[N,k,chi] = [162,13,Mod(53,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5]))
N = Newforms(chi, 13, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.53");
S:= CuspForms(chi, 13);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\)
\(83\)
\(\chi(n)\)
\(1 - \beta_{1}\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} - 321217200 T_{5}^{6} + \cdots + 45\!\cdots\!00 \)
T5^8 - 321217200*T5^6 + 81904474806840000*T5^4 - 6834221891256826800000000*T5^2 + 452668804450706123361000000000000
acting on \(S_{13}^{\mathrm{new}}(162, [\chi])\).
$p$
$F_p(T)$
$2$
\( (T^{4} - 2048 T^{2} + 4194304)^{2} \)
(T^4 - 2048*T^2 + 4194304)^2
$3$
\( T^{8} \)
T^8
$5$
\( T^{8} - 321217200 T^{6} + \cdots + 45\!\cdots\!00 \)
T^8 - 321217200*T^6 + 81904474806840000*T^4 - 6834221891256826800000000*T^2 + 452668804450706123361000000000000
$7$
\( (T^{4} - 34142 T^{3} + \cdots + 15\!\cdots\!25)^{2} \)
(T^4 - 34142*T^3 + 13427333859*T^2 + 418637517022690*T + 150348249429352713025)^2
$11$
\( T^{8} - 2410992386352 T^{6} + \cdots + 46\!\cdots\!00 \)
T^8 - 2410992386352*T^6 + 5131974847562046421274304*T^4 - 1641667474394182314274639039866547200*T^2 + 463637664780138051305767906475372658413160960000
$13$
\( (T^{4} + 3671518 T^{3} + \cdots + 16\!\cdots\!25)^{2} \)
(T^4 + 3671518*T^3 + 53807293436259*T^2 - 148062220637801567330*T + 1626287012870612433772444225)^2
$17$
\( (T^{4} + \cdots + 51\!\cdots\!36)^{2} \)
(T^4 + 2144123489594160*T^2 + 510032464790484338515469814336)^2
$19$
\( (T^{2} - 6015298 T - 39208074465983)^{4} \)
(T^2 - 6015298*T - 39208074465983)^4
$23$
\( T^{8} + \cdots + 43\!\cdots\!96 \)
T^8 - 30035304246988080*T^6 + 693156897574905589353080133545664*T^4 - 6276255376397013462031091778021997848685586426880*T^2 + 43665369717598237768248870567085959894526040884775967021611421696
$29$
\( T^{8} + \cdots + 63\!\cdots\!56 \)
T^8 - 1088049947777184960*T^6 + 932076247713969538424383428207504384*T^4 - 273945343638217014694644310135212168866193234109071360*T^2 + 63391376315120663155867356561780063852962297708716841200482533854150656
$31$
\( (T^{4} + 1986916972 T^{3} + \cdots + 79\!\cdots\!00)^{2} \)
(T^4 + 1986916972*T^3 + 3058173869738575404*T^2 + 1767690853254779362243405360*T + 791504139413702770220075674464624400)^2
$37$
\( (T^{2} - 2714888110 T - 11\!\cdots\!75)^{4} \)
(T^2 - 2714888110*T - 1155736201302827375)^4
$41$
\( T^{8} + \cdots + 21\!\cdots\!00 \)
T^8 - 587789438510685888*T^6 + 299468551918737099239174758085766144*T^4 - 27054697101009936312296639858061686078097114469171200*T^2 + 2118565010603557643687715674806466252023156355495674855140255989760000
$43$
\( (T^{4} + 5512774252 T^{3} + \cdots + 92\!\cdots\!64)^{2} \)
(T^4 + 5512774252*T^3 + 33431849752383252012*T^2 - 16765282563165551896708504016*T + 9248713745553476578750668555461730064)^2
$47$
\( T^{8} + \cdots + 62\!\cdots\!00 \)
T^8 - 111709103047039645488*T^6 + 9987385947165687739114105933670064471744*T^4 - 278327447976219768936919620057971520946127117549711619763200*T^2 + 6207760391608775336416957965802875773437666780549839405223263034215493224960000
$53$
\( (T^{4} + \cdots + 15\!\cdots\!04)^{2} \)
(T^4 + 2495858783286084808896*T^2 + 1532531158567741562321766557286522910024704)^2
$59$
\( T^{8} + \cdots + 76\!\cdots\!76 \)
T^8 - 4738140604386890687664*T^6 + 19682828685218967141520463262994857564142272*T^4 - 13111134883859199278913468154485345713807048268296902052136078336*T^2 + 7657106403138720069692633501063040097080110459426681682704116645533855684934523621376
$61$
\( (T^{4} - 87767669282 T^{3} + \cdots + 54\!\cdots\!25)^{2} \)
(T^4 - 87767669282*T^3 + 6961636467156285108579*T^2 - 65082123184401424353506824123490*T + 549862742634222332821094888587209827433025)^2
$67$
\( (T^{4} + 44042724850 T^{3} + \cdots + 61\!\cdots\!21)^{2} \)
(T^4 + 44042724850*T^3 + 9779225913540092846739*T^2 - 345271369194755117332901312639150*T + 61457200531784901832332816667340227360929121)^2
$71$
\( (T^{4} + \cdots + 78\!\cdots\!84)^{2} \)
(T^4 + 24439353773795213273856*T^2 + 78185691772592470743778785975601640239939584)^2
$73$
\( (T^{2} - 94702762174 T - 11\!\cdots\!67)^{4} \)
(T^2 - 94702762174*T - 11840510350652337509567)^4
$79$
\( (T^{4} - 208160642318 T^{3} + \cdots + 49\!\cdots\!89)^{2} \)
(T^4 - 208160642318*T^3 + 113465993534419882441107*T^2 + 14599375900575990022500520153984594*T + 4918937936346131986901287198578620764083048289)^2
$83$
\( T^{8} + \cdots + 26\!\cdots\!56 \)
T^8 - 192388849325698533462720*T^6 + 31857744268755310955802986151195573464518339584*T^4 - 991904014832649033881410738121219937009275705916274161123571151339520*T^2 + 26581501060440004605700784341639024986504387282095005388858774355305965444361309595664121856
$89$
\( (T^{4} + \cdots + 98\!\cdots\!24)^{2} \)
(T^4 + 157352691131601835986864*T^2 + 986779490143861985107255680047334189172098624)^2
$97$
\( (T^{4} - 176152203122 T^{3} + \cdots + 15\!\cdots\!25)^{2} \)
(T^4 - 176152203122*T^3 + 423041443846434316593939*T^2 + 69053750178676830120990148257905710*T + 153673286762761106022196413848050684178914173025)^2
show more
show less