Properties

Label 162.2.a.d.1.1
Level $162$
Weight $2$
Character 162.1
Self dual yes
Analytic conductor $1.294$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +3.00000 q^{5} -4.00000 q^{7} +1.00000 q^{8} +3.00000 q^{10} -1.00000 q^{13} -4.00000 q^{14} +1.00000 q^{16} +3.00000 q^{17} -4.00000 q^{19} +3.00000 q^{20} +4.00000 q^{25} -1.00000 q^{26} -4.00000 q^{28} -9.00000 q^{29} -4.00000 q^{31} +1.00000 q^{32} +3.00000 q^{34} -12.0000 q^{35} -1.00000 q^{37} -4.00000 q^{38} +3.00000 q^{40} -6.00000 q^{41} +8.00000 q^{43} +12.0000 q^{47} +9.00000 q^{49} +4.00000 q^{50} -1.00000 q^{52} +6.00000 q^{53} -4.00000 q^{56} -9.00000 q^{58} -1.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} -3.00000 q^{65} -4.00000 q^{67} +3.00000 q^{68} -12.0000 q^{70} +12.0000 q^{71} +11.0000 q^{73} -1.00000 q^{74} -4.00000 q^{76} -16.0000 q^{79} +3.00000 q^{80} -6.00000 q^{82} +12.0000 q^{83} +9.00000 q^{85} +8.00000 q^{86} +3.00000 q^{89} +4.00000 q^{91} +12.0000 q^{94} -12.0000 q^{95} +2.00000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.00000 0.948683
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −12.0000 −2.02837
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) −9.00000 −1.18176
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) −12.0000 −1.43427
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 9.00000 0.976187
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 12.0000 1.23771
\(95\) −12.0000 −1.23117
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.00000 −0.835629
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −1.00000 −0.0905357
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −3.00000 −0.263117
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 16.0000 1.38738
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) −12.0000 −1.01419
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) 0 0
\(145\) −27.0000 −2.24223
\(146\) 11.0000 0.910366
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) −16.0000 −1.27289
\(159\) 0 0
\(160\) 3.00000 0.237171
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) 3.00000 0.228086 0.114043 0.993476i \(-0.463620\pi\)
0.114043 + 0.993476i \(0.463620\pi\)
\(174\) 0 0
\(175\) −16.0000 −1.20949
\(176\) 0 0
\(177\) 0 0
\(178\) 3.00000 0.224860
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) 0 0
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) 0 0
\(188\) 12.0000 0.875190
\(189\) 0 0
\(190\) −12.0000 −0.870572
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −13.0000 −0.935760 −0.467880 0.883792i \(-0.654982\pi\)
−0.467880 + 0.883792i \(0.654982\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) 3.00000 0.213741 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 4.00000 0.282843
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 36.0000 2.52670
\(204\) 0 0
\(205\) −18.0000 −1.25717
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 24.0000 1.63679
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 11.0000 0.745014
\(219\) 0 0
\(220\) 0 0
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) 15.0000 0.997785
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 23.0000 1.51988 0.759941 0.649992i \(-0.225228\pi\)
0.759941 + 0.649992i \(0.225228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −9.00000 −0.590879
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) 0 0
\(235\) 36.0000 2.34838
\(236\) 0 0
\(237\) 0 0
\(238\) −12.0000 −0.777844
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) −11.0000 −0.707107
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) 27.0000 1.72497
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) −3.00000 −0.189737
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) −3.00000 −0.186052
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 18.0000 1.10573
\(266\) 16.0000 0.981023
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) 0 0
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 20.0000 1.19952
\(279\) 0 0
\(280\) −12.0000 −0.717137
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) 24.0000 1.41668
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −27.0000 −1.58549
\(291\) 0 0
\(292\) 11.0000 0.643726
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) −9.00000 −0.521356
\(299\) 0 0
\(300\) 0 0
\(301\) −32.0000 −1.84445
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −12.0000 −0.681554
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) −13.0000 −0.733632
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) −21.0000 −1.17948 −0.589739 0.807594i \(-0.700769\pi\)
−0.589739 + 0.807594i \(0.700769\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.00000 0.167705
\(321\) 0 0
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −48.0000 −2.64633
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) −12.0000 −0.652714
\(339\) 0 0
\(340\) 9.00000 0.488094
\(341\) 0 0
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) 3.00000 0.161281
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) −16.0000 −0.855236
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 36.0000 1.91068
\(356\) 3.00000 0.159000
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) 33.0000 1.72730
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −3.00000 −0.155963
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) −12.0000 −0.615587
\(381\) 0 0
\(382\) −12.0000 −0.613973
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −13.0000 −0.661683
\(387\) 0 0
\(388\) 2.00000 0.101535
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) 3.00000 0.151138
\(395\) −48.0000 −2.41514
\(396\) 0 0
\(397\) −25.0000 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(398\) −4.00000 −0.200502
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 36.0000 1.78665
\(407\) 0 0
\(408\) 0 0
\(409\) −25.0000 −1.23617 −0.618085 0.786111i \(-0.712091\pi\)
−0.618085 + 0.786111i \(0.712091\pi\)
\(410\) −18.0000 −0.888957
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) 0 0
\(414\) 0 0
\(415\) 36.0000 1.76717
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −13.0000 −0.633581 −0.316791 0.948495i \(-0.602605\pi\)
−0.316791 + 0.948495i \(0.602605\pi\)
\(422\) 8.00000 0.389434
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 11.0000 0.528626 0.264313 0.964437i \(-0.414855\pi\)
0.264313 + 0.964437i \(0.414855\pi\)
\(434\) 16.0000 0.768025
\(435\) 0 0
\(436\) 11.0000 0.526804
\(437\) 0 0
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.00000 −0.142695
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 9.00000 0.426641
\(446\) 8.00000 0.378811
\(447\) 0 0
\(448\) −4.00000 −0.188982
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 15.0000 0.705541
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) −1.00000 −0.0467780 −0.0233890 0.999726i \(-0.507446\pi\)
−0.0233890 + 0.999726i \(0.507446\pi\)
\(458\) 23.0000 1.07472
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) −9.00000 −0.417815
\(465\) 0 0
\(466\) −21.0000 −0.972806
\(467\) 24.0000 1.11059 0.555294 0.831654i \(-0.312606\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 36.0000 1.66056
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −16.0000 −0.734130
\(476\) −12.0000 −0.550019
\(477\) 0 0
\(478\) −12.0000 −0.548867
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 1.00000 0.0455961
\(482\) −13.0000 −0.592134
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 6.00000 0.272446
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) −1.00000 −0.0452679
\(489\) 0 0
\(490\) 27.0000 1.21974
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −27.0000 −1.21602
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −48.0000 −2.15309
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) −3.00000 −0.134164
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) −44.0000 −1.94645
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 15.0000 0.661622
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) 0 0
\(518\) 4.00000 0.175750
\(519\) 0 0
\(520\) −3.00000 −0.131559
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) −12.0000 −0.523225
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 18.0000 0.781870
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) −36.0000 −1.55642
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −21.0000 −0.905374
\(539\) 0 0
\(540\) 0 0
\(541\) −1.00000 −0.0429934 −0.0214967 0.999769i \(-0.506843\pi\)
−0.0214967 + 0.999769i \(0.506843\pi\)
\(542\) −16.0000 −0.687259
\(543\) 0 0
\(544\) 3.00000 0.128624
\(545\) 33.0000 1.41356
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) −9.00000 −0.384461
\(549\) 0 0
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 64.0000 2.72156
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) 3.00000 0.127114 0.0635570 0.997978i \(-0.479756\pi\)
0.0635570 + 0.997978i \(0.479756\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) −12.0000 −0.507093
\(561\) 0 0
\(562\) 27.0000 1.13893
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) 0 0
\(565\) 45.0000 1.89316
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 24.0000 1.00174
\(575\) 0 0
\(576\) 0 0
\(577\) −25.0000 −1.04076 −0.520382 0.853934i \(-0.674210\pi\)
−0.520382 + 0.853934i \(0.674210\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0 0
\(580\) −27.0000 −1.12111
\(581\) −48.0000 −1.99138
\(582\) 0 0
\(583\) 0 0
\(584\) 11.0000 0.455183
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) 24.0000 0.990586 0.495293 0.868726i \(-0.335061\pi\)
0.495293 + 0.868726i \(0.335061\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) −33.0000 −1.35515 −0.677574 0.735455i \(-0.736969\pi\)
−0.677574 + 0.735455i \(0.736969\pi\)
\(594\) 0 0
\(595\) −36.0000 −1.47586
\(596\) −9.00000 −0.368654
\(597\) 0 0
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 0 0
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) −32.0000 −1.30422
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) −33.0000 −1.34164
\(606\) 0 0
\(607\) 20.0000 0.811775 0.405887 0.913923i \(-0.366962\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) −3.00000 −0.121466
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 0.120775 0.0603877 0.998175i \(-0.480766\pi\)
0.0603877 + 0.998175i \(0.480766\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) −12.0000 −0.481932
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 23.0000 0.919265
\(627\) 0 0
\(628\) −13.0000 −0.518756
\(629\) −3.00000 −0.119618
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −16.0000 −0.636446
\(633\) 0 0
\(634\) −21.0000 −0.834017
\(635\) −48.0000 −1.90482
\(636\) 0 0
\(637\) −9.00000 −0.356593
\(638\) 0 0
\(639\) 0 0
\(640\) 3.00000 0.118585
\(641\) −45.0000 −1.77739 −0.888697 0.458496i \(-0.848388\pi\)
−0.888697 + 0.458496i \(0.848388\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) 36.0000 1.40664
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −48.0000 −1.87123
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 23.0000 0.894596 0.447298 0.894385i \(-0.352386\pi\)
0.447298 + 0.894385i \(0.352386\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 48.0000 1.86136
\(666\) 0 0
\(667\) 0 0
\(668\) −12.0000 −0.464294
\(669\) 0 0
\(670\) −12.0000 −0.463600
\(671\) 0 0
\(672\) 0 0
\(673\) 11.0000 0.424019 0.212009 0.977268i \(-0.431999\pi\)
0.212009 + 0.977268i \(0.431999\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −27.0000 −1.03162
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) 8.00000 0.304997
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 3.00000 0.114043
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 60.0000 2.27593
\(696\) 0 0
\(697\) −18.0000 −0.681799
\(698\) 14.0000 0.529908
\(699\) 0 0
\(700\) −16.0000 −0.604743
\(701\) 51.0000 1.92624 0.963122 0.269066i \(-0.0867150\pi\)
0.963122 + 0.269066i \(0.0867150\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) 47.0000 1.76512 0.882561 0.470198i \(-0.155817\pi\)
0.882561 + 0.470198i \(0.155817\pi\)
\(710\) 36.0000 1.35106
\(711\) 0 0
\(712\) 3.00000 0.112430
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) −36.0000 −1.33701
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 4.00000 0.148250
\(729\) 0 0
\(730\) 33.0000 1.22138
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) −3.00000 −0.110282
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) 0 0
\(745\) −27.0000 −0.989203
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 0 0
\(749\) 48.0000 1.75388
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) 12.0000 0.437595
\(753\) 0 0
\(754\) 9.00000 0.327761
\(755\) 24.0000 0.873449
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) −12.0000 −0.435286
\(761\) 15.0000 0.543750 0.271875 0.962333i \(-0.412356\pi\)
0.271875 + 0.962333i \(0.412356\pi\)
\(762\) 0 0
\(763\) −44.0000 −1.59291
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 12.0000 0.433578
\(767\) 0 0
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13.0000 −0.467880
\(773\) 27.0000 0.971123 0.485561 0.874203i \(-0.338615\pi\)
0.485561 + 0.874203i \(0.338615\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) 2.00000 0.0717958
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) −39.0000 −1.39197
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 3.00000 0.106871
\(789\) 0 0
\(790\) −48.0000 −1.70776
\(791\) −60.0000 −2.13335
\(792\) 0 0
\(793\) 1.00000 0.0355110
\(794\) −25.0000 −0.887217
\(795\) 0 0
\(796\) −4.00000 −0.141776
\(797\) 51.0000 1.80651 0.903256 0.429101i \(-0.141170\pi\)
0.903256 + 0.429101i \(0.141170\pi\)
\(798\) 0 0
\(799\) 36.0000 1.27359
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) 3.00000 0.105934
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) 39.0000 1.37117 0.685583 0.727994i \(-0.259547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 36.0000 1.26335
\(813\) 0 0
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) −25.0000 −0.874105
\(819\) 0 0
\(820\) −18.0000 −0.628587
\(821\) 15.0000 0.523504 0.261752 0.965135i \(-0.415700\pi\)
0.261752 + 0.965135i \(0.415700\pi\)
\(822\) 0 0
\(823\) 44.0000 1.53374 0.766872 0.641800i \(-0.221812\pi\)
0.766872 + 0.641800i \(0.221812\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) 48.0000 1.66912 0.834562 0.550914i \(-0.185721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 36.0000 1.24958
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) 27.0000 0.935495
\(834\) 0 0
\(835\) −36.0000 −1.24583
\(836\) 0 0
\(837\) 0 0
\(838\) 24.0000 0.829066
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) −13.0000 −0.448010
\(843\) 0 0
\(844\) 8.00000 0.275371
\(845\) −36.0000 −1.23844
\(846\) 0 0
\(847\) 44.0000 1.51186
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 12.0000 0.411597
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 4.00000 0.136877
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 39.0000 1.33221 0.666107 0.745856i \(-0.267959\pi\)
0.666107 + 0.745856i \(0.267959\pi\)
\(858\) 0 0
\(859\) −52.0000 −1.77422 −0.887109 0.461561i \(-0.847290\pi\)
−0.887109 + 0.461561i \(0.847290\pi\)
\(860\) 24.0000 0.818393
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 9.00000 0.306009
\(866\) 11.0000 0.373795
\(867\) 0 0
\(868\) 16.0000 0.543075
\(869\) 0 0
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 11.0000 0.372507
\(873\) 0 0
\(874\) 0 0
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) −25.0000 −0.844190 −0.422095 0.906552i \(-0.638705\pi\)
−0.422095 + 0.906552i \(0.638705\pi\)
\(878\) −28.0000 −0.944954
\(879\) 0 0
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) −3.00000 −0.100901
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) 0 0
\(889\) 64.0000 2.14649
\(890\) 9.00000 0.301681
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) −48.0000 −1.60626
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) 36.0000 1.20067
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 15.0000 0.498893
\(905\) −30.0000 −0.997234
\(906\) 0 0
\(907\) −16.0000 −0.531271 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(908\) 12.0000 0.398234
\(909\) 0 0
\(910\) 12.0000 0.397796
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.00000 −0.0330771
\(915\) 0 0
\(916\) 23.0000 0.759941
\(917\) −48.0000 −1.58510
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −18.0000 −0.592798
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 8.00000 0.262896
\(927\) 0 0
\(928\) −9.00000 −0.295439
\(929\) 3.00000 0.0984268 0.0492134 0.998788i \(-0.484329\pi\)
0.0492134 + 0.998788i \(0.484329\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) −21.0000 −0.687878
\(933\) 0 0
\(934\) 24.0000 0.785304
\(935\) 0 0
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) 16.0000 0.522419
\(939\) 0 0
\(940\) 36.0000 1.17419
\(941\) 27.0000 0.880175 0.440087 0.897955i \(-0.354947\pi\)
0.440087 + 0.897955i \(0.354947\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) −11.0000 −0.357075
\(950\) −16.0000 −0.519109
\(951\) 0 0
\(952\) −12.0000 −0.388922
\(953\) −9.00000 −0.291539 −0.145769 0.989319i \(-0.546566\pi\)
−0.145769 + 0.989319i \(0.546566\pi\)
\(954\) 0 0
\(955\) −36.0000 −1.16493
\(956\) −12.0000 −0.388108
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 36.0000 1.16250
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 1.00000 0.0322413
\(963\) 0 0
\(964\) −13.0000 −0.418702
\(965\) −39.0000 −1.25545
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) 6.00000 0.192648
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) −80.0000 −2.56468
\(974\) −4.00000 −0.128168
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 27.0000 0.862483
\(981\) 0 0
\(982\) 0 0
\(983\) −48.0000 −1.53096 −0.765481 0.643458i \(-0.777499\pi\)
−0.765481 + 0.643458i \(0.777499\pi\)
\(984\) 0 0
\(985\) 9.00000 0.286764
\(986\) −27.0000 −0.859855
\(987\) 0 0
\(988\) 4.00000 0.127257
\(989\) 0 0
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) −4.00000 −0.127000
\(993\) 0 0
\(994\) −48.0000 −1.52247
\(995\) −12.0000 −0.380426
\(996\) 0 0
\(997\) −37.0000 −1.17180 −0.585901 0.810383i \(-0.699259\pi\)
−0.585901 + 0.810383i \(0.699259\pi\)
\(998\) −40.0000 −1.26618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.2.a.d.1.1 yes 1
3.2 odd 2 162.2.a.a.1.1 1
4.3 odd 2 1296.2.a.l.1.1 1
5.2 odd 4 4050.2.c.n.649.2 2
5.3 odd 4 4050.2.c.n.649.1 2
5.4 even 2 4050.2.a.r.1.1 1
7.6 odd 2 7938.2.a.s.1.1 1
8.3 odd 2 5184.2.a.h.1.1 1
8.5 even 2 5184.2.a.c.1.1 1
9.2 odd 6 162.2.c.d.109.1 2
9.4 even 3 162.2.c.a.55.1 2
9.5 odd 6 162.2.c.d.55.1 2
9.7 even 3 162.2.c.a.109.1 2
12.11 even 2 1296.2.a.c.1.1 1
15.2 even 4 4050.2.c.g.649.1 2
15.8 even 4 4050.2.c.g.649.2 2
15.14 odd 2 4050.2.a.bh.1.1 1
21.20 even 2 7938.2.a.n.1.1 1
24.5 odd 2 5184.2.a.y.1.1 1
24.11 even 2 5184.2.a.bd.1.1 1
36.7 odd 6 1296.2.i.b.433.1 2
36.11 even 6 1296.2.i.n.433.1 2
36.23 even 6 1296.2.i.n.865.1 2
36.31 odd 6 1296.2.i.b.865.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.a.a.1.1 1 3.2 odd 2
162.2.a.d.1.1 yes 1 1.1 even 1 trivial
162.2.c.a.55.1 2 9.4 even 3
162.2.c.a.109.1 2 9.7 even 3
162.2.c.d.55.1 2 9.5 odd 6
162.2.c.d.109.1 2 9.2 odd 6
1296.2.a.c.1.1 1 12.11 even 2
1296.2.a.l.1.1 1 4.3 odd 2
1296.2.i.b.433.1 2 36.7 odd 6
1296.2.i.b.865.1 2 36.31 odd 6
1296.2.i.n.433.1 2 36.11 even 6
1296.2.i.n.865.1 2 36.23 even 6
4050.2.a.r.1.1 1 5.4 even 2
4050.2.a.bh.1.1 1 15.14 odd 2
4050.2.c.g.649.1 2 15.2 even 4
4050.2.c.g.649.2 2 15.8 even 4
4050.2.c.n.649.1 2 5.3 odd 4
4050.2.c.n.649.2 2 5.2 odd 4
5184.2.a.c.1.1 1 8.5 even 2
5184.2.a.h.1.1 1 8.3 odd 2
5184.2.a.y.1.1 1 24.5 odd 2
5184.2.a.bd.1.1 1 24.11 even 2
7938.2.a.n.1.1 1 21.20 even 2
7938.2.a.s.1.1 1 7.6 odd 2