[N,k,chi] = [162,13,Mod(53,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5]))
N = Newforms(chi, 13, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.53");
S:= CuspForms(chi, 13);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\)
\(83\)
\(\chi(n)\)
\(1 + \beta_{1}\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} - 270478368 T_{5}^{6} + \cdots + 73\!\cdots\!00 \)
T5^8 - 270478368*T5^6 + 72298978977383424*T5^4 - 232494706312988590080000*T5^2 + 738858141247658891673600000000
acting on \(S_{13}^{\mathrm{new}}(162, [\chi])\).
$p$
$F_p(T)$
$2$
\( (T^{4} - 2048 T^{2} + 4194304)^{2} \)
(T^4 - 2048*T^2 + 4194304)^2
$3$
\( T^{8} \)
T^8
$5$
\( T^{8} - 270478368 T^{6} + \cdots + 73\!\cdots\!00 \)
T^8 - 270478368*T^6 + 72298978977383424*T^4 - 232494706312988590080000*T^2 + 738858141247658891673600000000
$7$
\( (T^{4} + 76540 T^{3} + \cdots + 84\!\cdots\!76)^{2} \)
(T^4 + 76540*T^3 + 35004885276*T^2 - 2230874156761040*T + 849519259465255032976)^2
$11$
\( T^{8} - 3098571008544 T^{6} + \cdots + 50\!\cdots\!56 \)
T^8 - 3098571008544*T^6 + 9601140042906083307389952*T^4 - 6978240016051129199961147703296*T^2 + 5071879181191858439305079695664480256
$13$
\( (T^{4} + 3626500 T^{3} + \cdots + 53\!\cdots\!00)^{2} \)
(T^4 + 3626500*T^3 + 36343822687500*T^2 - 84106950066593750000*T + 537883727275680191406250000)^2
$17$
\( (T^{4} + \cdots + 36\!\cdots\!04)^{2} \)
(T^4 + 1551759684309504*T^2 + 36160854595164483721944367104)^2
$19$
\( (T^{2} + 60134036 T - 8399894140076)^{4} \)
(T^2 + 60134036*T - 8399894140076)^4
$23$
\( T^{8} + \cdots + 38\!\cdots\!16 \)
T^8 - 59384851139378304*T^6 + 2906801208121524967995030971891712*T^4 - 36804315953629947897775983343784472693110017622016*T^2 + 384101635457310774977333296492784171805718144746962349017442287616
$29$
\( T^{8} + \cdots + 61\!\cdots\!00 \)
T^8 - 790127294580583200*T^6 + 599408841007031719024889249178240000*T^4 - 19668086155986967844228221670012127890676940800000000*T^2 + 619626630863392867303946723806190294871942335369378267136000000000000
$31$
\( (T^{4} + 1365863836 T^{3} + \cdots + 72\!\cdots\!76)^{2} \)
(T^4 + 1365863836*T^3 + 1596175846925726172*T^2 + 367974878666124080424505264*T + 72580762907024926234953109347308176)^2
$37$
\( (T^{2} + 7640060 T - 11\!\cdots\!96)^{4} \)
(T^2 + 7640060*T - 11415376793145596)^4
$41$
\( T^{8} + \cdots + 16\!\cdots\!56 \)
T^8 - 10749730331677014144*T^6 + 111494231074850785361216278871912497152*T^4 - 43670469116178232997603377960015678332188002570098180096*T^2 + 16503671673357477061476193273556361777212678171587573684946836521857581056
$43$
\( (T^{4} + 814559980 T^{3} + \cdots + 10\!\cdots\!36)^{2} \)
(T^4 + 814559980*T^3 + 32787204115701110844*T^2 - 26166677297285077173594431120*T + 1031931854638428155358750451279057077136)^2
$47$
\( T^{8} + \cdots + 16\!\cdots\!00 \)
T^8 - 144665318367293760000*T^6 + 19659969485403766191088345107763200000000*T^4 - 183447898962489927985760799836248836961147551744000000000000*T^2 + 1608039194171394607674746143847352077185212019076499823248015360000000000000000
$53$
\( (T^{4} + \cdots + 40\!\cdots\!84)^{2} \)
(T^4 + 1295830196649501267744*T^2 + 406756699737730157321943132118649442729984)^2
$59$
\( T^{8} + \cdots + 47\!\cdots\!16 \)
T^8 - 6996912779742011951904*T^6 + 42093965694285573282392470316998363920909312*T^4 - 48018572225790467430993735226512014483744458025920318391206281216*T^2 + 47098336139527067888703367856691388162035579164646526373481989801017821651858899337216
$61$
\( (T^{4} + 22738532548 T^{3} + \cdots + 27\!\cdots\!76)^{2} \)
(T^4 + 22738532548*T^3 + 1043645851167248658828*T^2 - 11974224676194316355485863783152*T + 277312814156158924294961991052549160002576)^2
$67$
\( (T^{4} - 106716804980 T^{3} + \cdots + 79\!\cdots\!96)^{2} \)
(T^4 - 106716804980*T^3 + 8571915613365694109436*T^2 - 300574375133032221624687276200720*T + 7933015031743957763608767470832130055249296)^2
$71$
\( (T^{4} + \cdots + 64\!\cdots\!00)^{2} \)
(T^4 + 71321896505589222787200*T^2 + 645579761440950479322366050512510009344000000)^2
$73$
\( (T^{2} + 127191812540 T - 72\!\cdots\!00)^{4} \)
(T^2 + 127191812540*T - 724093821223253368700)^4
$79$
\( (T^{4} + 154290079516 T^{3} + \cdots + 26\!\cdots\!96)^{2} \)
(T^4 + 154290079516*T^3 + 24321172709481121360092*T^2 - 79574193944747502669402721015376*T + 265991948244121516182489572518470266378896)^2
$83$
\( T^{8} + \cdots + 48\!\cdots\!36 \)
T^8 - 115437618225778178700576*T^6 + 11124745585339293891528960380742096937596306432*T^4 - 254089524027059783149041084875387615911564605563885807459258433798144*T^2 + 4844832917584780988690304293020829664784666781243572874827475122383835918826533695925518336
$89$
\( (T^{4} + \cdots + 16\!\cdots\!24)^{2} \)
(T^4 + 3487081567788101441664*T^2 + 1652848030074640439051734102274088788557824)^2
$97$
\( (T^{4} + 638114237860 T^{3} + \cdots + 10\!\cdots\!76)^{2} \)
(T^4 + 638114237860*T^3 + 510254098360056760485324*T^2 - 65766808603768248310277369263510640*T + 10622253603663518576367177218319301574321564176)^2
show more
show less