Properties

Label 162.13.d.c.53.4
Level $162$
Weight $13$
Character 162.53
Analytic conductor $148.067$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,13,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(148.066998399\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} - 18478 x^{6} + 55448 x^{5} + 128029439 x^{4} - 256151296 x^{3} - 394230846230 x^{2} + 394358931120 x + 455189180292012 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{12} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.4
Root \(-68.6972 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 162.53
Dual form 162.13.d.c.107.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(39.1918 - 22.6274i) q^{2} +(1024.00 - 1773.62i) q^{4} +(23434.3 + 13529.8i) q^{5} +(-19253.5 - 33348.0i) q^{7} -92681.9i q^{8} +O(q^{10})\) \(q+(39.1918 - 22.6274i) q^{2} +(1024.00 - 1773.62i) q^{4} +(23434.3 + 13529.8i) q^{5} +(-19253.5 - 33348.0i) q^{7} -92681.9i q^{8} +1.22458e6 q^{10} +(915145. - 528359. i) q^{11} +(-3.18495e6 + 5.51649e6i) q^{13} +(-1.50916e6 - 871312. i) q^{14} +(-2.09715e6 - 3.63237e6i) q^{16} +2.54594e6i q^{17} +1.58076e6 q^{19} +(4.79935e7 - 2.77091e7i) q^{20} +(2.39108e7 - 4.14147e7i) q^{22} +(1.09932e8 + 6.34695e7i) q^{23} +(2.44041e8 + 4.22692e8i) q^{25} +2.88268e8i q^{26} -7.88622e7 q^{28} +(-7.45261e8 + 4.30277e8i) q^{29} +(3.60891e8 - 6.25081e8i) q^{31} +(-1.64382e8 - 9.49063e7i) q^{32} +(5.76081e7 + 9.97802e7i) q^{34} -1.04198e9i q^{35} +4.10816e9 q^{37} +(6.19527e7 - 3.57684e7i) q^{38} +(1.25397e9 - 2.17194e9i) q^{40} +(-1.46816e9 - 8.47640e8i) q^{41} +(5.93232e9 + 1.02751e10i) q^{43} -2.16416e9i q^{44} +5.74461e9 q^{46} +(-7.65810e9 + 4.42141e9i) q^{47} +(6.17925e9 - 1.07028e10i) q^{49} +(1.91289e10 + 1.10440e10i) q^{50} +(6.52277e9 + 1.12978e10i) q^{52} +1.49000e10i q^{53} +2.85944e10 q^{55} +(-3.09075e9 + 1.78445e9i) q^{56} +(-1.94721e10 + 3.37267e10i) q^{58} +(5.34412e10 + 3.08543e10i) q^{59} +(-3.07148e10 - 5.31996e10i) q^{61} -3.26641e10i q^{62} -8.58993e9 q^{64} +(-1.49274e11 + 8.61835e10i) q^{65} +(-4.81995e10 + 8.34839e10i) q^{67} +(4.51554e9 + 2.60705e9i) q^{68} +(-2.35774e10 - 4.08372e10i) q^{70} -1.92487e11i q^{71} -2.52890e11 q^{73} +(1.61006e11 - 9.29570e10i) q^{74} +(1.61869e9 - 2.80366e9i) q^{76} +(-3.52394e10 - 2.03455e10i) q^{77} +(1.32683e11 + 2.29813e11i) q^{79} -1.13496e11i q^{80} -7.67196e10 q^{82} +(-5.02122e11 + 2.89900e11i) q^{83} +(-3.44461e10 + 5.96625e10i) q^{85} +(4.64997e11 + 2.68466e11i) q^{86} +(-4.89693e10 - 8.48174e10i) q^{88} +2.67660e11i q^{89} +2.45285e11 q^{91} +(2.25142e11 - 1.29986e11i) q^{92} +(-2.00090e11 + 3.46566e11i) q^{94} +(3.70439e10 + 2.13873e10i) q^{95} +(7.00867e11 + 1.21394e12i) q^{97} -5.59282e11i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8192 q^{4} - 271484 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8192 q^{4} - 271484 q^{7} + 2279424 q^{10} - 696284 q^{13} - 16777216 q^{16} - 175753928 q^{19} - 30471168 q^{22} + 906499004 q^{25} - 1111998464 q^{28} + 2382534136 q^{31} + 2915232768 q^{34} - 1146574280 q^{37} + 2334130176 q^{40} + 15116732344 q^{43} + 5281241088 q^{46} + 33490260096 q^{49} + 1425989632 q^{52} + 195012288000 q^{55} - 121550997504 q^{58} - 58362866396 q^{61} - 68719476736 q^{64} - 308975155100 q^{67} + 33014547456 q^{70} - 357741406856 q^{73} - 179972022272 q^{76} + 905099168836 q^{79} + 722937556992 q^{82} + 720516135168 q^{85} + 62404952064 q^{88} - 1360962234040 q^{91} - 1147443557376 q^{94} + 5671281236356 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 39.1918 22.6274i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1024.00 1773.62i 0.250000 0.433013i
\(5\) 23434.3 + 13529.8i 1.49980 + 0.865908i 1.00000 0.000234889i \(-7.47674e-5\pi\)
0.499797 + 0.866143i \(0.333408\pi\)
\(6\) 0 0
\(7\) −19253.5 33348.0i −0.163652 0.283453i 0.772524 0.634986i \(-0.218994\pi\)
−0.936176 + 0.351533i \(0.885661\pi\)
\(8\) 92681.9i 0.353553i
\(9\) 0 0
\(10\) 1.22458e6 1.22458
\(11\) 915145. 528359.i 0.516575 0.298245i −0.218957 0.975735i \(-0.570265\pi\)
0.735532 + 0.677490i \(0.236932\pi\)
\(12\) 0 0
\(13\) −3.18495e6 + 5.51649e6i −0.659845 + 1.14289i 0.320810 + 0.947143i \(0.396045\pi\)
−0.980655 + 0.195742i \(0.937289\pi\)
\(14\) −1.50916e6 871312.i −0.200432 0.115719i
\(15\) 0 0
\(16\) −2.09715e6 3.63237e6i −0.125000 0.216506i
\(17\) 2.54594e6i 0.105476i 0.998608 + 0.0527382i \(0.0167949\pi\)
−0.998608 + 0.0527382i \(0.983205\pi\)
\(18\) 0 0
\(19\) 1.58076e6 0.0336003 0.0168002 0.999859i \(-0.494652\pi\)
0.0168002 + 0.999859i \(0.494652\pi\)
\(20\) 4.79935e7 2.77091e7i 0.749898 0.432954i
\(21\) 0 0
\(22\) 2.39108e7 4.14147e7i 0.210891 0.365274i
\(23\) 1.09932e8 + 6.34695e7i 0.742607 + 0.428744i 0.823016 0.568018i \(-0.192290\pi\)
−0.0804097 + 0.996762i \(0.525623\pi\)
\(24\) 0 0
\(25\) 2.44041e8 + 4.22692e8i 0.999593 + 1.73135i
\(26\) 2.88268e8i 0.933162i
\(27\) 0 0
\(28\) −7.88622e7 −0.163652
\(29\) −7.45261e8 + 4.30277e8i −1.25291 + 0.723369i −0.971687 0.236273i \(-0.924074\pi\)
−0.281225 + 0.959642i \(0.590741\pi\)
\(30\) 0 0
\(31\) 3.60891e8 6.25081e8i 0.406636 0.704314i −0.587874 0.808952i \(-0.700035\pi\)
0.994510 + 0.104638i \(0.0333684\pi\)
\(32\) −1.64382e8 9.49063e7i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 5.76081e7 + 9.97802e7i 0.0372915 + 0.0645908i
\(35\) 1.04198e9i 0.566829i
\(36\) 0 0
\(37\) 4.10816e9 1.60117 0.800584 0.599221i \(-0.204523\pi\)
0.800584 + 0.599221i \(0.204523\pi\)
\(38\) 6.19527e7 3.57684e7i 0.0205759 0.0118795i
\(39\) 0 0
\(40\) 1.25397e9 2.17194e9i 0.306145 0.530258i
\(41\) −1.46816e9 8.47640e8i −0.309079 0.178447i 0.337435 0.941349i \(-0.390441\pi\)
−0.646514 + 0.762902i \(0.723774\pi\)
\(42\) 0 0
\(43\) 5.93232e9 + 1.02751e10i 0.938456 + 1.62545i 0.768352 + 0.640027i \(0.221077\pi\)
0.170104 + 0.985426i \(0.445590\pi\)
\(44\) 2.16416e9i 0.298245i
\(45\) 0 0
\(46\) 5.74461e9 0.606336
\(47\) −7.65810e9 + 4.42141e9i −0.710451 + 0.410179i −0.811228 0.584730i \(-0.801200\pi\)
0.100777 + 0.994909i \(0.467867\pi\)
\(48\) 0 0
\(49\) 6.17925e9 1.07028e10i 0.446436 0.773250i
\(50\) 1.91289e10 + 1.10440e10i 1.22425 + 0.706819i
\(51\) 0 0
\(52\) 6.52277e9 + 1.12978e10i 0.329923 + 0.571443i
\(53\) 1.49000e10i 0.672251i 0.941817 + 0.336125i \(0.109117\pi\)
−0.941817 + 0.336125i \(0.890883\pi\)
\(54\) 0 0
\(55\) 2.85944e10 1.03301
\(56\) −3.09075e9 + 1.78445e9i −0.100216 + 0.0578596i
\(57\) 0 0
\(58\) −1.94721e10 + 3.37267e10i −0.511499 + 0.885943i
\(59\) 5.34412e10 + 3.08543e10i 1.26696 + 0.731482i 0.974412 0.224768i \(-0.0721624\pi\)
0.292551 + 0.956250i \(0.405496\pi\)
\(60\) 0 0
\(61\) −3.07148e10 5.31996e10i −0.596168 1.03259i −0.993381 0.114867i \(-0.963356\pi\)
0.397212 0.917727i \(-0.369978\pi\)
\(62\) 3.26641e10i 0.575070i
\(63\) 0 0
\(64\) −8.58993e9 −0.125000
\(65\) −1.49274e11 + 8.61835e10i −1.97927 + 1.14273i
\(66\) 0 0
\(67\) −4.81995e10 + 8.34839e10i −0.532836 + 0.922899i 0.466429 + 0.884559i \(0.345540\pi\)
−0.999265 + 0.0383400i \(0.987793\pi\)
\(68\) 4.51554e9 + 2.60705e9i 0.0456726 + 0.0263691i
\(69\) 0 0
\(70\) −2.35774e10 4.08372e10i −0.200404 0.347111i
\(71\) 1.92487e11i 1.50263i −0.659946 0.751313i \(-0.729421\pi\)
0.659946 0.751313i \(-0.270579\pi\)
\(72\) 0 0
\(73\) −2.52890e11 −1.67107 −0.835535 0.549437i \(-0.814842\pi\)
−0.835535 + 0.549437i \(0.814842\pi\)
\(74\) 1.61006e11 9.29570e10i 0.980511 0.566098i
\(75\) 0 0
\(76\) 1.61869e9 2.80366e9i 0.00840008 0.0145494i
\(77\) −3.52394e10 2.03455e10i −0.169077 0.0976166i
\(78\) 0 0
\(79\) 1.32683e11 + 2.29813e11i 0.545823 + 0.945393i 0.998555 + 0.0537465i \(0.0171163\pi\)
−0.452731 + 0.891647i \(0.649550\pi\)
\(80\) 1.13496e11i 0.432954i
\(81\) 0 0
\(82\) −7.67196e10 −0.252362
\(83\) −5.02122e11 + 2.89900e11i −1.53582 + 0.886706i −0.536743 + 0.843746i \(0.680346\pi\)
−0.999077 + 0.0429604i \(0.986321\pi\)
\(84\) 0 0
\(85\) −3.44461e10 + 5.96625e10i −0.0913328 + 0.158193i
\(86\) 4.64997e11 + 2.68466e11i 1.14937 + 0.663589i
\(87\) 0 0
\(88\) −4.89693e10 8.48174e10i −0.105445 0.182637i
\(89\) 2.67660e11i 0.538571i 0.963060 + 0.269285i \(0.0867875\pi\)
−0.963060 + 0.269285i \(0.913213\pi\)
\(90\) 0 0
\(91\) 2.45285e11 0.431939
\(92\) 2.25142e11 1.29986e11i 0.371303 0.214372i
\(93\) 0 0
\(94\) −2.00090e11 + 3.46566e11i −0.290040 + 0.502364i
\(95\) 3.70439e10 + 2.13873e10i 0.0503936 + 0.0290948i
\(96\) 0 0
\(97\) 7.00867e11 + 1.21394e12i 0.841405 + 1.45736i 0.888707 + 0.458475i \(0.151604\pi\)
−0.0473023 + 0.998881i \(0.515062\pi\)
\(98\) 5.59282e11i 0.631356i
\(99\) 0 0
\(100\) 9.99593e11 0.999593
\(101\) 8.69896e11 5.02234e11i 0.819481 0.473128i −0.0307565 0.999527i \(-0.509792\pi\)
0.850237 + 0.526399i \(0.176458\pi\)
\(102\) 0 0
\(103\) 2.89077e11 5.00696e11i 0.242098 0.419325i −0.719214 0.694789i \(-0.755498\pi\)
0.961312 + 0.275463i \(0.0888312\pi\)
\(104\) 5.11279e11 + 2.95187e11i 0.404071 + 0.233290i
\(105\) 0 0
\(106\) 3.37149e11 + 5.83959e11i 0.237677 + 0.411668i
\(107\) 9.85301e10i 0.0656547i −0.999461 0.0328274i \(-0.989549\pi\)
0.999461 0.0328274i \(-0.0104512\pi\)
\(108\) 0 0
\(109\) 7.74413e11 0.461757 0.230879 0.972983i \(-0.425840\pi\)
0.230879 + 0.972983i \(0.425840\pi\)
\(110\) 1.12067e12 6.47017e11i 0.632587 0.365224i
\(111\) 0 0
\(112\) −8.07549e10 + 1.39872e11i −0.0409129 + 0.0708633i
\(113\) −2.44593e12 1.41216e12i −1.17482 0.678285i −0.220013 0.975497i \(-0.570610\pi\)
−0.954812 + 0.297212i \(0.903943\pi\)
\(114\) 0 0
\(115\) 1.71746e12 + 2.97473e12i 0.742506 + 1.28606i
\(116\) 1.76241e12i 0.723369i
\(117\) 0 0
\(118\) 2.79261e12 1.03447
\(119\) 8.49020e10 4.90182e10i 0.0298976 0.0172614i
\(120\) 0 0
\(121\) −1.01089e12 + 1.75091e12i −0.322100 + 0.557893i
\(122\) −2.40754e12 1.38999e12i −0.730154 0.421555i
\(123\) 0 0
\(124\) −7.39104e11 1.28017e12i −0.203318 0.352157i
\(125\) 6.60098e12i 1.73041i
\(126\) 0 0
\(127\) 1.14926e12 0.273902 0.136951 0.990578i \(-0.456270\pi\)
0.136951 + 0.990578i \(0.456270\pi\)
\(128\) −3.36655e11 + 1.94368e11i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −3.90022e12 + 6.75538e12i −0.808032 + 1.39955i
\(131\) 8.49167e12 + 4.90267e12i 1.68022 + 0.970073i 0.961514 + 0.274755i \(0.0885967\pi\)
0.718702 + 0.695318i \(0.244737\pi\)
\(132\) 0 0
\(133\) −3.04350e10 5.27150e10i −0.00549875 0.00952411i
\(134\) 4.36252e12i 0.753544i
\(135\) 0 0
\(136\) 2.35963e11 0.0372915
\(137\) 8.07299e12 4.66094e12i 1.22099 0.704937i 0.255859 0.966714i \(-0.417642\pi\)
0.965128 + 0.261777i \(0.0843085\pi\)
\(138\) 0 0
\(139\) 1.88951e12 3.27272e12i 0.261975 0.453753i −0.704792 0.709414i \(-0.748960\pi\)
0.966767 + 0.255661i \(0.0822930\pi\)
\(140\) −1.84808e12 1.06699e12i −0.245444 0.141707i
\(141\) 0 0
\(142\) −4.35548e12 7.54391e12i −0.531258 0.920167i
\(143\) 6.73118e12i 0.787182i
\(144\) 0 0
\(145\) −2.32863e13 −2.50548
\(146\) −9.91123e12 + 5.72225e12i −1.02332 + 0.590812i
\(147\) 0 0
\(148\) 4.20675e12 7.28631e12i 0.400292 0.693326i
\(149\) 5.42513e12 + 3.13220e12i 0.495784 + 0.286241i 0.726971 0.686668i \(-0.240928\pi\)
−0.231187 + 0.972909i \(0.574261\pi\)
\(150\) 0 0
\(151\) 3.57828e12 + 6.19776e12i 0.301865 + 0.522845i 0.976558 0.215253i \(-0.0690576\pi\)
−0.674694 + 0.738098i \(0.735724\pi\)
\(152\) 1.46507e11i 0.0118795i
\(153\) 0 0
\(154\) −1.84146e12 −0.138051
\(155\) 1.69145e13 9.76557e12i 1.21974 0.704218i
\(156\) 0 0
\(157\) 5.89570e12 1.02117e13i 0.393675 0.681865i −0.599256 0.800557i \(-0.704537\pi\)
0.992931 + 0.118692i \(0.0378702\pi\)
\(158\) 1.04002e13 + 6.00454e12i 0.668494 + 0.385955i
\(159\) 0 0
\(160\) −2.56813e12 4.44813e12i −0.153072 0.265129i
\(161\) 4.88803e12i 0.280659i
\(162\) 0 0
\(163\) −4.66492e12 −0.248724 −0.124362 0.992237i \(-0.539688\pi\)
−0.124362 + 0.992237i \(0.539688\pi\)
\(164\) −3.00678e12 + 1.73597e12i −0.154539 + 0.0892233i
\(165\) 0 0
\(166\) −1.31194e13 + 2.27234e13i −0.626996 + 1.08599i
\(167\) 2.46814e13 + 1.42498e13i 1.13781 + 0.656915i 0.945888 0.324494i \(-0.105194\pi\)
0.191923 + 0.981410i \(0.438527\pi\)
\(168\) 0 0
\(169\) −8.63873e12 1.49627e13i −0.370791 0.642229i
\(170\) 3.11771e12i 0.129164i
\(171\) 0 0
\(172\) 2.42988e13 0.938456
\(173\) −2.01716e13 + 1.16461e13i −0.752426 + 0.434413i −0.826570 0.562834i \(-0.809711\pi\)
0.0741439 + 0.997248i \(0.476378\pi\)
\(174\) 0 0
\(175\) 9.39728e12 1.62766e13i 0.327170 0.566675i
\(176\) −3.83840e12 2.21610e12i −0.129144 0.0745612i
\(177\) 0 0
\(178\) 6.05645e12 + 1.04901e13i 0.190414 + 0.329806i
\(179\) 3.40943e12i 0.103649i −0.998656 0.0518243i \(-0.983496\pi\)
0.998656 0.0518243i \(-0.0165036\pi\)
\(180\) 0 0
\(181\) 3.21987e13 0.915730 0.457865 0.889022i \(-0.348614\pi\)
0.457865 + 0.889022i \(0.348614\pi\)
\(182\) 9.61317e12 5.55016e12i 0.264508 0.152714i
\(183\) 0 0
\(184\) 5.88248e12 1.01887e13i 0.151584 0.262551i
\(185\) 9.62719e13 + 5.55826e13i 2.40143 + 1.38646i
\(186\) 0 0
\(187\) 1.34517e12 + 2.32991e12i 0.0314578 + 0.0544865i
\(188\) 1.81101e13i 0.410179i
\(189\) 0 0
\(190\) 1.93576e12 0.0411462
\(191\) 1.37615e12 7.94519e11i 0.0283442 0.0163645i −0.485761 0.874092i \(-0.661457\pi\)
0.514105 + 0.857727i \(0.328124\pi\)
\(192\) 0 0
\(193\) 1.93962e13 3.35952e13i 0.375295 0.650030i −0.615076 0.788468i \(-0.710875\pi\)
0.990371 + 0.138438i \(0.0442081\pi\)
\(194\) 5.49365e13 + 3.17176e13i 1.03051 + 0.594963i
\(195\) 0 0
\(196\) −1.26551e13 2.19193e13i −0.223218 0.386625i
\(197\) 1.68796e13i 0.288778i −0.989521 0.144389i \(-0.953878\pi\)
0.989521 0.144389i \(-0.0461216\pi\)
\(198\) 0 0
\(199\) −4.66159e12 −0.0750613 −0.0375306 0.999295i \(-0.511949\pi\)
−0.0375306 + 0.999295i \(0.511949\pi\)
\(200\) 3.91759e13 2.26182e13i 0.612123 0.353410i
\(201\) 0 0
\(202\) 2.27285e13 3.93670e13i 0.334552 0.579461i
\(203\) 2.86977e13 + 1.65686e13i 0.410082 + 0.236761i
\(204\) 0 0
\(205\) −2.29368e13 3.97277e13i −0.309037 0.535267i
\(206\) 2.61643e13i 0.342378i
\(207\) 0 0
\(208\) 2.67173e13 0.329923
\(209\) 1.44662e12 8.35207e11i 0.0173571 0.0100211i
\(210\) 0 0
\(211\) −4.52210e13 + 7.83251e13i −0.512443 + 0.887578i 0.487453 + 0.873149i \(0.337926\pi\)
−0.999896 + 0.0144282i \(0.995407\pi\)
\(212\) 2.64270e13 + 1.52576e13i 0.291093 + 0.168063i
\(213\) 0 0
\(214\) −2.22948e12 3.86157e12i −0.0232125 0.0402052i
\(215\) 3.21053e14i 3.25047i
\(216\) 0 0
\(217\) −2.77936e13 −0.266187
\(218\) 3.03507e13 1.75230e13i 0.282768 0.163256i
\(219\) 0 0
\(220\) 2.92807e13 5.07156e13i 0.258253 0.447307i
\(221\) −1.40447e13 8.10869e12i −0.120547 0.0695981i
\(222\) 0 0
\(223\) −7.27416e13 1.25992e14i −0.591499 1.02451i −0.994031 0.109100i \(-0.965203\pi\)
0.402532 0.915406i \(-0.368130\pi\)
\(224\) 7.30909e12i 0.0578596i
\(225\) 0 0
\(226\) −1.27814e14 −0.959240
\(227\) −1.51717e13 + 8.75941e12i −0.110887 + 0.0640206i −0.554418 0.832239i \(-0.687059\pi\)
0.443531 + 0.896259i \(0.353726\pi\)
\(228\) 0 0
\(229\) −3.91608e13 + 6.78285e13i −0.271543 + 0.470326i −0.969257 0.246050i \(-0.920867\pi\)
0.697714 + 0.716376i \(0.254201\pi\)
\(230\) 1.34621e14 + 7.77234e13i 0.909380 + 0.525031i
\(231\) 0 0
\(232\) 3.98789e13 + 6.90722e13i 0.255750 + 0.442971i
\(233\) 1.00679e14i 0.629224i 0.949220 + 0.314612i \(0.101874\pi\)
−0.949220 + 0.314612i \(0.898126\pi\)
\(234\) 0 0
\(235\) −2.39283e14 −1.42071
\(236\) 1.09448e14 6.31896e13i 0.633482 0.365741i
\(237\) 0 0
\(238\) 2.21831e12 3.84223e12i 0.0122056 0.0211408i
\(239\) 1.23461e14 + 7.12804e13i 0.662435 + 0.382457i 0.793204 0.608956i \(-0.208411\pi\)
−0.130769 + 0.991413i \(0.541745\pi\)
\(240\) 0 0
\(241\) 5.62222e13 + 9.73798e13i 0.286950 + 0.497012i 0.973080 0.230467i \(-0.0740254\pi\)
−0.686130 + 0.727479i \(0.740692\pi\)
\(242\) 9.14951e13i 0.455518i
\(243\) 0 0
\(244\) −1.25808e14 −0.596168
\(245\) 2.89613e14 1.67208e14i 1.33913 0.773145i
\(246\) 0 0
\(247\) −5.03462e12 + 8.72022e12i −0.0221710 + 0.0384013i
\(248\) −5.79337e13 3.34480e13i −0.249013 0.143767i
\(249\) 0 0
\(250\) 1.49363e14 + 2.58704e14i 0.611791 + 1.05965i
\(251\) 2.39343e14i 0.957148i 0.878047 + 0.478574i \(0.158846\pi\)
−0.878047 + 0.478574i \(0.841154\pi\)
\(252\) 0 0
\(253\) 1.34139e14 0.511483
\(254\) 4.50415e13 2.60047e13i 0.167730 0.0968389i
\(255\) 0 0
\(256\) −8.79609e12 + 1.52353e13i −0.0312500 + 0.0541266i
\(257\) 1.00902e14 + 5.82558e13i 0.350188 + 0.202181i 0.664768 0.747050i \(-0.268530\pi\)
−0.314580 + 0.949231i \(0.601864\pi\)
\(258\) 0 0
\(259\) −7.90962e13 1.36999e14i −0.262034 0.453856i
\(260\) 3.53007e14i 1.14273i
\(261\) 0 0
\(262\) 4.43739e14 1.37189
\(263\) −1.06512e14 + 6.14948e13i −0.321858 + 0.185825i −0.652221 0.758029i \(-0.726162\pi\)
0.330362 + 0.943854i \(0.392829\pi\)
\(264\) 0 0
\(265\) −2.01594e14 + 3.49172e14i −0.582107 + 1.00824i
\(266\) −2.38561e12 1.37733e12i −0.00673456 0.00388820i
\(267\) 0 0
\(268\) 9.87125e13 + 1.70975e14i 0.266418 + 0.461449i
\(269\) 1.72775e14i 0.456003i −0.973661 0.228001i \(-0.926781\pi\)
0.973661 0.228001i \(-0.0732191\pi\)
\(270\) 0 0
\(271\) 6.56137e14 1.65645 0.828225 0.560395i \(-0.189351\pi\)
0.828225 + 0.560395i \(0.189351\pi\)
\(272\) 9.24782e12 5.33923e12i 0.0228363 0.0131845i
\(273\) 0 0
\(274\) 2.10930e14 3.65342e14i 0.498466 0.863368i
\(275\) 4.46666e14 + 2.57883e14i 1.03273 + 0.596247i
\(276\) 0 0
\(277\) −1.50345e14 2.60404e14i −0.332820 0.576461i 0.650244 0.759726i \(-0.274667\pi\)
−0.983064 + 0.183265i \(0.941333\pi\)
\(278\) 1.71018e14i 0.370488i
\(279\) 0 0
\(280\) −9.65729e13 −0.200404
\(281\) 5.97080e14 3.44724e14i 1.21282 0.700219i 0.249444 0.968389i \(-0.419752\pi\)
0.963372 + 0.268170i \(0.0864189\pi\)
\(282\) 0 0
\(283\) −1.24503e14 + 2.15646e14i −0.242360 + 0.419781i −0.961386 0.275203i \(-0.911255\pi\)
0.719026 + 0.694983i \(0.244588\pi\)
\(284\) −3.41398e14 1.97106e14i −0.650656 0.375656i
\(285\) 0 0
\(286\) 1.52309e14 + 2.63807e14i 0.278311 + 0.482048i
\(287\) 6.52800e13i 0.116812i
\(288\) 0 0
\(289\) 5.76140e14 0.988875
\(290\) −9.12631e14 + 5.26908e14i −1.53429 + 0.885822i
\(291\) 0 0
\(292\) −2.58959e14 + 4.48531e14i −0.417767 + 0.723595i
\(293\) −4.08239e14 2.35697e14i −0.645221 0.372519i 0.141402 0.989952i \(-0.454839\pi\)
−0.786623 + 0.617434i \(0.788172\pi\)
\(294\) 0 0
\(295\) 8.34906e14 + 1.44610e15i 1.26679 + 2.19415i
\(296\) 3.80752e14i 0.566098i
\(297\) 0 0
\(298\) 2.83494e14 0.404806
\(299\) −7.00258e14 + 4.04294e14i −0.980011 + 0.565810i
\(300\) 0 0
\(301\) 2.28435e14 3.95662e14i 0.307160 0.532016i
\(302\) 2.80478e14 + 1.61934e14i 0.369707 + 0.213451i
\(303\) 0 0
\(304\) −3.31509e12 5.74190e12i −0.00420004 0.00727468i
\(305\) 1.66226e15i 2.06491i
\(306\) 0 0
\(307\) −1.42240e15 −1.69900 −0.849498 0.527591i \(-0.823095\pi\)
−0.849498 + 0.527591i \(0.823095\pi\)
\(308\) −7.21703e13 + 4.16675e13i −0.0845384 + 0.0488083i
\(309\) 0 0
\(310\) 4.41939e14 7.65461e14i 0.497958 0.862488i
\(311\) 7.15366e14 + 4.13017e14i 0.790617 + 0.456463i 0.840180 0.542308i \(-0.182450\pi\)
−0.0495630 + 0.998771i \(0.515783\pi\)
\(312\) 0 0
\(313\) −6.74228e14 1.16780e15i −0.717036 1.24194i −0.962169 0.272453i \(-0.912165\pi\)
0.245133 0.969489i \(-0.421168\pi\)
\(314\) 5.33618e14i 0.556740i
\(315\) 0 0
\(316\) 5.43469e14 0.545823
\(317\) 1.06697e15 6.16014e14i 1.05147 0.607064i 0.128407 0.991722i \(-0.459014\pi\)
0.923059 + 0.384657i \(0.125680\pi\)
\(318\) 0 0
\(319\) −4.54681e14 + 7.87531e14i −0.431482 + 0.747349i
\(320\) −2.01299e14 1.16220e14i −0.187475 0.108238i
\(321\) 0 0
\(322\) −1.10604e14 1.91571e14i −0.0992279 0.171868i
\(323\) 4.02452e12i 0.00354404i
\(324\) 0 0
\(325\) −3.10903e15 −2.63831
\(326\) −1.82827e14 + 1.05555e14i −0.152312 + 0.0879373i
\(327\) 0 0
\(328\) −7.85609e13 + 1.36071e14i −0.0630904 + 0.109276i
\(329\) 2.94890e14 + 1.70255e14i 0.232533 + 0.134253i
\(330\) 0 0
\(331\) −9.87477e14 1.71036e15i −0.750860 1.30053i −0.947406 0.320033i \(-0.896306\pi\)
0.196547 0.980494i \(-0.437027\pi\)
\(332\) 1.18743e15i 0.886706i
\(333\) 0 0
\(334\) 1.28974e15 0.929019
\(335\) −2.25904e15 + 1.30426e15i −1.59829 + 0.922773i
\(336\) 0 0
\(337\) −2.29797e14 + 3.98019e14i −0.156879 + 0.271722i −0.933742 0.357948i \(-0.883477\pi\)
0.776863 + 0.629670i \(0.216810\pi\)
\(338\) −6.77135e14 3.90944e14i −0.454125 0.262189i
\(339\) 0 0
\(340\) 7.05457e13 + 1.22189e14i 0.0456664 + 0.0790966i
\(341\) 7.62720e14i 0.485108i
\(342\) 0 0
\(343\) −1.00887e15 −0.619544
\(344\) 9.52314e14 5.49819e14i 0.574685 0.331794i
\(345\) 0 0
\(346\) −5.27041e14 + 9.12862e14i −0.307177 + 0.532045i
\(347\) −2.14506e15 1.23845e15i −1.22875 0.709417i −0.261979 0.965074i \(-0.584375\pi\)
−0.966768 + 0.255656i \(0.917709\pi\)
\(348\) 0 0
\(349\) −4.54506e13 7.87227e13i −0.0251528 0.0435660i 0.853175 0.521625i \(-0.174674\pi\)
−0.878328 + 0.478059i \(0.841341\pi\)
\(350\) 8.50544e14i 0.462689i
\(351\) 0 0
\(352\) −2.00578e14 −0.105445
\(353\) −2.29734e15 + 1.32637e15i −1.18734 + 0.685513i −0.957702 0.287762i \(-0.907089\pi\)
−0.229642 + 0.973275i \(0.573755\pi\)
\(354\) 0 0
\(355\) 2.60431e15 4.51080e15i 1.30114 2.25363i
\(356\) 4.74726e14 + 2.74083e14i 0.233208 + 0.134643i
\(357\) 0 0
\(358\) −7.71466e13 1.33622e14i −0.0366453 0.0634715i
\(359\) 1.96552e15i 0.918145i 0.888399 + 0.459073i \(0.151818\pi\)
−0.888399 + 0.459073i \(0.848182\pi\)
\(360\) 0 0
\(361\) −2.21082e15 −0.998871
\(362\) 1.26193e15 7.28574e14i 0.560768 0.323759i
\(363\) 0 0
\(364\) 2.51172e14 4.35042e14i 0.107985 0.187035i
\(365\) −5.92631e15 3.42156e15i −2.50626 1.44699i
\(366\) 0 0
\(367\) −7.84452e14 1.35871e15i −0.321048 0.556071i 0.659657 0.751567i \(-0.270702\pi\)
−0.980705 + 0.195496i \(0.937368\pi\)
\(368\) 5.32421e14i 0.214372i
\(369\) 0 0
\(370\) 5.03076e15 1.96076
\(371\) 4.96885e14 2.86877e14i 0.190552 0.110015i
\(372\) 0 0
\(373\) −1.55974e15 + 2.70154e15i −0.579159 + 1.00313i 0.416417 + 0.909174i \(0.363286\pi\)
−0.995576 + 0.0939592i \(0.970048\pi\)
\(374\) 1.05440e14 + 6.08756e13i 0.0385278 + 0.0222440i
\(375\) 0 0
\(376\) 4.09784e14 + 7.09767e14i 0.145020 + 0.251182i
\(377\) 5.48163e15i 1.90925i
\(378\) 0 0
\(379\) −5.04620e13 −0.0170266 −0.00851332 0.999964i \(-0.502710\pi\)
−0.00851332 + 0.999964i \(0.502710\pi\)
\(380\) 7.58660e13 4.38012e13i 0.0251968 0.0145474i
\(381\) 0 0
\(382\) 3.59558e13 6.22773e13i 0.0115715 0.0200424i
\(383\) −4.27200e15 2.46644e15i −1.35344 0.781409i −0.364710 0.931121i \(-0.618832\pi\)
−0.988730 + 0.149712i \(0.952165\pi\)
\(384\) 0 0
\(385\) −5.50541e14 9.53565e14i −0.169054 0.292810i
\(386\) 1.75554e15i 0.530747i
\(387\) 0 0
\(388\) 2.87075e15 0.841405
\(389\) 3.28797e14 1.89831e14i 0.0948922 0.0547860i −0.451803 0.892118i \(-0.649219\pi\)
0.546695 + 0.837332i \(0.315886\pi\)
\(390\) 0 0
\(391\) −1.61590e14 + 2.79882e14i −0.0452224 + 0.0783275i
\(392\) −9.91954e14 5.72705e14i −0.273385 0.157839i
\(393\) 0 0
\(394\) −3.81941e14 6.61541e14i −0.102098 0.176840i
\(395\) 7.18069e15i 1.89053i
\(396\) 0 0
\(397\) 6.55958e15 1.67546 0.837728 0.546088i \(-0.183884\pi\)
0.837728 + 0.546088i \(0.183884\pi\)
\(398\) −1.82696e14 + 1.05480e14i −0.0459655 + 0.0265382i
\(399\) 0 0
\(400\) 1.02358e15 1.77290e15i 0.249898 0.432837i
\(401\) −1.10355e15 6.37137e14i −0.265416 0.153238i 0.361387 0.932416i \(-0.382303\pi\)
−0.626803 + 0.779178i \(0.715637\pi\)
\(402\) 0 0
\(403\) 2.29884e15 + 3.98170e15i 0.536633 + 0.929476i
\(404\) 2.05715e15i 0.473128i
\(405\) 0 0
\(406\) 1.49962e15 0.334831
\(407\) 3.75956e15 2.17058e15i 0.827124 0.477540i
\(408\) 0 0
\(409\) 1.47982e15 2.56312e15i 0.316132 0.547557i −0.663545 0.748136i \(-0.730949\pi\)
0.979678 + 0.200579i \(0.0642824\pi\)
\(410\) −1.79787e15 1.03800e15i −0.378491 0.218522i
\(411\) 0 0
\(412\) −5.92030e14 1.02543e15i −0.121049 0.209663i
\(413\) 2.37621e15i 0.478833i
\(414\) 0 0
\(415\) −1.56892e16 −3.07122
\(416\) 1.04710e15 6.04543e14i 0.202035 0.116645i
\(417\) 0 0
\(418\) 3.77971e13 6.54666e13i 0.00708600 0.0122733i
\(419\) 9.34387e14 + 5.39468e14i 0.172680 + 0.0996969i 0.583849 0.811862i \(-0.301546\pi\)
−0.411169 + 0.911559i \(0.634879\pi\)
\(420\) 0 0
\(421\) −2.23817e15 3.87663e15i −0.401977 0.696245i 0.591987 0.805947i \(-0.298343\pi\)
−0.993964 + 0.109703i \(0.965010\pi\)
\(422\) 4.09294e15i 0.724704i
\(423\) 0 0
\(424\) 1.38096e15 0.237677
\(425\) −1.07615e15 + 6.21315e14i −0.182616 + 0.105433i
\(426\) 0 0
\(427\) −1.18273e15 + 2.04855e15i −0.195128 + 0.337971i
\(428\) −1.74755e14 1.00895e14i −0.0284293 0.0164137i
\(429\) 0 0
\(430\) 7.26459e15 + 1.25826e16i 1.14921 + 1.99050i
\(431\) 7.86574e15i 1.22709i −0.789660 0.613544i \(-0.789743\pi\)
0.789660 0.613544i \(-0.210257\pi\)
\(432\) 0 0
\(433\) −5.34544e15 −0.811066 −0.405533 0.914080i \(-0.632914\pi\)
−0.405533 + 0.914080i \(0.632914\pi\)
\(434\) −1.08928e15 + 6.28897e14i −0.163005 + 0.0941112i
\(435\) 0 0
\(436\) 7.92999e14 1.37352e15i 0.115439 0.199947i
\(437\) 1.73776e14 + 1.00330e14i 0.0249518 + 0.0144059i
\(438\) 0 0
\(439\) −2.82271e15 4.88908e15i −0.394348 0.683030i 0.598670 0.800996i \(-0.295696\pi\)
−0.993018 + 0.117966i \(0.962363\pi\)
\(440\) 2.65018e15i 0.365224i
\(441\) 0 0
\(442\) −7.33915e14 −0.0984266
\(443\) −1.04600e16 + 6.03907e15i −1.38391 + 0.799001i −0.992620 0.121266i \(-0.961305\pi\)
−0.391290 + 0.920267i \(0.627971\pi\)
\(444\) 0 0
\(445\) −3.62138e15 + 6.27242e15i −0.466353 + 0.807747i
\(446\) −5.70175e15 3.29191e15i −0.724435 0.418253i
\(447\) 0 0
\(448\) 1.65386e14 + 2.86457e14i 0.0204565 + 0.0354316i
\(449\) 1.48510e16i 1.81250i −0.422746 0.906248i \(-0.638934\pi\)
0.422746 0.906248i \(-0.361066\pi\)
\(450\) 0 0
\(451\) −1.79143e15 −0.212883
\(452\) −5.00926e15 + 2.89210e15i −0.587412 + 0.339143i
\(453\) 0 0
\(454\) −3.96406e14 + 6.86595e14i −0.0452694 + 0.0784089i
\(455\) 5.74809e15 + 3.31866e15i 0.647821 + 0.374019i
\(456\) 0 0
\(457\) −4.00489e15 6.93667e15i −0.439636 0.761472i 0.558025 0.829824i \(-0.311559\pi\)
−0.997661 + 0.0683522i \(0.978226\pi\)
\(458\) 3.54443e15i 0.384020i
\(459\) 0 0
\(460\) 7.03472e15 0.742506
\(461\) 1.11637e16 6.44534e15i 1.16306 0.671491i 0.211022 0.977481i \(-0.432321\pi\)
0.952035 + 0.305990i \(0.0989876\pi\)
\(462\) 0 0
\(463\) −4.51163e15 + 7.81437e15i −0.457981 + 0.793247i −0.998854 0.0478576i \(-0.984761\pi\)
0.540873 + 0.841104i \(0.318094\pi\)
\(464\) 3.12585e15 + 1.80471e15i 0.313228 + 0.180842i
\(465\) 0 0
\(466\) 2.27811e15 + 3.94581e15i 0.222464 + 0.385319i
\(467\) 2.65871e15i 0.256312i −0.991754 0.128156i \(-0.959094\pi\)
0.991754 0.128156i \(-0.0409059\pi\)
\(468\) 0 0
\(469\) 3.71203e15 0.348798
\(470\) −9.37795e15 + 5.41436e15i −0.870003 + 0.502296i
\(471\) 0 0
\(472\) 2.85963e15 4.95303e15i 0.258618 0.447939i
\(473\) 1.08579e16 + 6.26879e15i 0.969566 + 0.559779i
\(474\) 0 0
\(475\) 3.85770e14 + 6.68173e14i 0.0335866 + 0.0581738i
\(476\) 2.00779e14i 0.0172614i
\(477\) 0 0
\(478\) 6.45156e15 0.540876
\(479\) 1.13766e15 6.56827e14i 0.0941887 0.0543798i −0.452166 0.891934i \(-0.649348\pi\)
0.546354 + 0.837554i \(0.316015\pi\)
\(480\) 0 0
\(481\) −1.30843e16 + 2.26626e16i −1.05652 + 1.82995i
\(482\) 4.40691e15 + 2.54433e15i 0.351440 + 0.202904i
\(483\) 0 0
\(484\) 2.07030e15 + 3.58586e15i 0.161050 + 0.278947i
\(485\) 3.79304e16i 2.91432i
\(486\) 0 0
\(487\) −1.13689e16 −0.852207 −0.426104 0.904674i \(-0.640114\pi\)
−0.426104 + 0.904674i \(0.640114\pi\)
\(488\) −4.93064e15 + 2.84671e15i −0.365077 + 0.210777i
\(489\) 0 0
\(490\) 7.56698e15 1.31064e16i 0.546696 0.946906i
\(491\) 1.74056e16 + 1.00491e16i 1.24222 + 0.717198i 0.969546 0.244908i \(-0.0787578\pi\)
0.272677 + 0.962106i \(0.412091\pi\)
\(492\) 0 0
\(493\) −1.09546e15 1.89739e15i −0.0762984 0.132153i
\(494\) 4.55682e14i 0.0313545i
\(495\) 0 0
\(496\) −3.02737e15 −0.203318
\(497\) −6.41904e15 + 3.70604e15i −0.425924 + 0.245907i
\(498\) 0 0
\(499\) 9.58475e15 1.66013e16i 0.620837 1.07532i −0.368494 0.929630i \(-0.620126\pi\)
0.989330 0.145690i \(-0.0465403\pi\)
\(500\) 1.17076e16 + 6.75940e15i 0.749288 + 0.432602i
\(501\) 0 0
\(502\) 5.41572e15 + 9.38031e15i 0.338403 + 0.586131i
\(503\) 3.57174e15i 0.220532i −0.993902 0.110266i \(-0.964830\pi\)
0.993902 0.110266i \(-0.0351703\pi\)
\(504\) 0 0
\(505\) 2.71805e16 1.63874
\(506\) 5.25715e15 3.03521e15i 0.313218 0.180837i
\(507\) 0 0
\(508\) 1.17684e15 2.03835e15i 0.0684754 0.118603i
\(509\) 2.08346e14 + 1.20289e14i 0.0119806 + 0.00691702i 0.505978 0.862546i \(-0.331132\pi\)
−0.493998 + 0.869463i \(0.664465\pi\)
\(510\) 0 0
\(511\) 4.86901e15 + 8.43337e15i 0.273473 + 0.473670i
\(512\) 7.96131e14i 0.0441942i
\(513\) 0 0
\(514\) 5.27271e15 0.285927
\(515\) 1.35487e16 7.82232e15i 0.726194 0.419268i
\(516\) 0 0
\(517\) −4.67218e15 + 8.09245e15i −0.244667 + 0.423776i
\(518\) −6.19985e15 3.57949e15i −0.320924 0.185286i
\(519\) 0 0
\(520\) 7.98765e15 + 1.38350e16i 0.404016 + 0.699777i
\(521\) 1.13166e16i 0.565835i 0.959144 + 0.282917i \(0.0913022\pi\)
−0.959144 + 0.282917i \(0.908698\pi\)
\(522\) 0 0
\(523\) 1.60120e16 0.782414 0.391207 0.920303i \(-0.372058\pi\)
0.391207 + 0.920303i \(0.372058\pi\)
\(524\) 1.73909e16 1.00407e16i 0.840108 0.485037i
\(525\) 0 0
\(526\) −2.78294e15 + 4.82019e15i −0.131398 + 0.227588i
\(527\) 1.59142e15 + 9.18808e14i 0.0742885 + 0.0428905i
\(528\) 0 0
\(529\) −2.90055e15 5.02390e15i −0.132357 0.229249i
\(530\) 1.82462e16i 0.823224i
\(531\) 0 0
\(532\) −1.24662e14 −0.00549875
\(533\) 9.35199e15 5.39938e15i 0.407888 0.235494i
\(534\) 0 0
\(535\) 1.33309e15 2.30899e15i 0.0568510 0.0984688i
\(536\) 7.73745e15 + 4.46722e15i 0.326294 + 0.188386i
\(537\) 0 0
\(538\) −3.90946e15 6.77138e15i −0.161221 0.279244i
\(539\) 1.30595e16i 0.532589i
\(540\) 0 0
\(541\) −1.37943e16 −0.550195 −0.275098 0.961416i \(-0.588710\pi\)
−0.275098 + 0.961416i \(0.588710\pi\)
\(542\) 2.57152e16 1.48467e16i 1.01436 0.585644i
\(543\) 0 0
\(544\) 2.41626e14 4.18509e14i 0.00932288 0.0161477i
\(545\) 1.81479e16 + 1.04777e16i 0.692542 + 0.399839i
\(546\) 0 0
\(547\) 2.52139e15 + 4.36718e15i 0.0941274 + 0.163034i 0.909244 0.416263i \(-0.136661\pi\)
−0.815117 + 0.579297i \(0.803327\pi\)
\(548\) 1.90912e16i 0.704937i
\(549\) 0 0
\(550\) 2.33409e16 0.843221
\(551\) −1.17808e15 + 6.80163e14i −0.0420982 + 0.0243054i
\(552\) 0 0
\(553\) 5.10920e15 8.84940e15i 0.178650 0.309430i
\(554\) −1.17846e16 6.80382e15i −0.407619 0.235339i
\(555\) 0 0
\(556\) −3.86971e15 6.70253e15i −0.130987 0.226877i
\(557\) 5.00485e16i 1.67595i 0.545711 + 0.837974i \(0.316260\pi\)
−0.545711 + 0.837974i \(0.683740\pi\)
\(558\) 0 0
\(559\) −7.55765e16 −2.47694
\(560\) −3.78487e15 + 2.18520e15i −0.122722 + 0.0708536i
\(561\) 0 0
\(562\) 1.56004e16 2.70208e16i 0.495130 0.857590i
\(563\) −2.69154e16 1.55396e16i −0.845181 0.487966i 0.0138407 0.999904i \(-0.495594\pi\)
−0.859022 + 0.511938i \(0.828928\pi\)
\(564\) 0 0
\(565\) −3.82124e16 6.61859e16i −1.17466 2.03458i
\(566\) 1.12687e16i 0.342749i
\(567\) 0 0
\(568\) −1.78400e16 −0.531258
\(569\) −9.90375e15 + 5.71793e15i −0.291827 + 0.168487i −0.638766 0.769401i \(-0.720555\pi\)
0.346938 + 0.937888i \(0.387221\pi\)
\(570\) 0 0
\(571\) 2.61075e16 4.52196e16i 0.753267 1.30470i −0.192964 0.981206i \(-0.561810\pi\)
0.946231 0.323491i \(-0.104857\pi\)
\(572\) 1.19386e16 + 6.89273e15i 0.340860 + 0.196795i
\(573\) 0 0
\(574\) 1.47712e15 + 2.55844e15i 0.0412994 + 0.0715327i
\(575\) 6.19567e16i 1.71428i
\(576\) 0 0
\(577\) −2.11018e16 −0.571828 −0.285914 0.958255i \(-0.592297\pi\)
−0.285914 + 0.958255i \(0.592297\pi\)
\(578\) 2.25800e16 1.30366e16i 0.605560 0.349620i
\(579\) 0 0
\(580\) −2.38451e16 + 4.13010e16i −0.626371 + 1.08491i
\(581\) 1.93352e16 + 1.11632e16i 0.502679 + 0.290222i
\(582\) 0 0
\(583\) 7.87255e15 + 1.36357e16i 0.200495 + 0.347268i
\(584\) 2.34383e16i 0.590812i
\(585\) 0 0
\(586\) −2.13328e16 −0.526821
\(587\) 5.05498e16 2.91849e16i 1.23564 0.713395i 0.267437 0.963575i \(-0.413823\pi\)
0.968199 + 0.250180i \(0.0804898\pi\)
\(588\) 0 0
\(589\) 5.70480e14 9.88101e14i 0.0136631 0.0236652i
\(590\) 6.54430e16 + 3.77835e16i 1.55150 + 0.895757i
\(591\) 0 0
\(592\) −8.61543e15 1.49224e16i −0.200146 0.346663i
\(593\) 5.67583e15i 0.130527i −0.997868 0.0652637i \(-0.979211\pi\)
0.997868 0.0652637i \(-0.0207888\pi\)
\(594\) 0 0
\(595\) 2.65283e15 0.0597871
\(596\) 1.11107e16 6.41474e15i 0.247892 0.143120i
\(597\) 0 0
\(598\) −1.82963e16 + 3.16901e16i −0.400088 + 0.692972i
\(599\) −2.85237e15 1.64682e15i −0.0617511 0.0356520i 0.468807 0.883301i \(-0.344684\pi\)
−0.530558 + 0.847649i \(0.678017\pi\)
\(600\) 0 0
\(601\) −1.68791e16 2.92355e16i −0.358182 0.620389i 0.629475 0.777020i \(-0.283270\pi\)
−0.987657 + 0.156632i \(0.949936\pi\)
\(602\) 2.06756e16i 0.434390i
\(603\) 0 0
\(604\) 1.46566e16 0.301865
\(605\) −4.73789e16 + 2.73542e16i −0.966169 + 0.557818i
\(606\) 0 0
\(607\) −9.99643e15 + 1.73143e16i −0.199854 + 0.346157i −0.948481 0.316834i \(-0.897380\pi\)
0.748627 + 0.662992i \(0.230713\pi\)
\(608\) −2.59849e14 1.50024e14i −0.00514397 0.00296988i
\(609\) 0 0
\(610\) −3.76127e16 6.51471e16i −0.730055 1.26449i
\(611\) 5.63278e16i 1.08262i
\(612\) 0 0
\(613\) 1.47766e15 0.0278491 0.0139246 0.999903i \(-0.495568\pi\)
0.0139246 + 0.999903i \(0.495568\pi\)
\(614\) −5.57466e16 + 3.21853e16i −1.04042 + 0.600686i
\(615\) 0 0
\(616\) −1.88566e15 + 3.26605e15i −0.0345127 + 0.0597777i
\(617\) 1.62823e16 + 9.40058e15i 0.295124 + 0.170390i 0.640250 0.768166i \(-0.278831\pi\)
−0.345126 + 0.938556i \(0.612164\pi\)
\(618\) 0 0
\(619\) 1.24568e16 + 2.15758e16i 0.221443 + 0.383551i 0.955246 0.295811i \(-0.0955899\pi\)
−0.733803 + 0.679362i \(0.762257\pi\)
\(620\) 3.99998e16i 0.704218i
\(621\) 0 0
\(622\) 3.73820e16 0.645536
\(623\) 8.92590e15 5.15337e15i 0.152660 0.0881380i
\(624\) 0 0
\(625\) −2.97296e16 + 5.14931e16i −0.498780 + 0.863912i
\(626\) −5.28485e16 3.05121e16i −0.878186 0.507021i
\(627\) 0 0
\(628\) −1.20744e16 2.09135e16i −0.196837 0.340932i
\(629\) 1.04591e16i 0.168885i
\(630\) 0 0
\(631\) 6.72198e16 1.06493 0.532465 0.846452i \(-0.321266\pi\)
0.532465 + 0.846452i \(0.321266\pi\)
\(632\) 2.12995e16 1.22973e16i 0.334247 0.192978i
\(633\) 0 0
\(634\) 2.78776e16 4.82854e16i 0.429259 0.743499i
\(635\) 2.69321e16 + 1.55492e16i 0.410797 + 0.237174i
\(636\) 0 0
\(637\) 3.93612e16 + 6.81756e16i 0.589158 + 1.02045i
\(638\) 4.11531e16i 0.610208i
\(639\) 0 0
\(640\) −1.05191e16 −0.153072
\(641\) −2.97844e16 + 1.71960e16i −0.429379 + 0.247902i −0.699082 0.715042i \(-0.746408\pi\)
0.269703 + 0.962944i \(0.413074\pi\)
\(642\) 0 0
\(643\) 4.23528e16 7.33572e16i 0.599261 1.03795i −0.393669 0.919252i \(-0.628795\pi\)
0.992930 0.118698i \(-0.0378722\pi\)
\(644\) −8.66951e15 5.00534e15i −0.121529 0.0701647i
\(645\) 0 0
\(646\) 9.10644e13 + 1.57728e14i 0.00125301 + 0.00217027i
\(647\) 1.28516e17i 1.75199i −0.482323 0.875994i \(-0.660207\pi\)
0.482323 0.875994i \(-0.339793\pi\)
\(648\) 0 0
\(649\) 6.52086e16 0.872643
\(650\) −1.21849e17 + 7.03494e16i −1.61563 + 0.932782i
\(651\) 0 0
\(652\) −4.77687e15 + 8.27379e15i −0.0621811 + 0.107701i
\(653\) 1.14204e17 + 6.59359e16i 1.47300 + 0.850438i 0.999539 0.0303751i \(-0.00967019\pi\)
0.473464 + 0.880813i \(0.343004\pi\)
\(654\) 0 0
\(655\) 1.32664e17 + 2.29781e17i 1.67999 + 2.90983i
\(656\) 7.11052e15i 0.0892233i
\(657\) 0 0
\(658\) 1.54097e16 0.189862
\(659\) 1.01901e16 5.88324e15i 0.124413 0.0718297i −0.436502 0.899703i \(-0.643783\pi\)
0.560915 + 0.827874i \(0.310450\pi\)
\(660\) 0 0
\(661\) 3.54190e16 6.13475e16i 0.424647 0.735510i −0.571741 0.820434i \(-0.693732\pi\)
0.996387 + 0.0849247i \(0.0270650\pi\)
\(662\) −7.74020e16 4.46881e16i −0.919612 0.530938i
\(663\) 0 0
\(664\) 2.68685e16 + 4.65376e16i 0.313498 + 0.542994i
\(665\) 1.64712e15i 0.0190456i
\(666\) 0 0
\(667\) −1.09238e17 −1.24056
\(668\) 5.05474e16 2.91836e16i 0.568905 0.328458i
\(669\) 0 0
\(670\) −5.90240e16 + 1.02233e17i −0.652499 + 1.13016i
\(671\) −5.62170e16 3.24569e16i −0.615932 0.355608i
\(672\) 0 0
\(673\) −4.48652e16 7.77089e16i −0.482858 0.836335i 0.516948 0.856017i \(-0.327068\pi\)
−0.999806 + 0.0196819i \(0.993735\pi\)
\(674\) 2.07988e16i 0.221860i
\(675\) 0 0
\(676\) −3.53842e16 −0.370791
\(677\) −9.03018e16 + 5.21358e16i −0.937917 + 0.541507i −0.889307 0.457311i \(-0.848813\pi\)
−0.0486104 + 0.998818i \(0.515479\pi\)
\(678\) 0 0
\(679\) 2.69882e16 4.67450e16i 0.275395 0.476997i
\(680\) 5.52963e15 + 3.19253e15i 0.0559297 + 0.0322910i
\(681\) 0 0
\(682\) −1.72584e16 2.98924e16i −0.171512 0.297067i
\(683\) 1.69283e16i 0.166759i −0.996518 0.0833797i \(-0.973429\pi\)
0.996518 0.0833797i \(-0.0265714\pi\)
\(684\) 0 0
\(685\) 2.52247e17 2.44164
\(686\) −3.95396e16 + 2.28282e16i −0.379391 + 0.219042i
\(687\) 0 0
\(688\) 2.48820e16 4.30968e16i 0.234614 0.406363i
\(689\) −8.21957e16 4.74557e16i −0.768306 0.443581i
\(690\) 0 0
\(691\) −2.78470e16 4.82324e16i −0.255805 0.443068i 0.709309 0.704898i \(-0.249007\pi\)
−0.965114 + 0.261830i \(0.915674\pi\)
\(692\) 4.77023e16i 0.434413i
\(693\) 0 0
\(694\) −1.12092e17 −1.00327
\(695\) 8.85585e16 5.11293e16i 0.785817 0.453692i
\(696\) 0 0
\(697\) 2.15804e15 3.73784e15i 0.0188219 0.0326005i
\(698\) −3.56258e15 2.05686e15i −0.0308058 0.0177857i
\(699\) 0 0
\(700\) −1.92456e16 3.33344e16i −0.163585 0.283338i
\(701\) 1.24684e16i 0.105076i −0.998619 0.0525379i \(-0.983269\pi\)
0.998619 0.0525379i \(-0.0167310\pi\)
\(702\) 0 0
\(703\) 6.49399e15 0.0537997
\(704\) −7.86103e15 + 4.53857e15i −0.0645719 + 0.0372806i
\(705\) 0 0
\(706\) −6.00246e16 + 1.03966e17i −0.484731 + 0.839579i
\(707\) −3.34970e16 1.93395e16i −0.268219 0.154856i
\(708\) 0 0
\(709\) 7.78003e16 + 1.34754e17i 0.612497 + 1.06088i 0.990818 + 0.135201i \(0.0431681\pi\)
−0.378321 + 0.925674i \(0.623499\pi\)
\(710\) 2.35715e17i 1.84008i
\(711\) 0 0
\(712\) 2.48072e16 0.190414
\(713\) 7.93472e16 4.58111e16i 0.603941 0.348685i
\(714\) 0 0
\(715\) −9.10716e16 + 1.57741e17i −0.681627 + 1.18061i
\(716\) −6.04703e15 3.49126e15i −0.0448812 0.0259122i
\(717\) 0 0
\(718\) 4.44747e16 + 7.70325e16i 0.324613 + 0.562247i
\(719\) 2.11824e17i 1.53321i −0.642118 0.766606i \(-0.721944\pi\)
0.642118 0.766606i \(-0.278056\pi\)
\(720\) 0 0
\(721\) −2.22629e16 −0.158479
\(722\) −8.66459e16 + 5.00251e16i −0.611681 + 0.353154i
\(723\) 0 0
\(724\) 3.29715e16 5.71083e16i 0.228933 0.396523i
\(725\) −3.63749e17 2.10011e17i −2.50480 1.44615i
\(726\) 0 0
\(727\) −8.58243e16 1.48652e17i −0.581304 1.00685i −0.995325 0.0965813i \(-0.969209\pi\)
0.414021 0.910267i \(-0.364124\pi\)
\(728\) 2.27335e16i 0.152714i
\(729\) 0 0
\(730\) −3.09684e17 −2.04636
\(731\) −2.61598e16 + 1.51034e16i −0.171447 + 0.0989850i
\(732\) 0 0
\(733\) −1.01296e17 + 1.75450e17i −0.653086 + 1.13118i 0.329285 + 0.944231i \(0.393192\pi\)
−0.982370 + 0.186947i \(0.940141\pi\)
\(734\) −6.14882e16 3.55002e16i −0.393202 0.227015i
\(735\) 0 0
\(736\) −1.20473e16 2.08666e16i −0.0757920 0.131276i
\(737\) 1.01866e17i 0.635662i
\(738\) 0 0
\(739\) −5.12528e16 −0.314667 −0.157333 0.987546i \(-0.550290\pi\)
−0.157333 + 0.987546i \(0.550290\pi\)
\(740\) 1.97165e17 1.13833e17i 1.20071 0.693232i
\(741\) 0 0
\(742\) 1.29826e16 2.24864e16i 0.0777923 0.134740i
\(743\) −1.16670e17 6.73595e16i −0.693468 0.400374i 0.111442 0.993771i \(-0.464453\pi\)
−0.804910 + 0.593397i \(0.797787\pi\)
\(744\) 0 0
\(745\) 8.47561e16 + 1.46802e17i 0.495717 + 0.858606i
\(746\) 1.41171e17i 0.819055i
\(747\) 0 0
\(748\) 5.50983e15 0.0314578
\(749\) −3.28578e15 + 1.89704e15i −0.0186100 + 0.0107445i
\(750\) 0 0
\(751\) 8.16463e15 1.41416e16i 0.0455090 0.0788239i −0.842374 0.538894i \(-0.818842\pi\)
0.887883 + 0.460070i \(0.152176\pi\)
\(752\) 3.21204e16 + 1.85447e16i 0.177613 + 0.102545i
\(753\) 0 0
\(754\) −1.24035e17 2.14835e17i −0.675020 1.16917i
\(755\) 1.93654e17i 1.04555i
\(756\) 0 0
\(757\) 1.24607e17 0.662169 0.331084 0.943601i \(-0.392585\pi\)
0.331084 + 0.943601i \(0.392585\pi\)
\(758\) −1.97770e15 + 1.14182e15i −0.0104266 + 0.00601982i
\(759\) 0 0
\(760\) 1.98222e15 3.43330e15i 0.0102866 0.0178168i
\(761\) −3.19948e17 1.84722e17i −1.64729 0.951066i −0.978141 0.207942i \(-0.933323\pi\)
−0.669154 0.743124i \(-0.733343\pi\)
\(762\) 0 0
\(763\) −1.49101e16 2.58251e16i −0.0755674 0.130887i
\(764\) 3.25435e15i 0.0163645i