Properties

Label 162.2.a.b.1.1
Level $162$
Weight $2$
Character 162.1
Self dual yes
Analytic conductor $1.294$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{7} -1.00000 q^{8} +3.00000 q^{11} +2.00000 q^{13} -2.00000 q^{14} +1.00000 q^{16} +3.00000 q^{17} -1.00000 q^{19} -3.00000 q^{22} +6.00000 q^{23} -5.00000 q^{25} -2.00000 q^{26} +2.00000 q^{28} -6.00000 q^{29} -4.00000 q^{31} -1.00000 q^{32} -3.00000 q^{34} -4.00000 q^{37} +1.00000 q^{38} -9.00000 q^{41} -1.00000 q^{43} +3.00000 q^{44} -6.00000 q^{46} +6.00000 q^{47} -3.00000 q^{49} +5.00000 q^{50} +2.00000 q^{52} -12.0000 q^{53} -2.00000 q^{56} +6.00000 q^{58} -3.00000 q^{59} +8.00000 q^{61} +4.00000 q^{62} +1.00000 q^{64} +5.00000 q^{67} +3.00000 q^{68} +12.0000 q^{71} +11.0000 q^{73} +4.00000 q^{74} -1.00000 q^{76} +6.00000 q^{77} -4.00000 q^{79} +9.00000 q^{82} -12.0000 q^{83} +1.00000 q^{86} -3.00000 q^{88} -6.00000 q^{89} +4.00000 q^{91} +6.00000 q^{92} -6.00000 q^{94} +5.00000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 5.00000 0.610847 0.305424 0.952217i \(-0.401202\pi\)
0.305424 + 0.952217i \(0.401202\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.00000 0.993884
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.00000 0.107833
\(87\) 0 0
\(88\) −3.00000 −0.319801
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) 0 0
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) 3.00000 0.276172
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −8.00000 −0.724286
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) −5.00000 −0.431934
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) −19.0000 −1.61156 −0.805779 0.592216i \(-0.798253\pi\)
−0.805779 + 0.592216i \(0.798253\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 1.00000 0.0811107
\(153\) 0 0
\(154\) −6.00000 −0.483494
\(155\) 0 0
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) −10.0000 −0.755929
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) −4.00000 −0.296500
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 0 0
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) −5.00000 −0.358979
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 5.00000 0.353553
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) −14.0000 −0.975426
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) −12.0000 −0.824163
\(213\) 0 0
\(214\) 3.00000 0.205076
\(215\) 0 0
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 16.0000 1.08366
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) 26.0000 1.74109 0.870544 0.492090i \(-0.163767\pi\)
0.870544 + 0.492090i \(0.163767\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) −21.0000 −1.39382 −0.696909 0.717159i \(-0.745442\pi\)
−0.696909 + 0.717159i \(0.745442\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −3.00000 −0.196537 −0.0982683 0.995160i \(-0.531330\pi\)
−0.0982683 + 0.995160i \(0.531330\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3.00000 −0.195283
\(237\) 0 0
\(238\) −6.00000 −0.388922
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −7.00000 −0.450910 −0.225455 0.974254i \(-0.572387\pi\)
−0.225455 + 0.974254i \(0.572387\pi\)
\(242\) 2.00000 0.128565
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) −2.00000 −0.125491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 21.0000 1.30994 0.654972 0.755653i \(-0.272680\pi\)
0.654972 + 0.755653i \(0.272680\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.00000 0.122628
\(267\) 0 0
\(268\) 5.00000 0.305424
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) −3.00000 −0.181237
\(275\) −15.0000 −0.904534
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 19.0000 1.13954
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) −18.0000 −1.06251
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 11.0000 0.643726
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) 10.0000 0.575435
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 6.00000 0.341882
\(309\) 0 0
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 29.0000 1.63918 0.819588 0.572953i \(-0.194202\pi\)
0.819588 + 0.572953i \(0.194202\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 0 0
\(322\) −12.0000 −0.668734
\(323\) −3.00000 −0.166924
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 9.00000 0.496942
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) 0 0
\(337\) −1.00000 −0.0544735 −0.0272367 0.999629i \(-0.508671\pi\)
−0.0272367 + 0.999629i \(0.508671\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 1.00000 0.0539164
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −33.0000 −1.77153 −0.885766 0.464131i \(-0.846367\pi\)
−0.885766 + 0.464131i \(0.846367\pi\)
\(348\) 0 0
\(349\) −16.0000 −0.856460 −0.428230 0.903670i \(-0.640863\pi\)
−0.428230 + 0.903670i \(0.640863\pi\)
\(350\) 10.0000 0.534522
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) 21.0000 1.11772 0.558859 0.829263i \(-0.311239\pi\)
0.558859 + 0.829263i \(0.311239\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −14.0000 −0.735824
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) 0 0
\(366\) 0 0
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) −9.00000 −0.465379
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 23.0000 1.18143 0.590715 0.806880i \(-0.298846\pi\)
0.590715 + 0.806880i \(0.298846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −18.0000 −0.920960
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) 5.00000 0.253837
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −12.0000 −0.604551
\(395\) 0 0
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 27.0000 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 0 0
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) −12.0000 −0.594818
\(408\) 0 0
\(409\) 17.0000 0.840596 0.420298 0.907386i \(-0.361926\pi\)
0.420298 + 0.907386i \(0.361926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) 3.00000 0.146735
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) 12.0000 0.582772
\(425\) −15.0000 −0.727607
\(426\) 0 0
\(427\) 16.0000 0.774294
\(428\) −3.00000 −0.145010
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) −3.00000 −0.142534 −0.0712672 0.997457i \(-0.522704\pi\)
−0.0712672 + 0.997457i \(0.522704\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −26.0000 −1.23114
\(447\) 0 0
\(448\) 2.00000 0.0944911
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −27.0000 −1.27138
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) 21.0000 0.985579
\(455\) 0 0
\(456\) 0 0
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) −14.0000 −0.654177
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 3.00000 0.138972
\(467\) 15.0000 0.694117 0.347059 0.937843i \(-0.387180\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(468\) 0 0
\(469\) 10.0000 0.461757
\(470\) 0 0
\(471\) 0 0
\(472\) 3.00000 0.138086
\(473\) −3.00000 −0.137940
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 6.00000 0.275010
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) 42.0000 1.91903 0.959514 0.281659i \(-0.0908848\pi\)
0.959514 + 0.281659i \(0.0908848\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 7.00000 0.318841
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) −8.00000 −0.362143
\(489\) 0 0
\(490\) 0 0
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) 0 0
\(493\) −18.0000 −0.810679
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) −13.0000 −0.581960 −0.290980 0.956729i \(-0.593981\pi\)
−0.290980 + 0.956729i \(0.593981\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 21.0000 0.937276
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −18.0000 −0.800198
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 22.0000 0.973223
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −21.0000 −0.926270
\(515\) 0 0
\(516\) 0 0
\(517\) 18.0000 0.791639
\(518\) 8.00000 0.351500
\(519\) 0 0
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 18.0000 0.784837
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) −18.0000 −0.779667
\(534\) 0 0
\(535\) 0 0
\(536\) −5.00000 −0.215967
\(537\) 0 0
\(538\) −24.0000 −1.03471
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) −4.00000 −0.171973 −0.0859867 0.996296i \(-0.527404\pi\)
−0.0859867 + 0.996296i \(0.527404\pi\)
\(542\) −20.0000 −0.859074
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) 0 0
\(546\) 0 0
\(547\) −1.00000 −0.0427569 −0.0213785 0.999771i \(-0.506805\pi\)
−0.0213785 + 0.999771i \(0.506805\pi\)
\(548\) 3.00000 0.128154
\(549\) 0 0
\(550\) 15.0000 0.639602
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) −19.0000 −0.805779
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) −2.00000 −0.0845910
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 39.0000 1.64365 0.821827 0.569737i \(-0.192955\pi\)
0.821827 + 0.569737i \(0.192955\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −45.0000 −1.88650 −0.943249 0.332086i \(-0.892248\pi\)
−0.943249 + 0.332086i \(0.892248\pi\)
\(570\) 0 0
\(571\) −37.0000 −1.54840 −0.774201 0.632940i \(-0.781848\pi\)
−0.774201 + 0.632940i \(0.781848\pi\)
\(572\) 6.00000 0.250873
\(573\) 0 0
\(574\) 18.0000 0.751305
\(575\) −30.0000 −1.25109
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) −36.0000 −1.49097
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) 30.0000 1.23929
\(587\) 9.00000 0.371470 0.185735 0.982600i \(-0.440533\pi\)
0.185735 + 0.982600i \(0.440533\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) −12.0000 −0.490716
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −37.0000 −1.50926 −0.754631 0.656150i \(-0.772184\pi\)
−0.754631 + 0.656150i \(0.772184\pi\)
\(602\) 2.00000 0.0815139
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) −28.0000 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) −6.00000 −0.241747
\(617\) −27.0000 −1.08698 −0.543490 0.839416i \(-0.682897\pi\)
−0.543490 + 0.839416i \(0.682897\pi\)
\(618\) 0 0
\(619\) 35.0000 1.40677 0.703384 0.710810i \(-0.251671\pi\)
0.703384 + 0.710810i \(0.251671\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −18.0000 −0.721734
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) −29.0000 −1.15907
\(627\) 0 0
\(628\) −4.00000 −0.159617
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 0 0
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) 3.00000 0.118493 0.0592464 0.998243i \(-0.481130\pi\)
0.0592464 + 0.998243i \(0.481130\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) 12.0000 0.472866
\(645\) 0 0
\(646\) 3.00000 0.118033
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 10.0000 0.392232
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) 0 0
\(658\) −12.0000 −0.467809
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) −4.00000 −0.155582 −0.0777910 0.996970i \(-0.524787\pi\)
−0.0777910 + 0.996970i \(0.524787\pi\)
\(662\) 4.00000 0.155464
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) −36.0000 −1.39393
\(668\) 12.0000 0.464294
\(669\) 0 0
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 1.00000 0.0385186
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 0 0
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) 0 0
\(682\) 12.0000 0.459504
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) −1.00000 −0.0381246
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 33.0000 1.25266
\(695\) 0 0
\(696\) 0 0
\(697\) −27.0000 −1.02270
\(698\) 16.0000 0.605609
\(699\) 0 0
\(700\) −10.0000 −0.377964
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) −21.0000 −0.790345
\(707\) 0 0
\(708\) 0 0
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) −24.0000 −0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) −18.0000 −0.671754
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) 28.0000 1.04277
\(722\) 18.0000 0.669891
\(723\) 0 0
\(724\) 14.0000 0.520306
\(725\) 30.0000 1.11417
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) −4.00000 −0.148250
\(729\) 0 0
\(730\) 0 0
\(731\) −3.00000 −0.110959
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 28.0000 1.03350
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) 15.0000 0.552532
\(738\) 0 0
\(739\) 47.0000 1.72892 0.864461 0.502699i \(-0.167660\pi\)
0.864461 + 0.502699i \(0.167660\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 24.0000 0.881068
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 34.0000 1.24483
\(747\) 0 0
\(748\) 9.00000 0.329073
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) 12.0000 0.437014
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) −23.0000 −0.835398
\(759\) 0 0
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) −32.0000 −1.15848
\(764\) 18.0000 0.651217
\(765\) 0 0
\(766\) 0 0
\(767\) −6.00000 −0.216647
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.00000 0.179954
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) −5.00000 −0.179490
\(777\) 0 0
\(778\) 18.0000 0.645331
\(779\) 9.00000 0.322458
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) −18.0000 −0.643679
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 12.0000 0.427482
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) −20.0000 −0.709773
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 18.0000 0.636794
\(800\) 5.00000 0.176777
\(801\) 0 0
\(802\) −27.0000 −0.953403
\(803\) 33.0000 1.16454
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) 0 0
\(809\) −33.0000 −1.16022 −0.580109 0.814539i \(-0.696990\pi\)
−0.580109 + 0.814539i \(0.696990\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) −12.0000 −0.421117
\(813\) 0 0
\(814\) 12.0000 0.420600
\(815\) 0 0
\(816\) 0 0
\(817\) 1.00000 0.0349856
\(818\) −17.0000 −0.594391
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) −14.0000 −0.487713
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) −9.00000 −0.311832
\(834\) 0 0
\(835\) 0 0
\(836\) −3.00000 −0.103757
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −20.0000 −0.689246
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) 0 0
\(847\) −4.00000 −0.137442
\(848\) −12.0000 −0.412082
\(849\) 0 0
\(850\) 15.0000 0.514496
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) −16.0000 −0.547509
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 0 0
\(859\) 35.0000 1.19418 0.597092 0.802173i \(-0.296323\pi\)
0.597092 + 0.802173i \(0.296323\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −30.0000 −1.02180
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 7.00000 0.237870
\(867\) 0 0
\(868\) −8.00000 −0.271538
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) 10.0000 0.338837
\(872\) 16.0000 0.541828
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) 0 0
\(876\) 0 0
\(877\) 8.00000 0.270141 0.135070 0.990836i \(-0.456874\pi\)
0.135070 + 0.990836i \(0.456874\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) −19.0000 −0.639401 −0.319700 0.947519i \(-0.603582\pi\)
−0.319700 + 0.947519i \(0.603582\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) 3.00000 0.100787
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 4.00000 0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 26.0000 0.870544
\(893\) −6.00000 −0.200782
\(894\) 0 0
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) 9.00000 0.300334
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 27.0000 0.899002
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) −31.0000 −1.02934 −0.514669 0.857389i \(-0.672085\pi\)
−0.514669 + 0.857389i \(0.672085\pi\)
\(908\) −21.0000 −0.696909
\(909\) 0 0
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) −17.0000 −0.562310
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) 38.0000 1.25350 0.626752 0.779219i \(-0.284384\pi\)
0.626752 + 0.779219i \(0.284384\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −30.0000 −0.987997
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) −20.0000 −0.657241
\(927\) 0 0
\(928\) 6.00000 0.196960
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 3.00000 0.0983210
\(932\) −3.00000 −0.0982683
\(933\) 0 0
\(934\) −15.0000 −0.490815
\(935\) 0 0
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) −10.0000 −0.326512
\(939\) 0 0
\(940\) 0 0
\(941\) 60.0000 1.95594 0.977972 0.208736i \(-0.0669349\pi\)
0.977972 + 0.208736i \(0.0669349\pi\)
\(942\) 0 0
\(943\) −54.0000 −1.75848
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) −3.00000 −0.0974869 −0.0487435 0.998811i \(-0.515522\pi\)
−0.0487435 + 0.998811i \(0.515522\pi\)
\(948\) 0 0
\(949\) 22.0000 0.714150
\(950\) −5.00000 −0.162221
\(951\) 0 0
\(952\) −6.00000 −0.194461
\(953\) −9.00000 −0.291539 −0.145769 0.989319i \(-0.546566\pi\)
−0.145769 + 0.989319i \(0.546566\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) −42.0000 −1.35696
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 8.00000 0.257930
\(963\) 0 0
\(964\) −7.00000 −0.225455
\(965\) 0 0
\(966\) 0 0
\(967\) −22.0000 −0.707472 −0.353736 0.935345i \(-0.615089\pi\)
−0.353736 + 0.935345i \(0.615089\pi\)
\(968\) 2.00000 0.0642824
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) −38.0000 −1.21822
\(974\) −26.0000 −0.833094
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) 51.0000 1.63163 0.815817 0.578310i \(-0.196287\pi\)
0.815817 + 0.578310i \(0.196287\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 0 0
\(982\) −15.0000 −0.478669
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 18.0000 0.573237
\(987\) 0 0
\(988\) −2.00000 −0.0636285
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) −24.0000 −0.761234
\(995\) 0 0
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 13.0000 0.411508
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.2.a.b.1.1 1
3.2 odd 2 162.2.a.c.1.1 1
4.3 odd 2 1296.2.a.f.1.1 1
5.2 odd 4 4050.2.c.r.649.1 2
5.3 odd 4 4050.2.c.r.649.2 2
5.4 even 2 4050.2.a.v.1.1 1
7.6 odd 2 7938.2.a.i.1.1 1
8.3 odd 2 5184.2.a.p.1.1 1
8.5 even 2 5184.2.a.q.1.1 1
9.2 odd 6 18.2.c.a.13.1 yes 2
9.4 even 3 54.2.c.a.19.1 2
9.5 odd 6 18.2.c.a.7.1 2
9.7 even 3 54.2.c.a.37.1 2
12.11 even 2 1296.2.a.g.1.1 1
15.2 even 4 4050.2.c.c.649.2 2
15.8 even 4 4050.2.c.c.649.1 2
15.14 odd 2 4050.2.a.c.1.1 1
21.20 even 2 7938.2.a.x.1.1 1
24.5 odd 2 5184.2.a.r.1.1 1
24.11 even 2 5184.2.a.o.1.1 1
36.7 odd 6 432.2.i.b.145.1 2
36.11 even 6 144.2.i.c.49.1 2
36.23 even 6 144.2.i.c.97.1 2
36.31 odd 6 432.2.i.b.289.1 2
45.2 even 12 450.2.j.e.49.2 4
45.4 even 6 1350.2.e.c.451.1 2
45.7 odd 12 1350.2.j.a.199.1 4
45.13 odd 12 1350.2.j.a.1099.1 4
45.14 odd 6 450.2.e.i.151.1 2
45.22 odd 12 1350.2.j.a.1099.2 4
45.23 even 12 450.2.j.e.349.2 4
45.29 odd 6 450.2.e.i.301.1 2
45.32 even 12 450.2.j.e.349.1 4
45.34 even 6 1350.2.e.c.901.1 2
45.38 even 12 450.2.j.e.49.1 4
45.43 odd 12 1350.2.j.a.199.2 4
63.2 odd 6 882.2.h.c.67.1 2
63.4 even 3 2646.2.h.h.667.1 2
63.5 even 6 882.2.e.g.655.1 2
63.11 odd 6 882.2.e.i.373.1 2
63.13 odd 6 2646.2.f.g.883.1 2
63.16 even 3 2646.2.h.h.361.1 2
63.20 even 6 882.2.f.d.589.1 2
63.23 odd 6 882.2.e.i.655.1 2
63.25 even 3 2646.2.e.b.1549.1 2
63.31 odd 6 2646.2.h.i.667.1 2
63.32 odd 6 882.2.h.c.79.1 2
63.34 odd 6 2646.2.f.g.1765.1 2
63.38 even 6 882.2.e.g.373.1 2
63.40 odd 6 2646.2.e.c.2125.1 2
63.41 even 6 882.2.f.d.295.1 2
63.47 even 6 882.2.h.b.67.1 2
63.52 odd 6 2646.2.e.c.1549.1 2
63.58 even 3 2646.2.e.b.2125.1 2
63.59 even 6 882.2.h.b.79.1 2
63.61 odd 6 2646.2.h.i.361.1 2
72.5 odd 6 576.2.i.g.385.1 2
72.11 even 6 576.2.i.a.193.1 2
72.13 even 6 1728.2.i.e.1153.1 2
72.29 odd 6 576.2.i.g.193.1 2
72.43 odd 6 1728.2.i.f.577.1 2
72.59 even 6 576.2.i.a.385.1 2
72.61 even 6 1728.2.i.e.577.1 2
72.67 odd 6 1728.2.i.f.1153.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.2.c.a.7.1 2 9.5 odd 6
18.2.c.a.13.1 yes 2 9.2 odd 6
54.2.c.a.19.1 2 9.4 even 3
54.2.c.a.37.1 2 9.7 even 3
144.2.i.c.49.1 2 36.11 even 6
144.2.i.c.97.1 2 36.23 even 6
162.2.a.b.1.1 1 1.1 even 1 trivial
162.2.a.c.1.1 1 3.2 odd 2
432.2.i.b.145.1 2 36.7 odd 6
432.2.i.b.289.1 2 36.31 odd 6
450.2.e.i.151.1 2 45.14 odd 6
450.2.e.i.301.1 2 45.29 odd 6
450.2.j.e.49.1 4 45.38 even 12
450.2.j.e.49.2 4 45.2 even 12
450.2.j.e.349.1 4 45.32 even 12
450.2.j.e.349.2 4 45.23 even 12
576.2.i.a.193.1 2 72.11 even 6
576.2.i.a.385.1 2 72.59 even 6
576.2.i.g.193.1 2 72.29 odd 6
576.2.i.g.385.1 2 72.5 odd 6
882.2.e.g.373.1 2 63.38 even 6
882.2.e.g.655.1 2 63.5 even 6
882.2.e.i.373.1 2 63.11 odd 6
882.2.e.i.655.1 2 63.23 odd 6
882.2.f.d.295.1 2 63.41 even 6
882.2.f.d.589.1 2 63.20 even 6
882.2.h.b.67.1 2 63.47 even 6
882.2.h.b.79.1 2 63.59 even 6
882.2.h.c.67.1 2 63.2 odd 6
882.2.h.c.79.1 2 63.32 odd 6
1296.2.a.f.1.1 1 4.3 odd 2
1296.2.a.g.1.1 1 12.11 even 2
1350.2.e.c.451.1 2 45.4 even 6
1350.2.e.c.901.1 2 45.34 even 6
1350.2.j.a.199.1 4 45.7 odd 12
1350.2.j.a.199.2 4 45.43 odd 12
1350.2.j.a.1099.1 4 45.13 odd 12
1350.2.j.a.1099.2 4 45.22 odd 12
1728.2.i.e.577.1 2 72.61 even 6
1728.2.i.e.1153.1 2 72.13 even 6
1728.2.i.f.577.1 2 72.43 odd 6
1728.2.i.f.1153.1 2 72.67 odd 6
2646.2.e.b.1549.1 2 63.25 even 3
2646.2.e.b.2125.1 2 63.58 even 3
2646.2.e.c.1549.1 2 63.52 odd 6
2646.2.e.c.2125.1 2 63.40 odd 6
2646.2.f.g.883.1 2 63.13 odd 6
2646.2.f.g.1765.1 2 63.34 odd 6
2646.2.h.h.361.1 2 63.16 even 3
2646.2.h.h.667.1 2 63.4 even 3
2646.2.h.i.361.1 2 63.61 odd 6
2646.2.h.i.667.1 2 63.31 odd 6
4050.2.a.c.1.1 1 15.14 odd 2
4050.2.a.v.1.1 1 5.4 even 2
4050.2.c.c.649.1 2 15.8 even 4
4050.2.c.c.649.2 2 15.2 even 4
4050.2.c.r.649.1 2 5.2 odd 4
4050.2.c.r.649.2 2 5.3 odd 4
5184.2.a.o.1.1 1 24.11 even 2
5184.2.a.p.1.1 1 8.3 odd 2
5184.2.a.q.1.1 1 8.5 even 2
5184.2.a.r.1.1 1 24.5 odd 2
7938.2.a.i.1.1 1 7.6 odd 2
7938.2.a.x.1.1 1 21.20 even 2