.c.b Level $162$ Weight $2$ Character orbit 162.c Analytic conductor $1.294$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [162,2,Mod(55,162)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(162, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("162.55");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$162 = 2 \cdot 3^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 162.c (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.29357651274$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 54) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} + 3 \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} + q^{8} +O(q^{10})$$ q + (z - 1) * q^2 - z * q^4 + 3*z * q^5 + (-z + 1) * q^7 + q^8 $$q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} + 3 \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} + q^{8} - 3 q^{10} + (3 \zeta_{6} - 3) q^{11} + 4 \zeta_{6} q^{13} + \zeta_{6} q^{14} + (\zeta_{6} - 1) q^{16} + 2 q^{19} + ( - 3 \zeta_{6} + 3) q^{20} - 3 \zeta_{6} q^{22} - 6 \zeta_{6} q^{23} + (4 \zeta_{6} - 4) q^{25} - 4 q^{26} - q^{28} + ( - 6 \zeta_{6} + 6) q^{29} - 5 \zeta_{6} q^{31} - \zeta_{6} q^{32} + 3 q^{35} + 2 q^{37} + (2 \zeta_{6} - 2) q^{38} + 3 \zeta_{6} q^{40} - 6 \zeta_{6} q^{41} + ( - 10 \zeta_{6} + 10) q^{43} + 3 q^{44} + 6 q^{46} + ( - 6 \zeta_{6} + 6) q^{47} + 6 \zeta_{6} q^{49} - 4 \zeta_{6} q^{50} + ( - 4 \zeta_{6} + 4) q^{52} - 9 q^{53} - 9 q^{55} + ( - \zeta_{6} + 1) q^{56} + 6 \zeta_{6} q^{58} + 12 \zeta_{6} q^{59} + (8 \zeta_{6} - 8) q^{61} + 5 q^{62} + q^{64} + (12 \zeta_{6} - 12) q^{65} - 14 \zeta_{6} q^{67} + (3 \zeta_{6} - 3) q^{70} - 7 q^{73} + (2 \zeta_{6} - 2) q^{74} - 2 \zeta_{6} q^{76} + 3 \zeta_{6} q^{77} + (8 \zeta_{6} - 8) q^{79} - 3 q^{80} + 6 q^{82} + (3 \zeta_{6} - 3) q^{83} + 10 \zeta_{6} q^{86} + (3 \zeta_{6} - 3) q^{88} + 18 q^{89} + 4 q^{91} + (6 \zeta_{6} - 6) q^{92} + 6 \zeta_{6} q^{94} + 6 \zeta_{6} q^{95} + ( - \zeta_{6} + 1) q^{97} - 6 q^{98} +O(q^{100})$$ q + (z - 1) * q^2 - z * q^4 + 3*z * q^5 + (-z + 1) * q^7 + q^8 - 3 * q^10 + (3*z - 3) * q^11 + 4*z * q^13 + z * q^14 + (z - 1) * q^16 + 2 * q^19 + (-3*z + 3) * q^20 - 3*z * q^22 - 6*z * q^23 + (4*z - 4) * q^25 - 4 * q^26 - q^28 + (-6*z + 6) * q^29 - 5*z * q^31 - z * q^32 + 3 * q^35 + 2 * q^37 + (2*z - 2) * q^38 + 3*z * q^40 - 6*z * q^41 + (-10*z + 10) * q^43 + 3 * q^44 + 6 * q^46 + (-6*z + 6) * q^47 + 6*z * q^49 - 4*z * q^50 + (-4*z + 4) * q^52 - 9 * q^53 - 9 * q^55 + (-z + 1) * q^56 + 6*z * q^58 + 12*z * q^59 + (8*z - 8) * q^61 + 5 * q^62 + q^64 + (12*z - 12) * q^65 - 14*z * q^67 + (3*z - 3) * q^70 - 7 * q^73 + (2*z - 2) * q^74 - 2*z * q^76 + 3*z * q^77 + (8*z - 8) * q^79 - 3 * q^80 + 6 * q^82 + (3*z - 3) * q^83 + 10*z * q^86 + (3*z - 3) * q^88 + 18 * q^89 + 4 * q^91 + (6*z - 6) * q^92 + 6*z * q^94 + 6*z * q^95 + (-z + 1) * q^97 - 6 * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} - q^{4} + 3 q^{5} + q^{7} + 2 q^{8}+O(q^{10})$$ 2 * q - q^2 - q^4 + 3 * q^5 + q^7 + 2 * q^8 $$2 q - q^{2} - q^{4} + 3 q^{5} + q^{7} + 2 q^{8} - 6 q^{10} - 3 q^{11} + 4 q^{13} + q^{14} - q^{16} + 4 q^{19} + 3 q^{20} - 3 q^{22} - 6 q^{23} - 4 q^{25} - 8 q^{26} - 2 q^{28} + 6 q^{29} - 5 q^{31} - q^{32} + 6 q^{35} + 4 q^{37} - 2 q^{38} + 3 q^{40} - 6 q^{41} + 10 q^{43} + 6 q^{44} + 12 q^{46} + 6 q^{47} + 6 q^{49} - 4 q^{50} + 4 q^{52} - 18 q^{53} - 18 q^{55} + q^{56} + 6 q^{58} + 12 q^{59} - 8 q^{61} + 10 q^{62} + 2 q^{64} - 12 q^{65} - 14 q^{67} - 3 q^{70} - 14 q^{73} - 2 q^{74} - 2 q^{76} + 3 q^{77} - 8 q^{79} - 6 q^{80} + 12 q^{82} - 3 q^{83} + 10 q^{86} - 3 q^{88} + 36 q^{89} + 8 q^{91} - 6 q^{92} + 6 q^{94} + 6 q^{95} + q^{97} - 12 q^{98}+O(q^{100})$$ 2 * q - q^2 - q^4 + 3 * q^5 + q^7 + 2 * q^8 - 6 * q^10 - 3 * q^11 + 4 * q^13 + q^14 - q^16 + 4 * q^19 + 3 * q^20 - 3 * q^22 - 6 * q^23 - 4 * q^25 - 8 * q^26 - 2 * q^28 + 6 * q^29 - 5 * q^31 - q^32 + 6 * q^35 + 4 * q^37 - 2 * q^38 + 3 * q^40 - 6 * q^41 + 10 * q^43 + 6 * q^44 + 12 * q^46 + 6 * q^47 + 6 * q^49 - 4 * q^50 + 4 * q^52 - 18 * q^53 - 18 * q^55 + q^56 + 6 * q^58 + 12 * q^59 - 8 * q^61 + 10 * q^62 + 2 * q^64 - 12 * q^65 - 14 * q^67 - 3 * q^70 - 14 * q^73 - 2 * q^74 - 2 * q^76 + 3 * q^77 - 8 * q^79 - 6 * q^80 + 12 * q^82 - 3 * q^83 + 10 * q^86 - 3 * q^88 + 36 * q^89 + 8 * q^91 - 6 * q^92 + 6 * q^94 + 6 * q^95 + q^97 - 12 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/162\mathbb{Z}\right)^\times$$.

 $$n$$ $$83$$ $$\chi(n)$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
55.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 1.50000 + 2.59808i 0 0.500000 0.866025i 1.00000 0 −3.00000
109.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 1.50000 2.59808i 0 0.500000 + 0.866025i 1.00000 0 −3.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.2.c.b 2
3.b odd 2 1 162.2.c.c 2
4.b odd 2 1 1296.2.i.o 2
9.c even 3 1 54.2.a.b yes 1
9.c even 3 1 inner 162.2.c.b 2
9.d odd 6 1 54.2.a.a 1
9.d odd 6 1 162.2.c.c 2
12.b even 2 1 1296.2.i.c 2
36.f odd 6 1 432.2.a.b 1
36.f odd 6 1 1296.2.i.o 2
36.h even 6 1 432.2.a.g 1
36.h even 6 1 1296.2.i.c 2
45.h odd 6 1 1350.2.a.r 1
45.j even 6 1 1350.2.a.h 1
45.k odd 12 2 1350.2.c.k 2
45.l even 12 2 1350.2.c.b 2
63.l odd 6 1 2646.2.a.bd 1
63.o even 6 1 2646.2.a.a 1
72.j odd 6 1 1728.2.a.c 1
72.l even 6 1 1728.2.a.d 1
72.n even 6 1 1728.2.a.y 1
72.p odd 6 1 1728.2.a.z 1
99.g even 6 1 6534.2.a.bc 1
99.h odd 6 1 6534.2.a.b 1
117.n odd 6 1 9126.2.a.u 1
117.t even 6 1 9126.2.a.r 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.2.a.a 1 9.d odd 6 1
54.2.a.b yes 1 9.c even 3 1
162.2.c.b 2 1.a even 1 1 trivial
162.2.c.b 2 9.c even 3 1 inner
162.2.c.c 2 3.b odd 2 1
162.2.c.c 2 9.d odd 6 1
432.2.a.b 1 36.f odd 6 1
432.2.a.g 1 36.h even 6 1
1296.2.i.c 2 12.b even 2 1
1296.2.i.c 2 36.h even 6 1
1296.2.i.o 2 4.b odd 2 1
1296.2.i.o 2 36.f odd 6 1
1350.2.a.h 1 45.j even 6 1
1350.2.a.r 1 45.h odd 6 1
1350.2.c.b 2 45.l even 12 2
1350.2.c.k 2 45.k odd 12 2
1728.2.a.c 1 72.j odd 6 1
1728.2.a.d 1 72.l even 6 1
1728.2.a.y 1 72.n even 6 1
1728.2.a.z 1 72.p odd 6 1
2646.2.a.a 1 63.o even 6 1
2646.2.a.bd 1 63.l odd 6 1
6534.2.a.b 1 99.h odd 6 1
6534.2.a.bc 1 99.g even 6 1
9126.2.a.r 1 117.t even 6 1
9126.2.a.u 1 117.n odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(162, [\chi])$$:

 $$T_{5}^{2} - 3T_{5} + 9$$ T5^2 - 3*T5 + 9 $$T_{7}^{2} - T_{7} + 1$$ T7^2 - T7 + 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + T + 1$$
$3$ $$T^{2}$$
$5$ $$T^{2} - 3T + 9$$
$7$ $$T^{2} - T + 1$$
$11$ $$T^{2} + 3T + 9$$
$13$ $$T^{2} - 4T + 16$$
$17$ $$T^{2}$$
$19$ $$(T - 2)^{2}$$
$23$ $$T^{2} + 6T + 36$$
$29$ $$T^{2} - 6T + 36$$
$31$ $$T^{2} + 5T + 25$$
$37$ $$(T - 2)^{2}$$
$41$ $$T^{2} + 6T + 36$$
$43$ $$T^{2} - 10T + 100$$
$47$ $$T^{2} - 6T + 36$$
$53$ $$(T + 9)^{2}$$
$59$ $$T^{2} - 12T + 144$$
$61$ $$T^{2} + 8T + 64$$
$67$ $$T^{2} + 14T + 196$$
$71$ $$T^{2}$$
$73$ $$(T + 7)^{2}$$
$79$ $$T^{2} + 8T + 64$$
$83$ $$T^{2} + 3T + 9$$
$89$ $$(T - 18)^{2}$$
$97$ $$T^{2} - T + 1$$